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Developmental and social robotics:
acquiring new skills « in the wild »

=>The central target of developmental robotics is to build machines, which once they are
“out of the factory” and arrived “in the wild”, are capable of learning by themselves or through
interaction with humans a variety of skills and know-how that were not specified at design time;
=» Exactly what human children are capable to do starting from their innate capabitlites;

=>» Import, formalize, implement and experiment concepts and theories of developmental and
social psychology, developmental neuroscience, and linguistics




The challenges of exploration

 The scientific challenges of robot learning do not only consist in devising powerful
(statistical) inference mechanism for building world models or sensorimotor control policies
from training data (or rewards);

» Another central issue is to understand what kind of training data one should consider,
how it should be encoded/represented, and extremely importantly how it should/can be
collected:

» Most typically, training data will be collected by the robot itself (as opposed to hand
prepared by an engineer) through self-experimentation and learning by observation: This
takes a lot of time !

= Completely impossible to learn all the sensorimotor skills physically possible and
learnable during a life-time due to HUGE (infinite?) size of sensorimotor spaces
characterizing the body and its interaction with the external environment;

=>Even for a single kind of motor activity (e.g. playing tennis) life is not long-enough so that
we learn everything that is possible to do with one own’s body and its interaction with
objects (e.g. tennis racket and tennis ball);

= How to explore the world in order to learn at least correctly a reasonable collection of
motor skills? Obviously random exploration will fail.




Strategy 1: try to avoid the need for
exploration

*WWhen one wants a robot to learn a specific task (e.g. learning to walk forward as fast as
possible) and allow the engineer to encode a specific reward/target function for this task ...

* AND when one allows oneself to make certain assumptions on the analytic form availability
of sensorimotor policies and properties of reward function,

=» Then there are elegant mathematical workarounds (e.g. NAC) that allow us to compute
robustly gradients from limited data, hence find good solutions to the problem from relatively

little data;
See e.g. Peters and Schaal, 2008; Bhatnagar et

al., 2009; Sutton et al., 2009, Theodorou et al.,
2010, ...

=>» But still for complex motor skills
exploration is going to be an issue,
and those assumptions might not
always be desirable.

R(S,A) SJforward speed of robot




Strategy 2: Guide and constrain
exploration

* When one is interested in learning fields of motor primitives (e.g. not just walking forward,
but all kinds of directions and rotations), or even various kinds of motor skills (e.g. walking +
navigating + shooting in balls ...), ...

* AND even more when one does not allow the engineer to program a specific reward
function for each of these tasks, and one does not necessarily want to restrict oneself to
motor policies that shall respect certain analytical properties;

=>» Then sensorimotor spaces become even bigger and exploration central;

=>» Exploration needs to be guided and constrained in a way that is as task-independent as
possible (i.e. one should try to find constraints that are minimally task specific);

=>» Take inspiration from developmental constraints in the human child;




An innate cerebral and morphological
equipment ...

Innate motivational system that fosters spontaneous BUT
organized exploration (intrinsic motivation/curiosity-driven
exploration)

Motor primitives that constrain the space of motor commands
and gestures: e.g. muscles are not controlled individually and
independently, oscillators, ...

Sensori detectors and trackers that allow the baby to
bootstrap its attentional and emotional systems: e.g.
movement, high pitch, faces, ...

Sensorimotor reflexes: e.g. eye tracking of moving objects,
closing hands when objects touched, ...

Morphological properties that facilitate the control of the
body, ...




... built within a maturational program ...

e.g. myelination/myelinogenesis progressively building brain
regions, connecting them together and to muscles, increasing
progressively resolution of senses and motor control, ...




... and continuously extended thanks to a
generic learning and developmental system




Social guidance: Learning by imitation/
observation

(S. Calinon)



Internal mechanisms that directly foster
spontaneous exploration for its own sake

=» INTRINSIC MOTIVATION




Intrinsically motivated reinforcement learning/
Active learning/Optimal experimental design
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to experiment?

« A mapping to learn X > Y from {(xiyi)}
examplars, where,

X can be state(t) x action(t) or just action(t)

Y can be state(t+1)

* A function of /(xi) is defined which measures
the “interest” of getting the yi associated to xi
(heuristically or optimally with respect to various
criteria related to information gain)

 Action selection:
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=> I(xi) is a reward and RL can be used, allowing
to address delayed rewards

=> In both cases, (meta-)exploitation-(meta)
exploration dilemna to be addressed




Most frequent measures of “interest”,
l.e. heuristic measures of information gain

* Places where we have little data (e.g. Whitehead, 1991);

» Places where prediction errors are high (e.g. Linden and Weber, 1993;
Thrun, 1995);

* Places where we have low confidence,
or with highest uncertainty (e.g. Thrun and Moller, 1992);

 Places where the variance of is maximal;

 Places where the entropy of is maximal;

 in RL: Counter-based, recency-based, novelty-based, « exploration
bonuses »

(Sutton, 1990; Brafman and M. Tennenholtz, 2001; Strehl et al., 2006;
Szita and Lorincz, 2008, ...)




These measures typically make at least one of the following
assumptions:

1) It is possible to learn a complete model of the world during
the life-time of the learning agent;

2) The world is learnable everywhere;

3) Noise is homogeneous;

=» These assumptions do not hold in many real-world robotic
(= non-toy) sensorimotor spaces (same as for human infants);

=» These measures are inoperant in these real-world
sensorimotor spaces




Curiosity driven learning in humans:
the search for intermediate complexity

Developmental
psychology Neurosciences
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=>» Activities of intermediate complexity are intrinsically rewarding




Active regulation of the growth of
complexity in exploration

) actual consequence y’
predicted consequence y

error feedback
decrease of prediction
errors (derivative)

Metapredictor metaM

expected
learning
progress

The IAC/R-IAC (Intelligent
Adaptive Cu riOSity) sensorimotor context
architecture(s)

>

Oudeyer P-Y, Kaplan , F. and Hafner, V. (2007), Baranes and Oudeyer (2009, 2010)
See also: Schmidhuber (1991, 2006)




R-IAC: multi-resolution probabilistic
region-based Iearning progress
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Learning Progress = decrease of mean prediction errors in a region

(Baranes and Oudeyer, 2009)




R-IAC: recursive multi-resolution
region splitting
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R-1AC: optimized splitting
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R-IAC: multi-mode probabilistic
experiment selection
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Example in a (not so) simple
experiment

y A1

2 DOF redundant robotic An inhomogeneous Visualization of the
arm, with a 1-pixel camera space to be explored mapping to be learnt




Evolution of exploration
focus with R-IAC




ol LN 1)

o i
-

C N
ll--...-____________________________
C N L
&I Y I
Wy g

Zoomed in exploration focus with R-IAC
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(Baranes and Oudeyer, 2009, IEEE Transactions on AMD)




The problem of meta-exploration of
« interestingness » in large spaces

* R-IAC like exploration allows to avoid spending too much
time on unlearnable or trivial subspaces, and fosters a focus
on zones of progressively increasing complexity

* BUT assessing I(x) still requires a certain amount of
exploration in the vicinity of x !

= We have a (better but still problematic) meta-exploration
problem!

=>» Further constraints on meta-exploration for curiosity-driven
learning are needed;




Active learning in the (operational)
space of goals (typically much smaller)

Higher level of Active Learning

_ Goal Goal
Multi-level Interest Computation Self-Generation
Active learning

(SAGG algorithm)
Lower Level of Active Learning

Goal-Directed Low- Goal Directed
Level Actions Interest Exploration and
Computation Learning

Baranes, A., Oudeyer, P-Y. (2010)




Example: learning the inverse
kinematics of an n-DOFs arm

Goal Position

=

Rest Position

Algorithm 2 Global Pseudo-Code of SAGG

Input: Current Position: xg, 6y
loop
Goal Self-Generation: (SSA, Schaal et Atkeson, 1994)
Selection of a Region R; according to Interest Values - - -
Generation of a Random Goal x, in R; Algorithm 1 Goal Directed Learning
Generation of Sub-Geoal Xi - Input: Xegs X0 By, m = 0, Mmax, V. V. Emax
Goal Directed Learning: Ql‘:jtlp“t‘ m )
for each sub-goal, and goal x; do while x #x; and m < mpq; do
while Constraints unrespected and xg # x; do _ Afnes = V. =5, T ) \
Exploration Phase Active J =get.current Jacobian(6)
Reaching Phase | jt”""f’&;movcﬁe"""ﬁ =J" Atnex)
‘hi Oa o 15 next - next
;3;':’:::1 lz’pdate: J if & > Emax then

I move(—Aby.q)
Effectiveness Computation directed fori=1:ydo

Interest Computation learni ng A8y, = random

Region Update move(Abyex ), move(—Abyex)
end for end for

dl end if
€ha oop end while




Maximizing competence progress for
active goal exploration allows to focus
on reachable areas (initially unknown)

Reachable
area
(in white)

Uneachable
area

(in grey)

Self-
generated

N\, goals

(dots)

Region
. splits

built by

SAGG




Orders of magnitude faster than
random exploration and only active
exploration in joint space

(a) Reaching Error o (b) Exceeding Movements/Goal

w=[_]= Random Joint ==[_]= Random Joint
-<>- Random Operational -O- Random Operational

Distance
©

15x10° 0
Number of actions (time steps)




Developmental constraints on
exploration: 1) Motor primitives

Biological organisms CNS do not control muscles
iIndividually and at a very low-level, but rather parameters
of higher level primitives that encode muscular
synergies;

These primitives are often conceived as parameterized
dynamical systems;

e.g. CPG, oscillators
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http://playground.csl.sony.fr

(Oudeyer, Kaplan, Hafner, 2007, IEEE Trans. Evol. Comp.)




biting
bashing
Just looking

Self-organization of
developmental
patterns

seeing object 2

successful bite
successful bash

o W TP AR oY :
1688 1288 140806 1688

Measure 1 {number of peaks?)

Measure 2 (complete scenario?)

Measure 3 (near complete scenario?)

Measure 4 (non-atfordant bite before affordant bite?)
Measure 5 (non-affordant bash before affordant bash?) ‘es: 57 %, No: 43 %
Measure 6 (period of systematic successful bite?) : 100 % . No: 0 %
Measure 7 (period of systematic successful bash?) : 78 %, No: 11 %
Measure 8 (bite before bash?) 192 %, No: 8 %

33

Measure 9 (successful bite before successful bash?) : 77 % No: 23 %




Developmental constraints on
exploration: 2) Maturation

An important aspect of the maturation of the neural system
is the myelination process which only progressively allows
the infant’s brain to control new muscles.

The corticospinal tract is not functional at birth, but develops
extensively over the first year, in a proximo-distal and
cephalo-caudal pattern, leading to a gradual development of
the infant’s ability to control the distal musculature of the arm
and hand (Berthier et al., 1999).

For example, in the reaching task, if young infants
predominately use the musculature of the proximal arm and

trunk, the learning problem become much simpler with the
reduction in the functional degrees-of-freedom of the arm.

= The MAC-SAGG algorithm

Baranes, A., Oudeyer, P-Y. (2010)




Modeling maturation and its
interaction with intrinsic motivation

Maturational clock where maturational time increases as overall competence/
quality of predictions increases

bt +1) = { zgg + A.interest(S’) i)ftﬁgrt\fgseest(S’) >0

Which then controls the growth of:

Time resolution of motor impulses

Sensori resolution for state
estimation

Volume/range of explorable values

in motor channels, with pro Ximo- Where k; represents an intrinsic value determining the differ-
distal law ence of evolution velocities between each joint. Here we fix:

k1 > ko > ... > kn, where k; is the first proximal joint.

Baranes, A., Oudeyer, P-Y. (2010) Maturationally constrained competence based intrinsically motivated
learning, in Proceedings of IEEE ICDL 2010.




Example: Developmental learning of
locomotion with R-IAC, motor primitives and
maturational constraints

] () =m+ a.sin(w.t + ¢

8 joints * 3 parameters

Motor vector M with
24 dimensions

+ progressive increase of the range of accessible m, a, phi




Explore the consequence of one’s
movements

al) Finailposition d2, a2

= _ ¥ Fon ¢

Initial position (d1,

The robot tries to predict:
f(dl, al, M) =(d2 —dl, a2 — al)




Exploration trajectory
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Developmental constraints on exploration: morphological
computation and semi-passive dynamics

* Acroban robot (Olivier Ly), 32 DOFs

store energy (elastic tendons, springs,
motors);

* Semi-passive torso with a 5 DOFs
vertebral column (triple pendulum) for
both stabilization and transformation of
potential energy into kinetic energy;

* Semi-passive feets;
* NO MODEL OF DYNAMICS;

* General purpose stabilizing motor
primitive robust to perturbations;

* Walking as a self-perturbation, only 2
parameters for all movements !

* Human physical guidance for free !

Ly, O., Oudeyer, P-Y. (2010) Acroban the humanoid: Playful and compliant physical child robot interaction, SIGGRAPH’2010
Emergent Technologies. Videos on




Take home message

» Exploration is an essential issue for robot learning of repertoires of
complex motor skills;

* Active learning/intrinsically motivated exploration mechanisms are of
essential help;

« BUT they cannot alone allow robot to learn real non-trivial motor skills
without additional constraints (ideally non task-specific), in particular
developmental constraints (motor primitives, maturational constraints,
morphological computation, ...);

Thank you!

More info on http://www.pyoudeyer.com
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