Planning in Information Space with Macro-actions

Nicholas Roy

Autonomous Navigation

- What's different about active learning on robots?
 - Much more complex objective.
 - Costs of learning must be explicitly modelled.
 - Must avoid failures while learning.
 - Want to behave reasonably while learning.
 - IID assumptions are deeply troubling.
 - Acquiring data can often change the underlying distribution.

- Goal: Dispose of the mines
- Problem: the noisy sensor confuses mines and rocks

RockSample

- Given cost of flight, reward of disposing of actual mines...
- Search for a sequence of paths through the graph that maximize expected reward
- Posterior distribution is not deterministic

Macro Actions

- Condition only at key points
- Macro-actions
 - Fixed-length, open-loop action sequences

- Posterior belief not deterministic
- Action sequence leads to a distribution over posterior beliefs
- Compute expected reward over distribution
 of distributions
- Compare $\int R(b'|u'0:T)db' > \int R(b|u0:T)db$

 Analytic solution exists for linear Gaussian systems : O(n)

$$\mu_{t-1} \sim N(m_{t-1}, \Sigma^{\mu}_{t-1})$$

$$\mu_{t} \sim N(A_{t}m_{t-1} + B_{t}\mu_{t}, \Sigma^{\mu}_{t-1} + \overline{\Sigma}_{t}C_{t}K_{t}^{T})$$

Multi-Step Update as One-Step

EKF Covariance Update

Control:
$$\overline{\Sigma}_t = G\Sigma_{t-1}G^T + R$$

Measurement: $\Sigma_t = \left(\overline{\Sigma}_t^{-1} + HQ^{-1}H^T\right)^{-1}$

Solution: Decomposition

- Key idea: factor the covariance matrix $\Sigma = BC^{-1}$
- Motion update

$$\overline{\Sigma}_{t} = \overline{E}_{t} \overline{D}_{t}^{-1}$$

$$\begin{bmatrix} \overline{D}_{t} \\ \overline{E}_{t} \end{bmatrix} = \begin{bmatrix} 0 & G_{t}^{-T} \\ G_{t} & R_{t} G_{t}^{-T} \end{bmatrix} \begin{bmatrix} B_{t-1} \\ C_{t-1} \end{bmatrix}$$

Solution: Decomposition

- Key idea: factor the covariance matrix $\Sigma = BC^{-1}$
- Measurement update

$$\Sigma_{t} = B_{t}C_{t}^{-1}$$

$$\begin{bmatrix} B_{t} \\ C_{t} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & M_{t} \end{bmatrix} \begin{bmatrix} \overline{D}_{t} \\ \overline{E}_{t} \end{bmatrix}$$

Solution: Decomposition

One-step transfer function for the covariance:

$$\zeta_{t} = \begin{bmatrix} 0 & I \\ I & M_{t} \end{bmatrix} \begin{bmatrix} 0 & G_{t}^{-T} \\ G_{t} & R_{t} G_{t}^{-T} \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} B_{T} \\ C_{T} \end{bmatrix} = \left(\prod_{t=0}^{T} \zeta_{t}\right) \begin{bmatrix} B_{0} \\ C_{0} \end{bmatrix}$$

- (To recover covariance, $\Sigma = BC^{-1}$)
- This trick is not new.
 - Kaileth et al., Linear State Estimation.
 - Mourikis and Roumeliotis, 2006.

RockSample

- Given cost of flight, reward of disposing of actual mines...
- Search for a sequence of paths through the graph that maximize expected reward
- Posterior distribution is
 not deterministic
- Distribution is multinomial _____

Non-Gaussian Distributions

- Approximate version available for exponential family distributions
 - e.g., Approximate parameter **x** of a Bernoulli with Gaussian

$$x_{t-1} \sim N(\mu_{t-1}, \Sigma_{t-1})$$

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

Non-Gaussian Distributions

- Approximate version available for exponential family distributions
 - e.g., Probability that a rock is actually an IED

$$x_{t-1} \sim N(\mu_{t-1}, \Sigma_{t-1})$$
$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

Observation model is also Bernoulli, e.g., chemical detector

$$p(z_t | \theta_t) = \exp\left(z_t^T \theta_t - \beta_t(\theta_t) + \kappa_t(z_t)\right)$$
$$\theta_t = W(x_t)$$
$$Y_t = \frac{\partial W(x_t)}{\partial x_t}\Big|_{x_t = \overline{\mu}_t}$$

Kalman Filtering for Non-Gaussian Distributions

Experimental Performance

Problem	Algorithm	Ave. rewards	Online time(s)	Offline time (s)
ISRS (8,5)	SARSOP	12.10 ±0.26	0.00	10000
	Naïve FS	9.56 ±1.08	3.36	0.00
	Hand-coded SCP	19.71 ±0.63	0.74	0.00
	PUMA	17.38 ± 1.41	162.48	0.00

- ISRS: 2048 states
- Largest version of this problem solved so far: 10⁴x2³⁰ states, 1-2 minutes per step

Experimental Performance

Problem	Algorithm	Ave. rewards		Online time(s)	Offline time (s)
ISRS (8,5)	SARSOP	12.10	±0.26	0.00	10000
	Naïve FS	9.56	±1.08	3.36	0.00
	Hand-coded SCP	19.71	±0.63	0.74	0.00
	PUMA	17.38	± 1.41	162.48	0.00
Tracking	Naïve FS	19.58	± 0.42	0.023	0.00
	Hand-coded SCP	27.48	± 0.49	1.010	0.00
	PUMA	35.55	± 1.28	28.52	0.00

Multi-Target Tracking

- Helicopter tracking multiple targets
- Limited field-of-view, noisy sensor

 Goal: Minimize uncertainty + distance travelled

Multi-Modal Gaussian Posterior

Sensor Model

• Sensor covariance is a Gaussian function of range

Comparisons

	Dist. traveled	Ave. modes	Total cost
MMPBD	138.76	1.081	-51.76
Greedy	133.52	1.524	-61.25
Naïve FS	112.20	1.775	-85.11

- Greedy strategy
 - Localize target with largest covariance
- Naïve Forward Search
 - Primitive actions
 - "Macro-observations"

Multiple targets tracked, multi-modal Gaussian distributions

Summary

- Robust, long-term autonomy in large-scale environments
- Planning algorithms for worlds in which we have limited knowledge of the state, model of the system, or a map of the world
- Key Issue: Control of Information
- Technical approaches:
 - Understanding how information propagates
 - Machine learning