Ranking by Stealing Human Cycles

Tingfan Wu Department of Computer Science National Taiwan University

Joint work with Tzu-Kuo Huang, Chih-Jen Lin and Ruby C. Weng

The Problem

- Given a large(>1M) number of photos.
- How to obtain the global ranking effectively and efficiently?
- Hot or Not's solution:
 Steal human cycles from Internet visitors.

Hot or Not: Score 1 to 10

Drawbacks of Scoring Method

Vulnerable to voter variation (if low #vote/photo)

An example

Real score	6	5	4
Nice voter		7	6
Tough voter	4	3	
Avg. Score	4	5	6

Human compare the picture with previously seen ones.
 Dependent on one's previous experience.

Drawbacks of Scoring Method

• Some objects are hard to give score.

• Comparison is easier and more objective.

New Challenges

- Number of objects very large Hot or Not: 24.3M photos
- Impossible to compare all $\binom{k}{2}$ pairs: 300T pairs
- Selecting a small subset of pairs

Conditions:

- Connectivity: for any $i \neq j$, \exists comparisons i vs i_1 , i_1 vs i_2 , ..., i_s vs j.
- Fairness: each picture compared to equal number of opponents

Design of The System

Cyclic design (#objects = 7)

```
{1}: (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,0) {3}: (0,3) (1,4) (2,5) (3,6) (4,0) (5,1) (6,2)
```

- Connectivity: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 0$
- Fairness: 0: 1346
- Related to experimental design: efficiency

Paired Comparison Method

- ullet Bradley-Terry model: paired comparisons o global ranking
- Object j's hotness : $p_j \ge 0, j = 1, 2, \dots, k$

$$P(\text{object } i \text{ beats } j) = \frac{p_i}{p_i + p_j}.$$

- Object i beats j r_{ij} times.
- Maximum log-likelihood

$$\max_{\mathbf{p}} \quad \sum_{i:i\neq i} r_{ij} \log \frac{p_i}{p_i + p_j}, \quad \text{s.t.} \sum_{i=1}^{\kappa} p_i = 1, \ p_i \geq 0, \ i = 1, \ldots, k.$$

• Unique global maximum exists if *connectivity condition* holds.

Experiment Design: Evaluation

Training & Testing

Calculate accuracy ranking 5 > 3 > 4 > 2 > 1 testing data $(2 > 1)_o$ $(3 < 4)_x$ $(5 > 2)_o$ $(3 > 1)_o$

 $3 \operatorname{correct} + 1 \operatorname{error} = 75\%$

Experiment Result

• Training data subsampled to reflect different #clicks/voter.

paired comparison (+, solid) scoring $(\times, dotted)$

Conclusion

Summary

- If low #clicks/voter, paired comparison outperforms scoring.
- Binary choices vs 10 choices each pair: 1.93s vs each score: 2.17s.

Ongoing and Future Work

- Hotter Or Notter
 http://hotterornotter.csie.org/
 Please help to cast votes.
- Pair selection in incremental/decremental scenarios.

• Testing instaces from consequtive scores

ID 2 1 4 3 0 ... score 9 7 6 2 5 ... pairs
$$(2,1) \frac{(1,4)}{(4,3)} (3,0) \dots$$

Data collection (for each voter)

Paired comparison × 50

