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Aspiration: Reusable techniques for similar problems.

Strategy: Identify structure over source distribution via
duality; carry it to sample.
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» When optimal value positive:
dual optimum certifies difficulty in every direction.

» Difficulty in every direction = norm constraints.

» Rate m™¢ ¢ depends on H and pu —.
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v

(Hi Manfred, Rocco, Satyen, Shai, ...)
Earlier optimal value zero <= ~. > 0 for € > 0...!

v

v

7 lower bounds progress; rate O(m~/3).



