
Boosting with the Logistic Loss is Consistent

Boring Goal: Statistical rates for AdaBoost with Logistic and
similar strictly convex Lipschitz losses.

Difficulty: No regularization / constraints,
no minimizers / strong convexity,
linearly dependent features / singular Hessian,
infinite dimension / nasty spectrum,
Lipschitz =⇒ small Hessian on bad errors.

... why bother?

Aspiration: Reusable techniques for similar problems.

Strategy: Identify structure over source distribution via
duality; carry it to sample.
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Nonseparable case

I When ` : R→ R+ is nondecreasing, β-Lipschitz,

inf

{∫
`( −yf(x) )dµ(x, y) : f ∈ span(H)

}
= max

{
−
∫
`∗(p(x, y))dµ(x, y)

:

p ∈ L1(µ), p ∈ [0, β] µ-a.e.,

∀f ∈ span(H) �
∫
yf(x)p(x, y)dµ(x, y) = 0

}
.

I When optimal value positive:

dual optimum certifies difficulty in every direction.

I Difficulty in every direction =⇒ norm constraints.

I Rate m−c; c depends on H and µ _̈.
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Separable case

I What if optimal value zero?

I Weak learning rate:

γ =

inf

{
sup

f∈span(H)
‖f‖?=1

∫
yf(x)p(x, y)dµ(x, y)

:

p ∈ L1(µ), ‖p‖1 = 1,

p ∈ [0,∞] µ-a.e.

}
.

I (Hi Manfred, Rocco, Satyen, Shai, ...)

I Earlier optimal value zero ⇐⇒ γε > 0 for ε > 0...!

I γε lower bounds progress; rate O(m−1/3).
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