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Player-Adversary’s Game

• Players predict the outcomes of an event in an online fashion
consulting with a class experts.

• At t player reveals belief about Yt in form of pt(Yt |y t−1),
player can consult with i.i.d pθ( · ), where θ ∈ Θ

• Adversary reveals yt , the value of Yt

• Player suffers − log pt(yt |y t−1)

• Cumulative loss over n rounds is :
∑n

t=1− log pt(yt |y t−1)

• Cumulative loss if listened to pθ( · ) :
∑n

t=1− log pθ(yt)
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Online Learning with Logarithmic Loss

• GOAL: minimize the difference between player’s cumulative
loss and the loss of the best distribution (REGRET), over
sequences of pt and yt :

RΘ(yn, q(n)) =
n∑

t=1

− log pt(yt |y t−1)−min
θ∈Θ

n∑
t=1

− log pθ(yt)

= log
supθ pθ(yn)

p(n)(yn)
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Sequential Probability Assignment Equivalent to
Joint Distribution

Note that any sequential probability assignment of length n defines
a joint distribution on the n outcomes and vice versa. This is
because ∑

yn

n∏
t=1

pt(yt |y t−1) = 1

And given a joint probability p(n)( · ), the conditional at time t is :

pt(yt |y t−1) =
p(n)(y t)

p(n)(y t−1)
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Normalized Maximum Likelihood

p
(n)
nml(y

n) ∝ sup
θ∈Θ

pθ(yn)

Theorem

NML achieves the minimax bound,that is,

p
(n)
nml = argminq(n) max

yn
RΘ(yn, q(n))
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Bayesian Strategies

• Prior π(θ) on distributions pθ( · ).

• Initially the strategy is a mixture of experts with prior π. As
more yt are observed we update the posterior and mix. The
joint will be: pπ(yn) =

∫
θ∈Θ pθ(yn)π(θ) dθ

• Conditionals will be :

pπ(Yt = yt | y t−1) =

∫
θ∈Θ

pθ(yt)π(θ|y t−1) dθ

• Jeffreys prior proportional to
√
I (θ) is asymptotically optimal

(under some conditions called ineccsi) .
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SNML

• Sequential normalized maximum likelihood.

psnml(Yt = yt | y t−1) ∝ sup
θ∈Θ

pθ(y t−1, yt)

• One-step ahead lookup, following the advice of the maximum
likelihood probability distribution of history concatenated with
one observation in the future.

• Naturally defined in terms of conditionals.

• The regret is a constant away from the minimax regret.

Peter Bartlett, Peter Grünwald, Peter Harremoës, Fares Hedayati, Wojciech Kot lowskiHorizon-Independent Optimal Prediction with Log-Loss in Exponential Families



Exponential Families

Suppose the parametric family of i.i.d distributions are a class of
exponential distributions. pθ(y) = h(y)eθ

ᵀy−A(θ).
Hedayati and Bartlett showed that:
SNML and Bayesian with Jeffreys and NML are either all
equivalent or are all different from each other. They are the same
if and only if SNML is exchangeable.
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Implications of Exchangeability

• NML becomes horizon–independent

• At time t instead of marginalizing n − t random variables out,
NML can just marginalize the next variable out as SNML
does.

• NML becomes an infinite process, Bayesian updating.

• SNML and Bayesian with Jeffreys become optimal.
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SNML-exchangeable Exponential Families

The only SNML- exchangeable one–dimensional exponential
families are Gaussian, gamma,Tweedie( 3

2 ) and any one–to–one
transformation of them.
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