Equipping LED-based public lighting with wireless sensor network

Miha Smolnikar, Carolina Fortuna Jozef Stefan Institute

Outline

SensorLab

LED lighting background Miren-Kostanjevica municipality Wireless sensor network & control application

SensorLab

- Department of Communication Systems @ JSI Department of Knowledge Technologies @ JSI ISOtel d.o.o.
- Coordinated activities on the development of custom WSN solution started in May 2009
- Key words: Versatile Sensor Node, Vertical Integration, Sensor as a Service (IP connectivity, WEB access), Deliberate/Participatory Sensing, Semantics

SensorLab – The team

SensorLab - Activities

Versatile Sensor Node

• VSC

- Analog and digital sensor/actuator interfaces
- Possibility to use operating system (real-time, event-driven)
- Multiple expansion options
- Open C/C++ code libraries
- Onboard memory
- VSR
 - 300-900 MHz, 2.4 GHz radiointerface (all ISM bands)
 - ZigBee, 6LoWPAN and other IEEE 802.15.4 based solutions

• VSE

- Bluetooth, Wi-Fi, Ethernet, GSM/GPRS
- Sensors/actuators
- PoE

WSN application areas

Outline

SensorLab LED lighting background Miren-Kostanjevica municipality Wireless sensor network & control application

LED lighting background

- Worldwide policy begins to outlaw inefficient incandescent lights
 - Lighting represents roughly 20% of world electricity consumption
 - EU phase out period: until 2012 (2015)
- Light pollution (dark sky initiative)
 - Focused light beam
- Optimization of external public lighting
 - Uredba o mejnih vrednostih svetlobnega onesnaževanja okolja (Uradni list RS 81/07, 109/07, 62/2010)
 - EN 13201: European standard for Road Lighting

LED lighting background

- LED-based lights are 90% more efficient than incandescent lights (5% light, 95% of the heat) and 50% more efficient than high pressure mercury lamps
 - About 40% savings in electricity consumption can be achieved just by replacing old lamps with LED technology
 - Additional 25% savings can be achieved with intelligent dimming
- Mutual energy, environmental and economic benefits
 - Reduced energy consumption and CO₂ emissions
 - Emitted light / dissipated heat = efficiency
 - Lifetime + reliability = economy
 - Reduced light pollution

Jozef Stefan Institute Department of

Communication Systems

LED characteristics

- LED output of 100 lumen/watt is a crucial factor for breakthrough and mass market
- Advantages:
 - High energy efficiency (operation costs)
 - Long life cycle 50.000 hours ≈ 15 years (maintenance costs)
 - Reliability (mortality curve)
 - No pollutants (mercury)
 - Robustness (resilient to shock and vibration)
 - High degree of directionality
 - Low system complexity
 - Dimming
 - Inherent solar/battery power support
 - Compact form factor
 - Wide range of colors (color temperatures)
 - Lack of UV do not attract insects

Jozef Stefan Institute

Department of Communication Systems

Outline

SensorLab LED lighting background Miren-Kostanjevica municipality Wireless sensor network & control application

Motivation

- LED technology represents one of the biggest opportunities in lighting. Coupling infrastructure with communication networks provides additional energy savings and opens a portfolio of new applications.
- Replace 850 existing lamps with LEDs
- Equip 25 lamps with WSN
 - Individual lamp dimming
 - Micro level environmental monitoring
 - Real time control of infrastructure over Internet
- 10 years test-bed
- Collaboration: MI4, JSI, municipality, lamps producer, lighting operator, electricity distributor, telecom provider

Kostanjevica

- 53 light poles
- 5 equipped with sensor nodes

Miren

- 109 light poles
- 20 equipped with sensor nodes

SGA LED lamps

- voltage 100-250 V
- low consumption
- full electronics working control (also LED light sources)
- dimming range from 1-100% with control signal from 1 to 10V
- protection class I
- life time minimum 60.000 hours

Sensor/Gateway Node

 VSN + Xbee + Power supply + sensor board

Setup

- 1st phase: up & running 25 nodes
- 2nd phase:up & running 100 nodes (by end of 2010)
- 3rd phase: up and running 830 nodes (2011)

Outline

SensorLab LED lighting background Miren-Kostanjevica municipality Wireless sensor network & control application

Wireless Sensor Network

Sensor/Concentrator node tasks

- Sensor node tasks
 - Measuring sensor data
 - Sending data on request
 - Battery charging
 - Light control
- Concentrator node / gateway tasks
 - Sensor node discovery
 - Requesting data
 - Network monitoring
 - Communication with web server

- Node discovery
 - Gateway sends brodcast message with ist address
 - After power-on, reset and periodically every 30 sec

Binding

- Nodes respond with special status message, containing their
 - Address
 - Status
 - Power supply state: battery / external / battery+external (node failure detection)
 - Settings
 - Device type (light): ON/OFF, dimming 0-100%
- Gateway builds a network table

🎸 AgroSense

Jozef Stefan Institute Department of Communication Systems Status data

Pooling

- By sending unicast message gateway periodically requests sensor data from particular sensor node
 - Period can be set using web control application
- Sensor node performs measurements
 - Up to 0.5 s response time

Pooling

- Sensor node replies with
 - Temperature
 - Humidity
 - Atmospheric pressure
 - Luminance
 - Battery voltage
 - Power supply state (battery / external / battery+external)

Pooling

- Sensor node replies with
 - Temperature
 - Humidity
 - Atmospheric pressure
 - Luminance
 - Battery voltage
 - Power supply state (battery / < external / battery+external)
- Gateway receives data, appends time information and forwards data to server

Jozef Stefan Institute Department of

Communication Systems

Network status

- After Ethernet gateway obtains IP and builds a network table it periodically (5 min interval) reports
 Se to status to web control
 Application
 - This info is necessary for back control from application to sensor nodes (actuators)

- Settings for gateway
 - Pooling interval
 - Network status refresh interval
 - Clock refresh interval
- Settings for sensor node
 - Light ON/OFF
 - Dimming 0-100%

- Additional features & advantages
 - Interchangable coordinators
 - Sensor nodes do not send data to fixed coordinator, but to coordinator that requests data
 - More coordinators per WSN
 - Each coordinator pools sensor nodes in the range

Web server and control application

- Windows OS
- Apache web server
- *MySQL* Database
- phpMyAdmin for database editing
- Communication with the database is performed with PHP scripts

Database structure

Thanks for your attention!

Miha Smolnikar miha.smolnikar@ijs.si

