An Ontology Design Pattern for Cartographic Map Scaling*

David Carral¹, <u>Simon Scheider</u>², Krzysztof Janowicz³, Charles Vardeman⁴, Adila Krisnadhi¹, and Pascal Hitzler¹

 1 Kno.e.sis Center, Wright State University, USA fcarral.2, pascal.hitzler, krisnadhi.2g@wright.edu
2 Institute for Geoinformatics, University of Münster, Münster, Germany simonscheider@web.de
3 Department of Geography University of California, Santa Barbara, CA, USA jano@geog.ucsb.edu
4 Center for Research Computing, University of Notre Dame, Notre Dame,

*Collaborative outcome of GeoVoCampDayton2012

The need for scale and levels of detail

- Digital representations (of space) come with a level of detail (LoD), i.e., a scale level
- The level of detail is crucial knowledge which allows assessing compatibility across linked spatial data
- What is the LoD of spatial LOD?
- Our scaling ontology allows to query and link data according to its scale level and to describe and check the consistency of scaling applications

Zooming out in OSM

The need for scale and levels of detail

If one ``scales" maps across zoom levels, then:

- Things disappear/appear (e.g. restaurants)
- Classes disappear/appear (e.g. forest landcover)
- Things are modified (e.g. road geometry is simplified)

Automated map generalization

Merge and simplification

Source: Mamane Nouri SABO, Yvan BÉDARD, Bernard MOULIN, Eveline BERNIER 2007

displacement

Overview of map generalization techniques

Source: Shea, McMaster 1989

Attribute Transformations (Generalization	Representation in the Original Map	Representation in the Generalized Map	
Operators)	At Scale of the	Original Map	At 50% Scale
Simplification	or pool of		~~
Smoothing		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/
Aggregation	Do Pueblo Ruins		6 ⁻ Ruins
Amalgamation			
Merge	Y	×	ľ
Collapse	Lake	Lake	Lake
Refinement	88888	800°8	8
Typification	88888		8 \$ 8 1 1
Exaggeration	Bay	Bay	Bay
Enhancement	\times	X	×
Displacement	1	T	T
Classification	1,2,3,4,5,6,7,8,9,10,11,12, 13,14,15,16,17,18,19,20	1-5, 6-10, 11-15, 16-20	Not Applicable

What is the level of detail (LoD) of linked open data (LOD)?

How to *link spatial data* on the appropriate *level of detail* ?

→Would help prevent **meaningless map comparisons**

What is the level of detail (LoD) of linked open data (LOD)?

 Meaningless artefacts: Forest/industrial areas and buildings overlap only due to different LoD

• Meaningless analysis: Malaria density pixels and river data

What is the level of detail (LoD) of linked open data (LOD)?

``Roads on the water'' and ``missing land'' in Google Maps: Beaver island, Lake Michigan

http://cartastrophe.wordpress.com/tag/bad-generalization/

Map scaling in a nutshell

 Map scaling can be described as a binary function from things and scale levels to geometric representations. The latter two are partially ordered:

Map scaling in a nutshell

2) Scale levels have lower and upper bounds

Map scaling in a nutshell

3) **Maps** can be treated as projections of scaling functions to fixed scale levels. Maps form scaling applications.

Ontology Design Pattern for Map Scaling: Classes and Properties

DLP_\exists

where $C, D, E \in N_{\mathsf{C}} \cup \{\top, \bot\}, R, S, V \in N_{\mathsf{R}}, \text{ and } a, b \in N_{\mathsf{I}}$

Fig. 1. DLP_{\exists} Normal Form

DLP_\exists

 $\begin{aligned} ScaledRep &\sqsubseteq \exists isPresentedAs. GeometricRep \\ ScaledRep &\sqsubseteq \exists isScaled. ScaleLevel \\ ScaledRep &\sqsubseteq \exists representsObject. Geographic Thing \end{aligned}$

DLP_\exists

 $\begin{aligned} ScaledRep &\sqsubseteq \exists isPresentedAs. GeometricRep \\ ScaledRep &\sqsubseteq \exists isScaled. ScaleLevel \\ ScaledRep &\sqsubseteq \exists representsObject. Geographic Thing \end{aligned}$

ScaledRep: disjoint with GeometricRep, ScaleLevel, and GeographicThing

Constraints

- Functional Properties: hasScale, isPresentedAs, isScaled, representsObject.
- Transitive Properties: sharesApplicationWith, isLargerThan, isMoreGeneralThan.
- Symmetric Properties: sharesApplicationWith.
- Role chains, existential restrictions, range and domain, disjoint classes...

 $sharesApplicationWith(m_x, m_y) \land hasScale(s_y, m_y) \land hasScale(s_x, m_x) \land isLargerThan(s_x, s_y) \land isConstituentOf(m_y, sr_y) \land isConstituentOf(m_y, sr_y) \land representsObject(sr_x, g) \land representsObject(sr_y, g) \land isPresentedAs(sr_y, grr_y) \land isPresentedAs(sr_y, grr_y) \land isMoreGeneralThan(grr_x, grr_y) \rightarrow \bot(m_x)$

 $sharesApplicationWith(m_x, m_y) \land hasScale(s_y, m_y) \land hasScale(s_x, m_x) \land isLargerThan(s_x, s_y) \land isConstituentOf(m_y, sr_y) \land isConstituentOf(m_y, sr_y) \land representsObject(sr_x, g) \land representsObject(sr_y, g) \land isPresentedAs(sr_y, grr_y) \land isPresentedAs(sr_y, grr_y) \land isMoreGeneralThan(grr_x, grr_y) \rightarrow \bot(m_x)$

 $hasScale^- \circ sharesApplicationWith \circ hasScale \sqsubseteq R_1$

- $R_1 \sqcap isLargerThan \sqsubseteq R_2$
- $isScaled \circ R_2 \circ isScaled \sqsubseteq R_3$
- $isPresentedAs \circ isMoreGeneralThan^{-} \circ isPresentedAs^{-} \sqsubseteq R_4$
 - $representsObject \circ representsObject^{-} \sqsubseteq R_5$
 - $R_3 \sqcap R_4 \sqcap R_5 \sqsubseteq R_\perp$
 - $\exists R_{\perp}.\top \sqsubseteq \perp$

isPresentedAs is declared functional

Applying the pattern

1) **Querying maps across applications:** Finding all villages which are on a compatible scale with Malaria infection degree raster

Are certain villages more affected than others?

2) **Check logical consistency** of scaling applications, e.g., OSM, Google Maps, ...

Conclusion and outlook

- The Semantic Web lacks information about scale
- Map scaling can be described in terms of binary functions
- Our scaling pattern in DLP_∃ allows to express functional constraints and is still tractable (w.r.t. the query problem)
- Outlook 1: Tailor a Datalog engine to reason over DLP_\exists
- Outlook 2: Populate a **map scaling triple store** using the pattern and combine map resources