Semantic Annotation in the Alvis Project

Adeline Nazarenko², Claire Nédellec¹, Erick Alphonse¹, Sophie Aubin², Thierry Hamon², Alain-Pierre Manine¹

¹ Laboratoire Mathématique, Informatique et Génome (MIG), INRA

² Laboratoire d'Informatique de Paris-Nord (LIPN), Université Paris-Nord & CNRS

Alvis project

Developing new technologies for distributed, topic-specific semantic-based search on internet

Query:

Author=person:Crick and *Author=person:Watson* and *Paper_title=title:The structure of DNA* and *Publication_date=date:1953*

Search for documents that comment the *famous* paper.

Answer : BBC news in 1953 "in an article published today in Nature magazine, James D. Watson and Francis Crick describe the structure of a chemical called desoxyribonucleic acid,[..].

Limitation of the keyword-based search

- Queries and search based on keywords cooccurrences do not exploit semantic roles (semantic types and relations).
- Although the simple cooccurrence of the four terms (*Crick, Watson, DNA structure, 1953*) can be just spurious.
- Variations are not identified (*desoxyribonucleic acid = DNA structure = structure of DNA*)
- Individual terms may be semantically ambiguous (*Watson*).

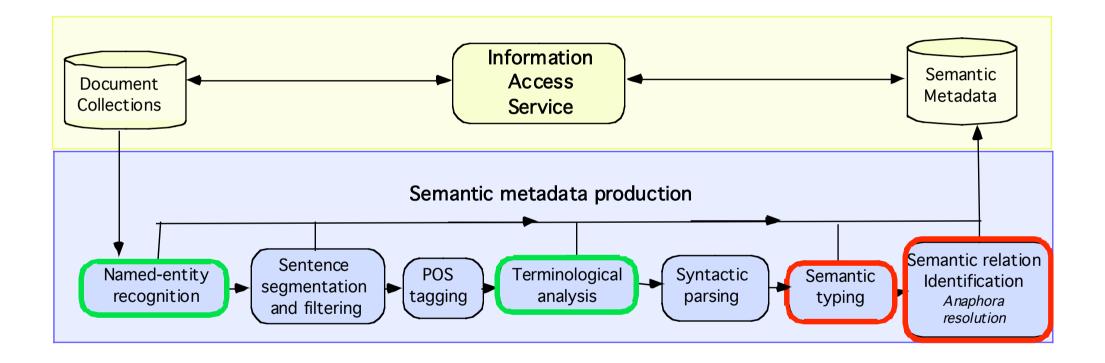
Our framework

- Semantic search in Alvis relies on the **semantic annotation** of fined-grain semantic units and relations in the documents and their indexing.
- In specific domains, non-ambiguous annotation can be achieved by linguistic analysis and domain-dependent resources.
- Specific resources can be automatically acquired by corpus-based machine learning methods.

Annotation of semantic unit and relation requires linguistic processing

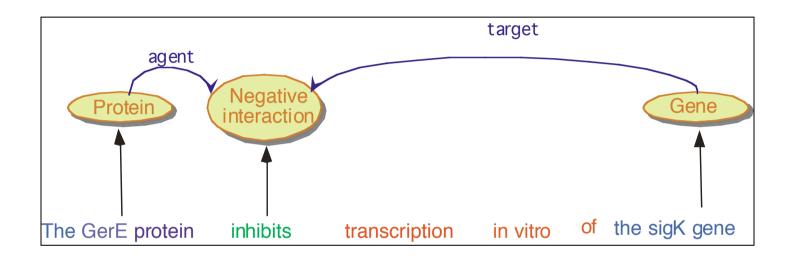
- The semantic units refer to the concepts and objects of the domain.
 - They do not always appear in their canonical form (variation and synonymy issues)

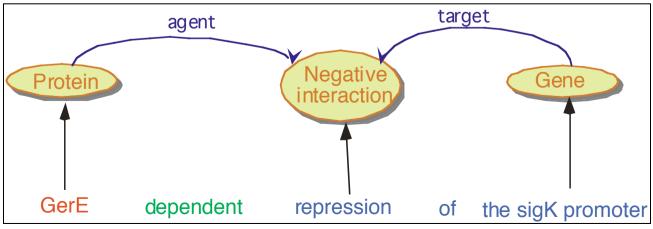
Sigma K / sigma(K) Serum response element / Serum response factor

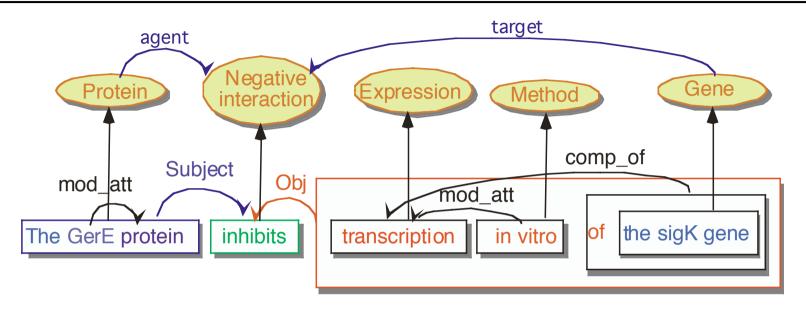

• They may be ambiguous (polysemy issue) *Has* (both a gene and a verb)

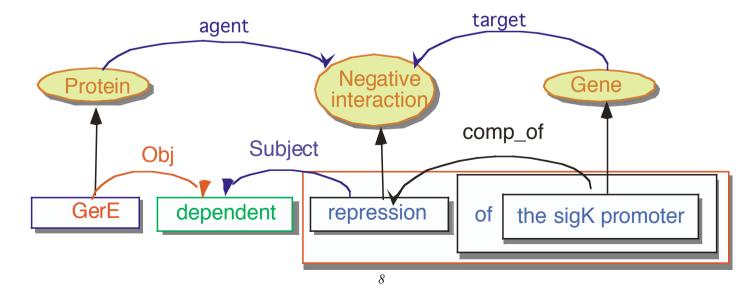
The linguistic analysis of the semantic unit **morphology** and **contexts** solve these problems.

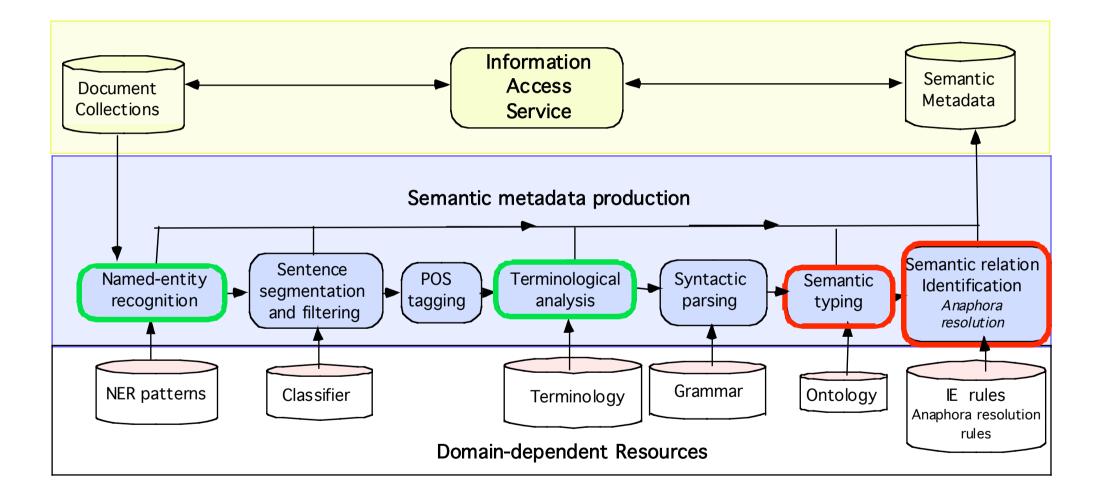
• Cooccurrence says little about the semantic relations


GerE stimulates *cotD* transcription and *cotA* transcription [...], and, unexpectedly, inhibits [...] transcription of the gene (*sigK*) [...]


Semantic annotation with linguistic processing


Semantic abstraction


A same semantic representation of different formulations for efficient IR.



Linguistic analysis

Specific resources are needed

Learning the resources

Named-entity learning

Supervised learning for learning NER patterns of gene/protein names

In eight isolates of M. fermentans examined, malp occurred upstream of an operon encoding the phase-variable P78 ABC transporter;

Examples represented by linguistic features (mainly typographic).

- **First_upper:** the example is capitalized (^[A-Z])
- **Middle_upper:** the example contains a non-initial uppercase letter (^.+[A-Z])
- **Only_upper:** all letters of the example are uppercase? (^[A-Z]*\$)
- **Last_digit:** the last character of the example is a digit? ([0-9]\$)

•••

Experimental results

	Precision	Recall
C4.5	92,5	91,6
NB	88,6	73,4

Best NLPBA: Precision 76% Recall 69,4%

BioCreative: 83% Recall-Precision

Terminology acquisition by YaTea

YaTea term acquisition tool combines *existing terminology* matching (good precision) and *corpus-based term extraction* (good coverage).

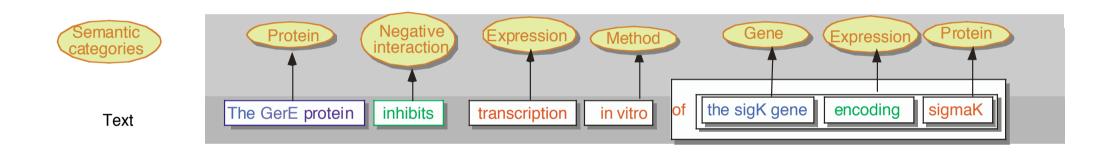
Input

Training corpus tagged with POS information and existing terminology *During[ADV] sporulation[NOUN] of[PREP] Bacillus subtilis[P-NOUN], spore[NOUN]*

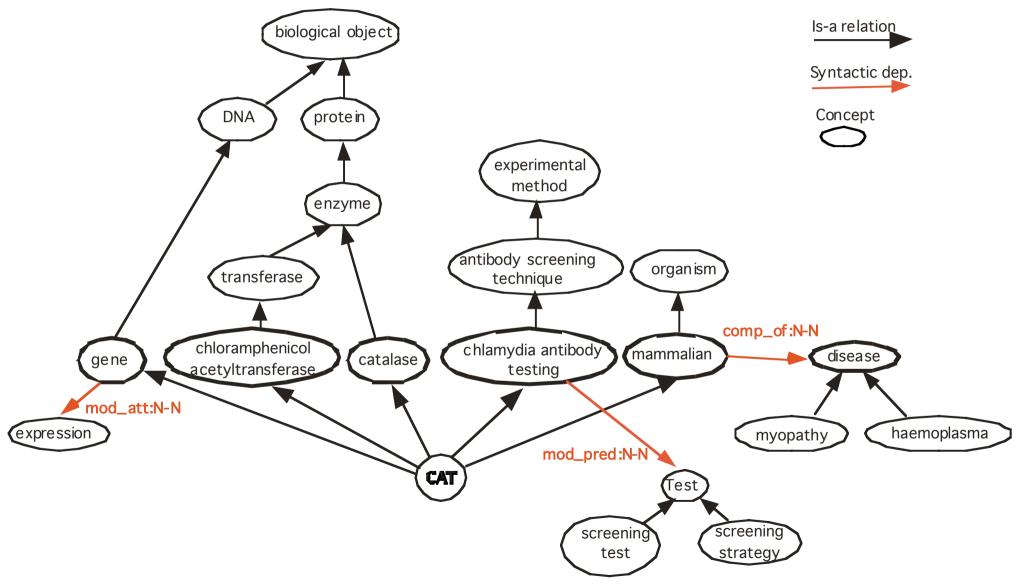
Method

- 1.Corpus chunking based on frontier category detection *During / sporulation of Bacillus subtilis /, / spore coat proteins / encoded by /*
- 2. Recursive parsing of chunks according to
 - Syntactic patterns NOUN NOUN
 - Forbidden structures and subcomponents (*of course*)
 - Specific patterns of certified terms (in vitro)
 - o Generation of term variants using morpho-syntactic rules
 NOUN1 NOUN2 = NOUN2 of NOUN1

Examples of term tagging

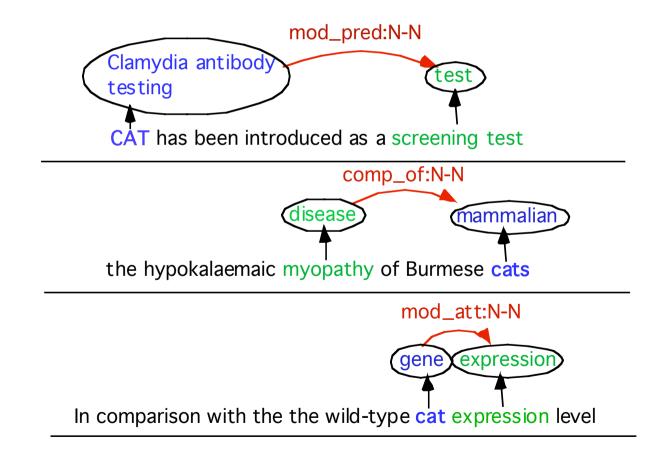

Existing terminology: Gene Ontology terminology mapping (in green)

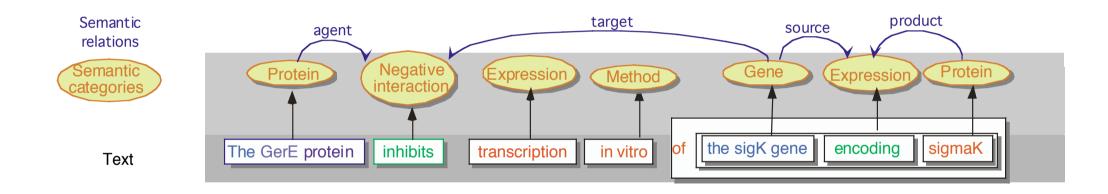
/Combined/ /action/ /of/ /two/ /transcription/ /factors/ /regulates/ /genes/ /encoding/ /spore/ /coat/ /proteins/ /of/ /Bacillus/ /subtilis/ /./During/ /sporulation / of/ /Bacillus/ /subtilis/ /, /spore/ /coat/ /proteins/ /encoded/ /by/ /cot/ /genes/ /are/ /expressed/ /in/ /the/ /mother/ /cell/ /and/ /deposited/ /on/ /the/ /forespore/ /./transcription/ /of/ /the/ /cotB/ /, /cotC/ /, /and/ /cotX/ /genes/ /by/ /final/ /sigma/ (/ /K/)/ /RNA/ /polymerase/ /is/ /activated/ /by/ /a/ /small/ /, /DNA/-/binding/ /protein/ /called/ /GerE/ /./The/ /promoter/ /region/ /of/ /these/ /genes/ /has/ /two/ /GerE/ /binding/ /sites/ /./


YaTea term mapping (in green)

/Combined /action /of /two /transcription /factors /regulates /genes /encoding /spore /coat /proteins /of /Bacillus /subtilis /./During /sporulation /of /Bacillus /subtilis /, /spore /coat /proteins /encoded /by /cot /genes /are /expressed /in /the /mother /cell /and /deposited /on /the /forespore /./Transcription /of /the /cotB /, /cotC /, /and /cotX /genes /by /final /sigma /(/K/)//RNA /polymerase /is /activated /by /a /small /, /DNA-/binding /protein /called /GerE /./The /promoter /region /of /each /of /these /genes /has /two /GerE /binding /sites /.

Semantic type tagging


Semantic type learning by Asium


Semantic disambiguation with syntactic context

Given,

- *Restrictions of selection* associated to the concepts of the ontology
- Is-A hierarchies

Tagging semantic relations

Rules for semantic relation annotation

GerE stimulates cotD transcription and cotA transcription [...], *and*, *unexpectedly*, *inhibits* [...] *transcription of the gene* (*sigK*) [...]

Example of information extraction rule interaction (X,Z):-

is-a(X,protein), subject(X,Y), cat(Y,verb), is-a(Y,interaction), cat(Z,NP), obj(Z,Y), is-a(Z,gene-expression).

Interpretation

If the subject X of an interaction verb Y is a protein name, and the object Z is a gene expression,

then, X is the agent and Z is the target of the interaction

Rule learning with Propal (*ILP-based*)

Learning method

Supervised relational learning, Horn clauses Multi-class learning: top-down ILP method Propal [Alphonse, 2003]

Training data pre-processing

- 1. Selection of relevant documents.
- 2. Segmentation and filtering of relevant sentences.
- 3. Manual annotation of the relations in the positive training data.
- 4. Negative example generation (near-miss selection in relevant sentences under closed-word assumption)
- 5. Training example preprocessing (linguistic processing and saturation by BK).

Application of the learning method for acquiring the rules representing the discriminant linguistic attributes.

• "Learning Language in Logic" challenge (*ICML 05 LLL workshop*) see webpage.

Preliminary results on relation learning

- Training data: gene interactions (agent, target) in *Bacillus subtilis* LLL challenge dataset on "action without coreference"
- Linguistic normalization (lemma and syntactic relations) and abstraction
- Rule learning with Propal

	Recall	Precision	F-measure
[Goadrich et al., 2005],	80,6	42,6	58,5
data without linguistics	,	,	,
[Riedel and Klein, 2005]	52,8	86,4	65,5
data with linguistics	, -		
[Propal]	61,8	63,6	62,7
linguistics + semantic abstraction	,0		

Conclusion

Semantic annotation of free text in specialized domains is a complex task with high added-value

2 complementary approaches

- Shallow and statistics-based processing
- → Easy to design
- → The information retrieved is partially noisy
- Text normalization and Machine Learning
- → Saves time of adaptation of the resources to the task
- → Better coverage of the diversity of the linguistic expressions
- → Complex architecture, difficult to design