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•
 

What’s different about active learning on 
robots?

•
 

Much more complex objective.
–

 

Costs of learning must be explicitly modelled.
•

 
Must avoid failures while learning.

–

 

Want to behave reasonably while learning.
•

 
IID assumptions are deeply troubling.

–

 

Acquiring data can often change the underlying 
distribution.
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•

 

Goal: Dispose of the mines
•

 

Problem: the noisy sensor 
confuses mines and rocks



RockSample
•

 
Given cost of flight, 
reward of disposing of 
actual mines…

•
 

Search for a sequence of 
paths through the graph 
that maximize expected 
reward

•
 

Posterior distribution is 
not deterministic 

Target is not 
a mine

Target #2 
is a mine
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Forward Search in Information Space
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a(b0 )=argmaxa Ez [C(b)] 1.
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Propagate expected 
costs back up the 
tree, taking 
expectations at 
observation nodes 
and taking maximum 
at action nodes

Complexity: O(|A|H|Z|H)Complexity: O(|A|H|Z|H)



Macro Actions

•
 

Condition only at key points

•
 

Macro-actions
–

 
Fixed-length, open-loop 
action sequences

=



Macro Actions
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How to generate posteriors
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Posterior Belief Distribution

•
 

Posterior belief not deterministic
•

 
Action sequence leads to a distribution over 
posterior beliefs

•
 

Compute expected reward over distribution 
of distributions

•
 

Compare ∫R(b’|u’0:T)db’
 

> ∫R(b|u0:T)db

u0:T

 

,z0:T



Exact Linear Gaussian Systems

•
 

Analytic solution exists for linear Gaussian 
systems : O(n)

u0:T

 

,z0:T
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Multi-Step Update as One-Step
EKF Covariance Update

Control:
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Solution: Decomposition

•
 

Key idea: factor the covariance 
matrix

•
 

Motion update
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Solution: Decomposition

•
 

Key idea: factor the covariance 
matrix

•
 

Measurement update
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Solution: Decomposition
•

 
One-step transfer function for the 
covariance:

•
 

(To recover covariance, Σ
 

= BC-1)
•

 
This trick is not new.
–

 
Kaileth

 
et al., Linear State Estimation.

–
 

Mourikis
 

and Roumeliotis, 2006.

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
⇒

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

∏
=

−

−

0

0

0

00

C
B

C
B

GRG
G

MI
I

T

t
t

T

T

T
ttt

T
t

t
t

ζ

ζ



RockSample
•

 
Given cost of flight, 
reward of disposing of 
actual mines…

•
 

Search for a sequence of 
paths through the graph 
that maximize expected 
reward

•
 

Posterior distribution is 
not deterministic 

•
 

Distribution is 
multinomial

Target is not 
a mine

Target #2 
is a mine



Non-Gaussian Distributions
•

 
Approximate version available for exponential family 
distributions 
–

 

e.g., Approximate parameter x of a Bernoulli with Gaussian 
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Non-Gaussian Distributions
•

 
Approximate version available for exponential family 
distributions 
–

 

e.g., Probability that a rock is actually an IED

 

Observation model is also Bernoulli, e.g., chemical detector
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Kalman
 

Filtering for 
Non-Gaussian Distributions
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Experimental Performance

•
 

ISRS: 2048 states
•

 
Largest version of this problem solved so 
far: 104x230

 
states, 1-2 minutes per step

Problem Algorithm Ave. rewards Online 
time(s)

Offline 
time (s)

ISRS (8,5)

SARSOP 12.10     ±0.26 0.00 10000

Naïve FS 9.56       ±1.08 3.36 0.00

Hand-coded SCP 19.71     ±0.63 0.74 0.00

PUMA 17.38     ± 1.41 162.48 0.00



Experimental Performance
Problem Algorithm Ave. rewards Online 

time(s)
Offline 
time (s)

ISRS (8,5)

SARSOP 12.10     ±0.26 0.00 10000

Naïve FS 9.56       ±1.08 3.36 0.00

Hand-coded SCP 19.71     ±0.63 0.74 0.00

PUMA 17.38     ± 1.41 162.48 0.00

Tracking

Naïve FS 19.58     ± 0.42 0.023 0.00

Hand-coded SCP 27.48     ± 0.49 1.010 0.00

PUMA 35.55     ± 1.28 28.52 0.00



Multi-Target Tracking

•
 

Helicopter
 

tracking multiple 
targets

•
 

Limited field-of-view, noisy 
sensor

•
 

Goal: Minimize uncertainty +
distance travelled

Belief of target 1

Belief of target 2

Agent’s pos & 
field-of-view



Multi-Modal Gaussian Posterior



•
 

Sensor covariance is a Gaussian function of range

Sensor Model



Comparisons

•
 

Greedy strategy
–

 
Localize target with largest covariance

•
 

Naïve Forward Search
–

 
Primitive actions

–
 

“Macro-observations”

Dist. traveled Ave. 
modes

Total cost

MMPBD 138.76 1.081 -51.76
Greedy 133.52 1.524 -61.25
Naïve FS 112.20 1.775 -85.11



Multiple targets tracked, 
multi-modal Gaussian 
distributions 

Multiple targets tracked, 
multi-modal Gaussian 
distributions






Summary
•

 
Robust, long-term autonomy in large-scale 
environments

•
 

Planning algorithms for worlds in which we have 
limited knowledge of the state, model of the 
system, or a map of the world

•
 

Key Issue: Control of Information
•

 
Technical approaches:
–

 
Understanding how information propagates

–
 

Machine learning
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