Active Sequential Learning with Tactile Feedback

Jo-Anne Ting
University of British Columbia
jating@cs.ubc.ca

RSS 2010 Workshop: Active Learning for Robotics
June 27, 2010

Estimating dynamical properties of objects

- Weight
- Centre of mass
- Compressibility
- Viscosity
- •

Joint work with Hannes Saal & Sethu Vijayakumar (EDI)

Relevant papers: Saal, Ting & Vijayakumar (AISTATS 2010); Saal, Vijayakumar & Johansson (J. of Neuro. 2009)

Problem formulation

Task: To determine dynamical variables quickly and reliably

Challenges:

- Learning problem: Need mapping between actions and sensory observations
- Control problem: To find actions that are most informative

How do humans do it?

Exploratory actions to start

Highly informative actions once know more about object

Lederman & Klatzky, 1993

Example approach: tactile feature discrimination

Example application: estimating viscosity

- Parameter: viscosity θ
- Observations: tactile feedback y
- Actions: shaking frequency, angle, ... x

Estimating viscosity

Food Products Viscosity Data Chart

"Active" sensing

• Approach: Choose actions x such that mutual information between y and θ is maximized, e.g.,

$$\mathbf{x}^* = \arg\max_{\mathbf{x} \in \mathbf{X}} \mathbf{I}(\theta; \mathbf{y} | \mathbf{x})$$
 where

$$\mathbf{I}(\theta; \mathbf{y} | \mathbf{x}) = \int \int p(\theta, \mathbf{y} | \mathbf{x}) \log \frac{p(\theta, \mathbf{y} | \mathbf{x})}{p(\theta) p(\mathbf{y} | \mathbf{x})} d\mathbf{y} d\theta$$

Active sensing: observation model

• Assuming $\mathbf{y} = f(\mathbf{x}, \theta) + \epsilon_{\mathbf{y}}$,

we can place a Gaussian Process prior (Williams & Rasmussen, 1995) over f:

$$y_m(\theta, \mathbf{x}) \sim \mathrm{GP}(0, \mathbf{K}_m)$$

Predictive distribution over y is Gaussian.

• Given prior $p_{t-1}(\theta)$, action \mathbf{x}_t , and observation \mathbf{y}_t , posterior is:

$$p_t(\theta|\mathbf{y}_t, \mathbf{x}_t) = \frac{p(\mathbf{y}_t|\theta, \mathbf{x}_t)p_{t-1}(\theta)}{p(\mathbf{y}_t|\mathbf{x}_t)}$$

Evaluate with MC sampling or Gaussian approximation.

• If $p_t(\theta|\mathbf{y}_t,\mathbf{x}_t) = N(\mu_t,\boldsymbol{\Sigma}_t)$, then we get:

$$\mu_t = \mu_{t-1} + \mathbf{C}_t^T \mathbf{S}_t^{-1} (\mathbf{y}_t^{obs} - \mathbf{m}_t)$$
$$\mathbf{\Sigma}_t = \mathbf{\Sigma}_{t-1} + \mathbf{C}_t^T \mathbf{S}_t^{-1} \mathbf{C}_t$$

• If $p_t(\theta|\mathbf{y}_t,\mathbf{x}_t) = N(\mu_t,\mathbf{\Sigma}_t)$, then we get:

$$\mu_t = \mu_{t-1} + \mathbf{C}_t^T \mathbf{S}_t^{-1} (\mathbf{y}_t^{obs} - \mathbf{m}_t)$$

$$\boldsymbol{\Sigma}_t = \boldsymbol{\Sigma}_{t-1} + \mathbf{C}_t^T \mathbf{S}_t^{-1} \mathbf{C}_t$$
marginal mean
marginal variance

• If $p_t(\theta|\mathbf{y}_t,\mathbf{x}_t) = N(\mu_t,\boldsymbol{\Sigma}_t)$, then we get:

$$\mu_t = \mu_{t-1} + \mathbf{C}_t^T \mathbf{S}_t^{-1} (\mathbf{y}_t^{obs} - \mathbf{m}_t)$$
$$\mathbf{\Sigma}_t = \mathbf{\Sigma}_{t-1} + \mathbf{C}_t^T \mathbf{S}_t^{-1} \mathbf{C}_t$$

• If $p_t(\theta|\mathbf{y}_t,\mathbf{x}_t) = N(\mu_t,\boldsymbol{\Sigma}_t)$, then we get:

$$\mu_t = \mu_{t-1} + \mathbf{C}_t^T \mathbf{S}_t^{-1} (\mathbf{y}_t^{obs} - \mathbf{m}_t)$$
$$\boldsymbol{\Sigma}_t = \boldsymbol{\Sigma}_{t-1} + \mathbf{C}_t^T \mathbf{S}_t^{-1} \mathbf{C}_t$$

where m, S, C can be evaluated analytically (e.g., Girard et al. 2003). For example:

$$\mathbf{m} = \int p(\mathbf{y})\mathbf{y}d\mathbf{y} = \int p(\theta)p(\mathbf{y}|\theta)\mathbf{y}d\theta d\mathbf{y}$$

Active sensing: entire loop

- Start with a prior $p_{t-1}(\theta)$
- Take an action x_t*

$$\mathbf{x}_{t}^{*} = \arg \max_{\mathbf{x}_{t}} \mathbf{I}(\theta_{t-1}; \mathbf{y}_{t} | \mathbf{x}_{t})$$

$$= \arg \max_{\mathbf{x}_{t}} |\mathbf{C}_{t}(\mathbf{x})\mathbf{S}_{t}(\mathbf{x})\mathbf{C}_{t}(\mathbf{x})^{T}|$$

- Calculate posterior $p_t(\theta)$
- Repeat loop until convergence

Challenges

- Observations, actions & parameters are continuous
- Sensor model has to be learnt from data
- Observations are high-dimensional
- Decisions have to be taken quickly

Viscosity example: learnt model

Viscosity example: video

Information landscape

Sequentially estimating viscosity

Comparing different action strategies

On-going and future work

- Scale up to higher-dimensional action space
- Include sparse versions of GPs for large data sets
- Extend to multi-task GPs (for multivariate regression)
- Find invariances in actions

•