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on-line prediction

A game between forecaster and environment.

At each round t,

the forecaster chooses an action It ∈ {1, . . . ,N};

(actions are often called experts)

the environment chooses losses `t(1), . . . , `t(N) ∈ [0, 1];

the forecaster suffers loss `t(It).

The goal is to minimize the average regret

Rn =
1

n

(
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

)
.
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outcome sequence

Often `t(i) = `(i, yt)

where y1, . . . , yn ∈ Y is the sequence of outcomes to be
predicted.

and ` : {1, . . . ,N} × Y → [0, 1] is a loss function.



simplest example

Is it possible to make regret→ 0 for all loss assignments?

Let N = 2 and define, for all t = 1, . . . , n,

`t(1) =

{
0 if It = 2
1 if It = 1

and `t(2) = 1− `t(1).

Then
n∑

t=1

`t(It) = n and min
i=1,2

n∑
t=1

`t(i) ≤
n

2

so

Rn ≥
1

2
.



simplest example

Is it possible to make regret→ 0 for all loss assignments?
Let N = 2 and define, for all t = 1, . . . , n,

`t(1) =

{
0 if It = 2
1 if It = 1

and `t(2) = 1− `t(1).

Then
n∑

t=1

`t(It) = n and min
i=1,2

n∑
t=1

`t(i) ≤
n

2

so

Rn ≥
1

2
.



simplest example

Is it possible to make regret→ 0 for all loss assignments?
Let N = 2 and define, for all t = 1, . . . , n,

`t(1) =

{
0 if It = 2
1 if It = 1

and `t(2) = 1− `t(1).

Then
n∑

t=1

`t(It) = n and min
i=1,2

n∑
t=1

`t(i) ≤
n

2

so

Rn ≥
1

2
.



simplest example

Is it possible to make regret→ 0 for all loss assignments?
Let N = 2 and define, for all t = 1, . . . , n,

`t(1) =

{
0 if It = 2
1 if It = 1

and `t(2) = 1− `t(1).

Then
n∑

t=1

`t(It) = n and min
i=1,2

n∑
t=1

`t(i) ≤
n

2

so

Rn ≥
1

2
.



randomized prediction

Key to solution: randomization.

At time t, the forecaster chooses a probability distribution
pt−1 = (p1,t−1, . . . , pN,t−1)

and chooses action i with probability pi,t−1.

Simplest model: all losses `s(i), i = 1, . . . ,N, s < t, are
observed: full information.



randomized prediction

This and related models have been studied in

game theory: playing repeated games;

information theory: gambling and data compression;

statistics: sequential decisions;

statistical learning theory: on-line learning;



Hannan and Blackwell

Hannan (1957) and Blackwell (1956) showed that the forecaster
has a strategy such that

1

n

(
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

)
→ 0

almost surely for all strategies of the environment.
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basic ideas

expected loss of the forecaster:

`t(pt−1) =
N∑

i=1

pi,t−1`t(i) = Et`t(It)

By martingale convergence,

1

n
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)
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weighted average prediction

Idea: assign a higher probability to better-performing actions.
Vovk (1990), Littlestone and Warmuth (1989).

A popular choice is

pi,t−1 =
exp

(
−η

∑t−1
s=1 `s(i)

)
∑N

k=1 exp
(
−η

∑t−1
s=1 `s(k)

) i = 1, . . . ,N .

where η > 0. Then

1

n

(
n∑

t=1

`t(pt−1)−min
i≤N

n∑
t=1

`t(i)

)
=

√
ln N

2n

with η =
√

8 ln N/n.
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proof

Let Li,t =
∑t

s=1 `s(i) and

Wt =
N∑

i=1

wi,t =
N∑

i=1

e−ηLi,t

for t ≥ 1, and W0 = N.

First observe that

ln
Wn

W0
= ln

(
N∑

i=1

e−ηLi,n

)
− ln N

≥ ln

(
max

i=1,...,N
e−ηLi,n

)
− ln N

= −η min
i=1,...,N

Li,n − ln N .
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proof

On the other hand, for each t = 1, . . . , n

ln
Wt

Wt−1
= ln

∑N
i=1 wi,t−1e−η`t(i)∑N

j=1 wj,t−1

≤ −η
∑N

i=1 wi,t−1`t(i)∑N
j=1 wj,t−1

+
η2

8

= −η`t(pt−1) +
η2

8

by Hoeffding’s inequality.

Hoeffding (1963): if X ∈ [0, 1],

ln Ee−ηX ≤ −ηEX +
η2

8
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proof

for each t = 1, . . . , n

ln
Wt

Wt−1
≤ −η`t(pt−1) +

η2

8

Summing over t = 1, . . . , n,

ln
Wn

W0
≤ −η

n∑
t=1

`t(pt−1) +
η2

8
n .

Combining these, we get

n∑
t=1

`t(pt−1) ≤ min
i=1,...,N

Li,n +
ln N

η
+
η

8
n



lower bound

The upper bound is optimal: for all predictors,

sup
n,N,`t(i)

∑n
t=1 `t(It)−mini≤N

∑n
t=1 `t(i)√

(n/2) ln N
≥ 1 .

Idea: choose `t(i) to be i.i.d. symmetric Bernoulli coin flips.

sup
`t(i)

(
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

)

≥ E

[
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

]
=

n

2
−min

i≤N
Bi

Where B1, . . . ,BN are independent Binomial (n, 1/2).
Use the central limit theorem.



lower bound

The upper bound is optimal: for all predictors,

sup
n,N,`t(i)

∑n
t=1 `t(It)−mini≤N

∑n
t=1 `t(i)√

(n/2) ln N
≥ 1 .

Idea: choose `t(i) to be i.i.d. symmetric Bernoulli coin flips.

sup
`t(i)

(
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

)

≥ E

[
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

]
=

n

2
−min

i≤N
Bi

Where B1, . . . ,BN are independent Binomial (n, 1/2).
Use the central limit theorem.



lower bound

The upper bound is optimal: for all predictors,

sup
n,N,`t(i)

∑n
t=1 `t(It)−mini≤N

∑n
t=1 `t(i)√

(n/2) ln N
≥ 1 .

Idea: choose `t(i) to be i.i.d. symmetric Bernoulli coin flips.

sup
`t(i)

(
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

)

≥ E

[
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

]
=

n

2
−min

i≤N
Bi

Where B1, . . . ,BN are independent Binomial (n, 1/2).
Use the central limit theorem.



label efficient prediction

The forecaster does not see the outcomes `t(i) unless he asks for
them, but can do it only m� n times.

For each round t = 1, . . . , n,

the environment chooses the losses `t(i) without revealing
them;

the forecaster chooses pt−1 and draws an action
It ∈ {1, . . . ,N} according to this distribution;

the forecaster incurs loss `t(It) and each action i incurs loss
`t(i). not of revealed to the forecaster!;

the forecaster decides whether he asks for the values of `t(i) if
the total number of revealed outcomes up to time t− 1 is
less than m.
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a label efficient forecaster

Idea: ask for values randomly (with probability ≈ m/n) and use
the weighted average forecaster with the estimated losses.

Let Zt be i.i.d. Bernoulli ε (≈ m/n).
The forecaster asks for `t(i) iff Zt = 1. Let

˜̀
t(i)

def
=

{
`t(i)/ε if Zt = 1,

0 otherwise.

An unbiased estimate!
For each round t = 1, 2, . . . , n draw an action from {1, . . . ,N}
according to the distribution

pi,t−1 =
exp

(
−η

∑t−1
s=1

˜̀
s(i)
)

∑N
k=1 exp

(
−η

∑t−1
s=1

˜̀
s(k)

) i = 1, . . . ,N .
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bound for label efficient prediction
With probability at least 1− δ,

1

n

(
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

)
≤ 9

√
ln N + ln(4/δ)

m
.

(Cesa-Bianchi, Lugosi, Stoltz, 2005)

Sketch of proof: First bound

n∑
t=1

˜̀
t(pt−1)−min

i≤N

n∑
t=1

˜̀
t(i)

as before. Then use Bernstein-type martingale inequalities to
handle

n∑
t=1

`t(It)−
n∑

t=1

˜̀
t(pt−1)

and

min
i≤N

n∑
t=1

˜̀
t(i)−min

i≤N

n∑
t=1

`t(i)
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lower bound

For any forecaster asking for at most m values,

sup
`t(i)∈{0,1}

E
1

n

(
n∑

t=1

`t(It)−min
i≤N

n∑
t=1

`t(i)

)

≥ c

√
ln N

m
.

Idea (for N = 2): choose the losses randomly (i.i.d.) such that
they are either Bernoulli 1/2− ε or Bernoulli 1/2 + ε.
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multi-armed bandits
Trick: estimate `t(i) by

˜̀
t(i) =

`t(It)1{It=i}

pIt,t−1

This is an unbiased estimate:

Et
˜̀

t(i) =
N∑

j=1

pj,t−1
`t(j)1{j=i}

pj,t−1
= `t(i)

Use the estimated losses to define exponential weights and mix
with uniform (Auer, Cesa-Bianchi, Freund, and Schapire, 2002):

pi,t−1 = (1− γ)
exp

(
−η

∑t−1
s=1

˜̀
s(i)
)

∑N
k=1 exp

(
−η

∑t−1
s=1

˜̀
s(k)

)
︸ ︷︷ ︸

exploitation

+
γ

N︸︷︷︸
exploration
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multi-armed bandits

E
1

n

(
n∑

t=1

`t(pt−1)−min
i≤N

n∑
t=1

`t(i)

)
= O

(√
N ln N

n

)
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multi-armed bandits

Lower bound:

sup
`t(i)

E
1

n

(
n∑
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`t(pt−1)−min
i≤N

n∑
t=1

`t(i)

)
≥ C

√
N

n
,

Dependence on N is not logarithmic anymore!
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follow the perturbed leader

It = argmin
i=1,...,N

t−1∑
s=1

`s(i) + Zi,t

where the Zi,t are random noise variables.

By carefully defining the distribution of Zi,t one can get similar
regret bounds for the full information case, Hannan (1957); Kalai
and Vempala (2003).



combinatorial experts

Often the class of experts is very large but has some combinatorial
structure. Can the structure be exploited?

examples:

path planning. At each time
instance, the forecaster chooses a
path in a graph between two
fixed nodes. Each edge has an
associated loss. Loss of a path is
the sum of the losses over the
edges in the path.

N is huge!!!
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assignments: learning permutations

Given a complete
bipartite graph
Km,m, the
forecaster chooses a
perfect matching.
The loss is the sum
of the losses over
the edges.

Helmbold and Warmuth (2007): full information case.



spanning trees

The forecaster chooses a
spanning tree in the complete
graph Km. The cost is the sum
of the losses over the edges.



combinatorial bandits

Two models.

(Easy.) Losses of the components of the chosen object are
observed separately. (György, Lugosi, Ottucsák, 2007.)

(Interesting.) Only total loss of the chosen object is observed.
(Awerbuch and Kleinberg, 2004;
McMahan and Blum, 2004;
Dani, Hayes, and Kakade, 2008;
Abernethy, Hazan, and Rakhlin, 2008;
Bartlett, Dani, Hayes, Kakade, and Tewari, 2008;
Cesa-Bianchi and Lugosi, 2009. )



challenges

Performance bounds: Is O(n−1/2poly(d)) regret achievable for the
bandit problem?

Algorithmic: How can one draw a random object from the
exponentially weighted distribution in polynomial time?



model

S = {v1, . . . , vN} ⊂ Rd is a collection of objects (experts).

Denote B = maxvk ‖vk‖2.

At every time t = 1, 2, . . . , the opponent chooses a loss vector
`t ∈ Rd.

We assume `t(k) = `>t vk ∈ [−1, 1] for all vk ∈ S.



linear bandit problem

For t = 1, 2, . . . ,

opponent chooses `t ∈ Rd

Forecaster chooses Kt ∈ {1, . . . ,N}
The cost `t(Kt) = `>t vKt is revealed.

The forecaster’s goal is to control the expected regret

EL̂n − min
k=1,...,N

Ln(k) =
n∑

t=1

E`t(Kt)− min
k=1,...,N

n∑
t=1

`t(k) .

Expectation is with respect to the forecaster’s internal
randomization.



weighted average forecaster

At time t assign a weight wt,i to each i = 1, . . . , d.

The weight of each vk ∈ S is

wt(k) =
∏

i:vk(i)=1

wt,i .

Let qt−1(k) = wt−1(k)/
∑N

k=1 wt−1(k).

At each time t, draw Kt from the distribution

pt−1(k) = (1− γ)qt−1(k) + γµ(k)

where µ is a fixed distribution on S and γ > 0. Here

wt,i = exp
(
−η L̃t,i

)
where L̃t,i = ˜̀

1,i + · · ·+ ˜̀
t,i and ˜̀t,i is an estimated loss.
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loss estimates
Dani, Hayes, and Kakade (2008).
Define the scaled incidence vector

Xt = `t(Kt)VKt

where Kt is distributed according to pt−1.

Let Pt−1 = E
[
VKt V>Kt

]
be the d× d correlation matrix.

Hence
Pt−1(i, j) =

∑
k : vk(i)=vk(i)=1

pt−1(k) .

Similarly, let Qt−1 and M be the correlation matrices of E
[
V V>

]
when V has law, qt−1 and µ. Then

Pt−1(i, j) = (1− γ)Qt−1(i, j) + γ M(i, j) .

The vector of loss estimates is defined by˜̀
t = P+

t−1Xt

where P+
t−1 is the pseudo-inverse of Pt−1.
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key properties

M M+v = v for all v ∈ S.

Qt−1 is positive semidefinite for every t.

Pt−1 P+
t−1v = v for all t and v ∈ S.

By definition,
Et Xt = Pt−1 `t

and therefore
Et
˜̀

t = P+
t−1Et Xt = `t

An unbiased estimate!



performance bound

The regret of the forecaster satisfies

1

n

(
EL̂n − min

k=1,...,N
Ln(k)

)
≤ 2

√(
2B2

dλmin(M)
+ 1

)
d ln N

n
.

where
λmin(M) = min

x∈span(S):‖x‖=1
xTMx > 0

is the smallest “relevant” eigenvalue of M. (Cesa-Bianchi and
Lugosi, 2009.)

Large λmin(M) is needed to make sure no | ˜̀t,i| is too large.



performance bound

Other bounds:

B
√

d ln N/n (Dani, Hayes, and Kakade). No condition on S.
Sampling is over a barycentric spanner.

d
√

(θ ln n)/n (Abernethy, Hazan, and Rakhlin). Computationally
efficient.



eigenvalue bounds

λmin(M) = min
x∈span(S):‖x‖=1

E(V, x)2 .

where V has distribution µ over S.

In many cases it suffices to take µ uniform.



multitask bandit problem

The decision maker acts in m games in parallel.
In each game, the decision maker selects one of R possible actions.
After selecting the m actions, the sum of the losses is observed.

λmin =
1

R

max
k

E
[
L̂n − Ln(k)

]
≤ 2m

√
3nR ln R .

The price of only observing the sum of losses is a factor of m.

Generating a random joint action can be done in polynomial time.



assignments

Perfect matchings of Km,m.
At each time one of the N = m! perfect matchings of Km,m is
selected.

λmin(M) =
1

m− 1

max
k

E
[
L̂n − Ln(k)

]
≤ 2m

√
3n ln(m!) .

Only a factor of m worse than naive full-information bound.

Sum of weights (partition function) is the permanent of a
non-negative matrix. Sampling may be done by a FPAS of Jerrum,
Sinclair, and Vigoda (2004).



spanning trees

In a network of m nodes, the cost of communication between two
nodes joined by edge e is `t(e) at time t. At each time a minimal
connected subnetwork (a spanning tree) is selected. The goal is to
minimize the total cost. N = mm−2.

λmin(M) =
1

m
− O

(
1

m2

)
.

The entries of M are

P{Vi = 1}=
2

m

P
{

Vi = 1, Vj = 1
}

=
3

m2
if i ∼ j

P
{

Vi = 1, Vj = 1
}

=
4

m2
if i 6∼ j .



spanning trees

Propp and Wilson (1998) define an exact sampling algorithm.
Expected running time is the average hitting time of the Markov
chain defined by the edge weights wt(e) = exp

(
−η L̃t(e)

)
.



stars

At each time a central node of a network of m nodes is selected.
Cost is the total cost of the edges adjacent to the node.

λmin ≥ 1− O

(
1

m

)
.



cut sets

A balanced cut in K2m is the collection of all edges between a set
of m vertices and its complement. Each balanced cut has m2

edges and there are N =
(2m

m

)
balanced cuts.

λmin(M) =
1

4
− O

(
1

m2

)
.

Choosing from the exponentially weighted average distribution is
equivalent to sampling from ferromagnetic Ising model. FPAS by
Randall and Wilson (1999).



hamiltonian cycles

A Hamiltonian cycle in Km is a cycle that visits each vertex exactly
once and returns to the starting vertex. N = (m− 1)!

λmin ≥
2

m

Efficient computation is hopeless.



sampling paths

In all these examples µ is uniform over S.

For path planning it does not always work.

What is the optimal choice of µ?
What is the optimal way of exploration?
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prediction with partial monitoring

For each round t = 1, . . . , n,

the environment chooses the next outcome Jt ∈ {1, . . . ,M}
without revealing it;

the forecaster chooses a probability distribution pt and draws
an action It ∈ {1, . . . ,N} according to pt;

the forecaster incurs loss `(It, Jt) and each action i incurs loss
`(i, Jt). None of these values is revealed to the forecaster;

the feedback h(It, Jt) is revealed to the forecaster.

H = [h(i, j)]N×M is the feedback matrix.

L = [`(i, j)]N×M is the loss matrix.



examples

Dynamic pricing. Here M = N, and L = [`(i, j)]N×N where

`(i, j) =
(j− i)1{i≤j} + c1{i>j}

N
.

and h(i, j) = 1{i>j} or

h(i, j) = a1{i≤j} + b1{i>j} , i, j = 1, . . . ,N .

Multi-armed bandit problem. The only information the forecaster
receives is his own loss: H = L.
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examples
Apple tasting. N = M = 2.

L =

[
0 1
1 0

]

H =

[
a a
b c

]
.

The predictor only receives feedback when he chooses the second
action.

Label efficient prediction. N = 3, M = 2.

L =

 1 1
0 1
1 0



H =

 a b
c c
c c

 .
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a general predictor

A forecaster first proposed by Piccolboni and Schindelhauer (2001).
Crucial assumption: H can be encoded such that there exists an
N× N matrix K = [k(i, j)]N×N such that

L = K · H .

Thus,

`(i, j) =
N∑

l=1

k(i, l)h(l, j) .

Then we may estimate the losses by

˜̀(i, Jt) =
k(i, It)h(It, Jt)

pIt,t
.



a general predictor

Observe

Et
˜̀(i, Jt) =

N∑
k=1

pk,t
k(i, k)h(k, Jt)

pk,t

=
N∑

k=1

k(i, k)h(k, Jt) = `(i, Jt) ,

˜̀(i, Jt) is an unbiased estimate of `(i, Jt).
Let

pi,t = (1− γ)
e−ηL̃i,t−1∑N

k=1 e−ηL̃k,t−1

+
γ

N

where L̃i,t =
∑t

s=1
˜̀(i, Jt).



performance bound

With probability at least 1− δ,

1

n

n∑
t=1

`(It, Jt)− min
i=1,...,N

1

n

n∑
t=1

`(i, Jt)

≤ Cn−1/3N2/3
√

ln(N/δ) .

where C depends on K. (Cesa-Bianchi, Lugosi, Stoltz (2006))

Hannan consistency is achieved with rate O(n−1/3) whenever
L = K · H.

This solves the dynamic pricing problem.

Bartók, Pál, and Szepesvári (2010): if M = 2, only possible rates
are n−1/2, n−1/3, 1
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imperfect monitoring: a general framework

S is a finite set of signals.

Feedback matrix: H : {1, . . . ,N} × {1, . . . ,M} → P(S).

For each round t = 1, 2 . . . , n,

the environment chooses the next outcome Jt ∈ {1, . . . ,M}
without revealing it;

the forecaster chooses pt and draws an action
It ∈ {1, . . . ,N} according to it;

the forecaster receives loss `(It, Jt) and each action i suffers
loss `(i, Jt), none of these values is revealed to the forecaster;

a feedback st drawn at random according to H(It, Jt) is
revealed to the forecaster.



target

Define
`(p, q) =

∑
i,j

piqj`(i, j)

H(·, q) = (H(1, q), . . . ,H(N, q))

where H(i, q) =
∑

j qjH(i, j) .

Denote by F the set of those ∆ that can be written as H(·, q) for
some q.

F is the set of “observable” vectors of signal distributions ∆.
The key quantity is

ρ(p,∆) = max
q : H(·,q)=∆

`(p, q)

ρ is convex in p and concave in ∆.



rustichini’s theorem

The value of the base one-shot game is

min
p

max
q
`(p, q) = min

p
max
∆∈F

ρ(p,∆)

If qn is the empirical distribution of J1, . . . , Jn, even with the
knowledge of H(·, qn) we cannot hope to do better than
minp ρ(p,H(·, qn)).

Rustichini (1999) proved that there exists a strategy such that for
all strategies of the opponent, almost surely,

lim sup
n→∞

1

n

∑
t=1,...,n

`(It, Jt)−min
p
ρ (p,H(·, qn))

 ≤ 0



rustichini’s theorem

Rustichini’s proof relies on an approachability theorem for a
continuum of types (Mertens, Sorin, and Zamir, 1994).

It is non-constructive.

It does not imply any convergence rate.

Lugosi, Mannor, and Stoltz (2008) construct efficiently computable
strategies that guarantee fast rates of convergence.


