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Overview Tutorial

00:00
Introduction
Siegfried Nijssen

00:45
Unsupervised, explorative 
pattern set mining  
Jilles Vreeken 

01:30 Break

02:00
Supervised pattern set mining    
Björn Bringmann

02:45 End
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Practical information
Even though we did our best to achieve otherwise:

More information (including references):
http://www.cs.kuleuven.be/conference/msop/

WARNING

This TUTORIAL is neither complete nor unbiased

REFERENCES are not necessarily 
authoritative or complete
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Part I
Introduction
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Data

Pattern

What is a pattern?

Recurring structure
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What is a pattern?
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What is a pattern?

In this tutorial we are looking for

Recurring structures ...

... in enumerable, discrete domains

Hence we do not consider a regression model to be a 
pattern...
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What is a pattern?

Example 1: Frequent Itemset in Market Basket Data
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What is a pattern?

Example 1: Frequent Itemset in Market Basket Data

support(          )=3 
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What is a pattern?

Genes

C
on

di
tio

ns

Example 2: Co-cluster in Gene Expression Data

Lyssiotis et al.
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What is a pattern?

4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor

Example 3: Conjunctive Formula in UCI Data

Petal length >= 2.0
and Petal width <= 0.5
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What is a pattern?

Example 4: Frequent Subgraph in Molecules
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What is a pattern?

Recurring structure in enumerable, discrete domain

Enumerable, discrete domains: 
itemsets, graphs, sequences, trees, ...

Recurrence as determined by constraints: 
support constraint, size constraint, area constraint, ...
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The problem:
too many patterns
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Too many patterns...

Solution 1: constraint-based mining

Solution 2: pattern set mining
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Solution 1: 
pattern constraints

Constraint on each pattern individually based on

background knowledge

condensed representations

class labels
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Constraints: 
background knowledge

Support constraints

Syntactical constraints

Statistical constraints

difference with expectation

taxonomies

vs

= diapers
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Constraints:
condensed representations

If we pass a pattern through the 
data, we obtain another pattern

derives
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Constraints:
condensed representations

Closed patterns

Free/generator patterns

Maximal frequent patterns

Non-derivable patterns

Pasquier et al.

Pasquier et al.

Bayardo

Calders et al.
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Constraints:
class labels

vs
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Constraints:
class labels
GIVEN database D, target c, threshold t, class of patterns

FIND all patterns p with f(p,D,c)>t
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Constraints:
class labels

Subgroup
Correlated

Pattern

Emerging
Pattern

Discriminative
Pattern
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Constraints:
class labels

Many different names for this setting  

Pattern name Typical measure

Emerging pattern Growth rate

Contrast set Difference in rel support

Correlated pattern Chi2

Subgroup Weighted relative accuracy

Discriminative pattern Information gain

Class association rule Confidence

Dong et al.

Bay et al.

Morishita et al.

Kloesgen et al.

Cheng et al.

Liu et al.

Novak, Webb and Lavrac
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How to find patterns?

In principle two ways:

• Greedy / heuristic

Fast

Overlooks solutions

• Complete search

Finds everything

Slower
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How to find patterns?

Complete search under constraints often feasible

GIVEN database D, constraint φ on D, class of patterns C
FIND all patterns p in class C satisfying φ

Key Observation:
(Anti-)monotonicity
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Lots of solutions...
what’s their problem?
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The problem -
complex pattern relationships

Unsupervised descriptive task
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Supervised predictive task

The problem -
complex pattern relationships
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The problem -
complex pattern relationships

P1 P2

All patterns mined
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Pattern set mining

GIVEN a data mining task
FIND an interrelated set of patterns 
useful for this task
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unsupervised supervised

pattern
mining

no target
no relationships

relevant to target
no relationships

pattern set
mining

no target
relationships

relevant to target
relationships

Patterns vs Pattern sets

part II part III
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unsupervised supervised

descriptive

Association Analysis
Tiling

(Co-)Clustering
Probabilistic models

Subgroup discovery
Exceptional model mining

predictive Predictive clustering
Classification

Regression

Task dimensions

part II part III
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Task dimensions

Supervised vs unsupervised

Predictive vs descriptive

38



Task dimensions

Supervised vs unsupervised

Predictive vs descriptive
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Task dimensions

Supervised vs unsupervised

Predictive vs descriptive

(Semi-)Structured data vs Binary data 

Constrained vs Unconstrained

Interpretable model  vs  Black box
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How to find pattern sets?

MPattern 
Selection

Pattern 
Mining

Model 
Induction

PSDB

Optimisation
Criteria

Mining
Constraint

MPS
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Model constraint

Pattern set constraint
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How to find pattern sets?

MPattern 
Selection

Pattern 
Mining

Model 
Induction

PSDB

Optimisation
Criteria

Mining
Constraint

MPS

Pattern set constraint

Model constraint

Model Independent
Iterative Mining

1
Model Independent

Post Processing

2

Model Dependent
Post Processing

4
Model Dependent

Iterative Mining

3
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Pattern set = Feature set
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Pattern set = Feature set
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Feature vs pattern selection

We know more about patterns

constraints used

generality relationships

Feature 
Selection Pattern 

Selection

Binary 
Feature

Selection
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Overview

Unsupervised
Pattern set mining

Part II

Supervised
Pattern set mining

Part III

How to score pattern sets

How to find pattern sets

44



End of Part I
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