Building Blocks for Semantic Search Engines: Ranking and Compact Indexing for Entity-Relation Graphs

> Soumen Chakrabarti www.cse.iitb.ac.in/~soumen IIT Bombay

(In fewer words) Ranking and Indexing for Semantic Search

with

Alekh Agarwal, Sujatha Das Vijay Krishnan, Kriti Puniyani

Supported by IBM, Microsoft, Yahoo!

Working notion of semantic search

- Exploiting in conjunction
 - "Strings with meaning" entities and relations
 - "Uninterpreted strings" as in IR
- "Is-a" and other relations
- Proximity

- Conductance
- Can approximate many info needs
- "Warehousing" not enough

Type-annotated corpus and query e.g.

The query class we address

Find a token span *w* (in context) such that

- w is a mention of entity e
 - "Carl Sagan" or "Sagan" is a mention of the concept of that specific physicist
- *e* is an instance of **atype** *a* given in the query
 - Which *a*=physicist ...
- *w* is "NEAR" a set of **selector** strings
 - "searched", "intelligent", "life", "cosmos"

All uncertain/imprecise; we focus on #3

 Yet surprisingly powerful: correct answer within top 3—4 w's for TREC QA benchmark

Contribution 1: What is "NEAR"?

XQuery and XPath full text support

- (distance at most|window) 10 words [ordered] hard proximity clause, not learnt
- ftcontains ... with thesaurus at ... relationship "narrower terms" at most ℓ levels
- No implementation combining "narrower terms" and "soft" proximity ranking
- Search engines favor proximity in proprietary ways

* A learning framework for graph proximity

5

Contribution 2: Indexing annotations

 type=person NEAR theory relativity → type in {physicist, politician, cricketer,...} NEAR theory relativity

Large fanout at query time, impractical

Complex annotation indexes tend to be large

7

- Binding Engine (WWW 2005): 10x index size blowup with only a handful of entity types
- Our target: 18000 atypes today, more later
- Workload-driven index and query optimization
 - Exploit skew in query atype workload

Part 1: Scoring and Ranking Nodes in Graphs

Two flavors of ranking problems

The restricted query class we just discussed

- 0/1 type membership via "perfect" taxonomy
- NEAR captured via token rareness and distance between match tokens and candidate token

General typed entity-relationship (ER) graph

- Typed edges and nodes with text
- Random walk biased by
 - Query matching node text
 - Semantics of edge types
- Learn walk parameters, wrote don't guess them

Learning to score token spans

type=person NEAR "television" "invent*"

- Rarity of selectors
- Distance from candidate position to selectors
- Many occurrences
 - Closest is good
- Combining scores
 from many selectors
 - Sum is good

Learning the shape of the decay function

- For simplicity assume left-right symmetry
 Parameters (β₁,...,β_W), W=max gap window
- Candidate position characterized by a feature vector f = (f[1],...,f[W])
 - If there is a matched selector s at distance j and
 - This is the closest occurrence of s
 - Then set f [j] to energy(s), ... else 0
- Score of candidate position is $\beta \cdot f$
- If we like candidate u less than v ("u < v")

11

• We want $\beta \cdot f_u \leq \beta \cdot f_v$

Benign loss functions for scoring

$\min_{\beta} \sum_{i=1}^{n} (\beta_i -$	$(\beta_{j+1})^2 + B \sum_{y \in \mathcal{Y}} sr$	moothLoss $(\beta \cdot f_u - \beta \cdot f_v)$
J=I	u≺v	

Discourage adjacent βs from differing a lot

Penalize violations of preference order

IR Baseline

Chille	Train	Test	MRR
	IR	2000	0.16
TREC	2001	2000	0.29
year			

Mean reciprocal rank: Average over questions, reciprocal of the first rank where an answer token was found (large good)

Searching personal information networks

Breaking the **p=Cp** recurrence

• Pagerank is usually approximated by the Power Method: $\mathbf{p} \approx \mathbf{C}^{H} \mathbf{p}^{0}$ where

- *H* is a large enough horizon to give convergence
- **p**⁰ is an initial distribution over nodes, usually uniform

Compute alongside Pagerank (chain rule):

 $\frac{\partial}{\partial \beta_t} (C^0 p^0)_i = 0 \quad \text{for all } t \text{ and } i,$

and for $h = 1, \ldots, H$:

$$(C^{h}p^{0})_{i} = \sum_{j} C(i, j) (C^{h-1}p^{0})_{j}$$

$$\frac{\partial}{\partial\beta_t} (C^h p^0)_i = \sum_j \left[\frac{\partial C(i,j)}{\partial\beta_t} (C^{h-1} p^0)_j + C(i,j) \frac{\partial}{\partial\beta_t} (C^{h-1} p^0)_j \right]$$

Setting up the optimization

$$\min_{\beta \geq 1} \sum_{t \neq t'} (\beta(t) - \beta(t'))^2 + B \sum_{i < j} \operatorname{huber} ((C^H p^0)_i - (C^H p^0)_j)$$

Gradient of the loss part

$$\sum_{i < j} \text{huber'} \left((C^H p^0)_i - (C^H p^0)_j \right) \left(\frac{\partial (C^H p^0)_i}{\partial \beta(t)} - \frac{\partial (C^H p^0)_j}{\partial \beta(t)} \right)$$

 Polynomial ratios and products—surface not monotonic or unimodal, need some grid search

The effect of a limited horizon

- Gradients also converge, residuals decrease exponentially
 - Not surprising
 - Can perhaps prove given some assumptions
- As *H* increases
 - More CPU time needed
 - Gradient is more accurate, low test error
 - Fewer Newton iterations needed

Appropriateness of loss approximation

- Less reliable than true error (as usual)
- Hinge loss is even worse than Huber
 - "In practice"...

- β optimization never seems to get trapped in local minima
- α optimization is started from a 0:0.1:1 grid
- Need better understanding of the optimization surface

Learning rate and robustness

20000-node, 120000edge graph

- 100 pairwise training preferences enough to cut down test error to 11 out of 2000
- Careful! Training and test preferences were made node-disjoint
- 20% random reversal of train pairs → 5% increase in test error
 - Model cost reduces

Discovering hidden edge weights

Assign hidden edge 100 estimated beta 0 weights to edge types Compute weighted Pagerank and sample < See if our algorithm can recover hidden weights Likewise with α hidden beta 10 100 Mild overfitting Downward pressure est beta/hidden beta 1.5 estimated alpha 0.8 0.6 1 0.4 B=1e10 0.5 B=1e16 0.2 0 0 5 10 0.2 0.4 0.6 hidden alpha 0.8 0 15 20 0 hidden beta Upward pressure 25

Part 1 summary

Inner product of weights with feature vector

A very simple scoring model

- Still, TFIDF and BM25 evolved over decades
- Learning weights: very recent, still evolving
- Ranking in graphs increasingly important
 - Pagerank and friends are just version 0.1
- Next step: entity-relationship graphs
 - Nodes and edges have associated types
 - Nodes (possibly edges) have associated text

Bootstrap ranking wisdom via learning

Part 2: Indexing for Proximity Search

Part-2: Workload-driven indexing

Type hierarchies are large and deep

- 18000 internal and 80000 leaf types in WordNet
- Runtime atype expansion time-intensive
 - Even WordNet knows 650 scientists, 860 cities...
- Index each token as all generalizations
 - Sagan \rightarrow physicist, scientist, person, living thing
- Large index space bloat
 Index a subset of atypes

Corpus/Index	Gbytes
Original corpus	5.72
Gzipped corpus	1.33
Stem index	0.91
Full type index	4.30

(Pre-generalize and) post-filter

Fetch each high-scoring span w
Check if w is-a a

- - Fast compact "forward index" (doc,offset)→token
 - Fast small "reachability index", common in XML

If fewer than k survive, restart with larger k'

- Expensive
- Pick conservative k'

Estimates needed by optimizer

If we index token ancestors in R as against ancestors in all of A, how much index space will we save?

• Cannot afford to try out and see for many *R*s

If query atype a is not found in R and we must generalize to g, what will be the bloat factor in query processing time?

Need to average over a representative workload

31

Query time bloat—results

Observed bloat fit not as good as index space estimate

While observed::estimated ratio for one query is noisy, average over many queries is much better

Expected bloat over many queries

having atype a

Prob of new query $\sum_{a \in A} queryProb(a) queryBloat(a, R)$ Already estimated

Maximum likelihood estimate

 $queryProb_{Train}(a) = \frac{queryCount_{Train}(a)}{\sum_{a' \in A} queryCount_{Train}(a')}$

Many a's get zero training probability \rightarrow Optimizer does not register g close to a Low-prob atypes appear in test -> huge bloat Collectively matter a lot (heavy-tailed distrib)

Smoothing low-probability atypes

Lidstone smoothing:

 $queryProb_{\text{Train}}(a) = \frac{queryCount_{\text{Train}}(a) + \ell}{\sum_{a' \in A} (queryCount_{\text{Train}}(a') + \ell)}$

Smoothing param l fit by maximizing loglikelihood of held-out data:

The R selection algorithm

Optimized space-time tradeoff

Optimized index sizes

Corpus/Index	Gbytes
Original corpus	5.72
Gzipped corpus	1.33
Stem index	0.91
Full type index	4.30
Reachability index	0.01
Forward index	1.16
Atype subset index	0.52

39

Part 2 summary

Working prototype around Lucene and UIMA

- Annotators attach tokens to type taxonomy
- Query atype workload help compact index
- Ranking function learnt from preference data
- NL queries translated into atype+selectors
- Ongoing work
 - Indexing and searching relations other than is-a
 - More general notions of graph proximity

 Email <u>soumen@cse.iitb.ac.in</u> for code access

The big picture

