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I. Least squares regression and ERM

I.1. Model for the least squares regression. Learn f : X →
Y from random samples z = {(xi, yi)}mi=1

Take X to be a compact metric space and Y = R. y ≈ f(x)

Due to noises or other uncertainty, we assume a (unknown)

probability measure ρ on Z = X × Y governs the sampling.

marginal distribution ρX on X : x = {xi}mi=1 drawn according

to ρX

conditional distribution ρ(·|x) at x ∈ X

Learning the regression function: fρ(x) =
∫
Y ydρ(y|x)

yi ≈ fρ(xi)
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I.2. Least squares generalization error

E ls(f) =
∫
Z(f(x)− y)2dρ minimized by fρ:

E ls(f)− E ls(fρ) = ‖f − fρ‖2L2
ρX

=: ‖f − fρ‖2ρX ≥ 0.

Empirical Risk Minimization (ERM)

Let H be a compact subset of C(X ) called hypothesis space.

The ERM algorithm is given by

fz = arg min
f∈H
E lsz (f), E lsz (f) =

1

m

m∑
i=1

(f(xi)− yi)2.

Theory of uniform convergence: bound supf∈H
∣∣∣E lsz (f)− E ls(f)

∣∣∣
by capacity of H.

Approximation error inff∈H
{
E ls(f)− E ls(fρ)

}
= inff∈H ‖f−fρ‖2ρX
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I.3. Error analysis in statistics for the least squares regression

Special example: Let X be a bounded domain of Rn with
Lipschitz boundary, and H = {f ∈ Hs(X ) : ‖f‖Hs(X ) ≤ R} be a
ball of the Sobolev space Hs(X ) with index s > n

2.

Error bounds in the literature of statistics: If fρ ∈ H, then with
confidence 1− δ,

‖fz − fρ‖2ρX ≤ C̃m
− 1

1+n/(2s) log
2

δ
,

provided that the output random variable Y satisfies |Y | ≤ M
almost surely (standard), or exponential decay for Y in some
form.

Heavy tailed noise: Y does not decay exponentially:
E[|Y |4] <∞ (Audibert-Catoni 2011)

Our work in minimum error entropy algorithm (Hu-Fan-Wu-
Zhou): E[|Y |q] <∞ for some q > 2
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II. Regularized least squares regression and kernel PCA

II.1. Regularized least squares regression. Mercer kernel

K : X×X → R continuous, symmetric and positive semidefinite

Reproducing Kernel Hilbert Space (RKHS) HK: comple-

tion of the span of the set of functions {Kt = K(t, ·) : t ∈ X}

Regularized least squares regression to avoid over-fitting

fz,λ := arg min
f∈HK

 1

m

m∑
i=1

(f(xi)− yi)2 + λ‖f‖2K

 , (1)

where λ = λ(m) > 0 is a regularization parameter.

Representer Theorem ⇒ fz,λ =
∑m
i=1 ci,zKxi where {ci,z}mi=1

can be solved by a linear system. But there is no sparsity in

this representation in general.
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II.2. Principle component analysis (PCA)

Let X = [x1|x2| · · · |xm] ∈ Rn×m represent m sampling points in
Rn. We seek a k-dimensional affine space {µ+Uβ : β ∈ Rk} in
Rn to best approximate the data, where U = [u1|u2| · · · |uk] ∈
Rn×k consists of k-columns of an orthogonal matrix.
Solution to PCA: µ̂ = x = 1

m

∑m
i=1 xi. Define the sample co-

variance matrix

Σ =
1

m
[x1 − x| · · · |xm − x] [x1 − x| · · · |xm − x]T ∈ Rn×n.

It has eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0 corresponding to
normalized eigenvectors û1, · · · , ûn. Its SVD Σ =

∑n
i=1 λ̂iûiû

T
i

gives

Û = [û1|û2| · · · |ûk] ∈ Rn×k

and a new sample representation

x ∈ Rn ≈ x+
k∑

`=1

[(x− x) · û`] û`.
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II.3. Kernel principle components

Empirical features (kernel principle components): If the Gram
matrix K := 1

m[K(xi, xj)]mi,j=1 (of rank d) has normalized eigen-

pairs {(λ̂xi , µ̂i)}
m
i=1 , the empirical features {(λxi , φ

x
i )} are de-

fined by φxi =
∑m
j=1(µ̂i)jKxj/

√
mλ̂xi (for i = 1, . . . , d).

Another view: Define the integral operator LKf =
∫
X f(x)KxdρX

on HK and the empirical integral operator Lx
K : HK →HK by

Lx
Kf =

1

m

m∑
i=1

f(xi)Kxi =
1

m

m∑
i=1

〈f,Kxi〉KKxi.

Denote {(λi, φi)} the normalized eigenpairs of LK, and {(λxi , φ
x
i )}

normalized eigenpairs of Lx
K. Then we have the expressions

λxi = λ̂xi and φxi =
∑m
j=1(µ̂i)jKxj/

√
mλ̂xi for i = 1, . . . , d, and

φxi (xj) = 0 for i > d.

Kernel PCA: Schölkopf-Smola-Müller, ...
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II.4. Regularized kernel PCA (Guo-Fan-Zhou)

output function fz =
∑∞
i=1 c

z
iφ

x
i with cz = (czi )

∞
i=1 given by

arg min
c∈`2

 1

m

m∑
i=1

 ∞∑
j=1

cjφ
x
j (xi)− yi

2

+ γ
∞∑
j=1

Ω(|cj|)

 , (2)

where Ω : [0,∞)→ R+ is a univariate function.

Zwald, Blanchard-Massart-Vert-Zwald: kernel projection ma-

chine with {φxj }
J
j=1 and Ω the indicator function of (0,∞)

Examples of Ω: (a) Ω(|c|) = |c|2 gives (1), the ridge regression

(b) Ω(|c|) = |c|q with 0 < q ≤ 1: Fu-Knight, ...

(c) SCAD penalty given by Ω′(c) = 1 for 0 < c < 1, Ω′(c) = 0

for c > b, Ω′ continuous and linear on (1, b), with a parameter

b > 2: Fan-Li, ...
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Denote

Szi =


1

mλxi

∑m
j=1 yjφ

x
i (xj), if λxi > 0,

0, otherwise.

Theorem 1 Let Ω : [0,∞)→ [0,∞), γ > 0 and z ∈ (X × Y )m.

Then a sequence cz = (czi )
∞
i=1 is a solution to (2) if and only if

for each i, czi is a minimizer of the univariate function defined

by

hi(c) = hλxi ,S
z
i ,γ,Ω

(c) = λxi (c− Szi )2 + γΩ(|c|), c ∈ R. (3)

In particular, if Ω(c) > 0 for c > 0, we have czi = 0 for i > m.
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Properties induced by concave penalties

Theorem 2 If Ω : [0,∞) → [0,∞) is a nonzero continuous

concave function satisfying Ω(0) = 0, then Ω(1) > 0 and that

Ω(c) ≥ Ω(1)c for c ∈ (0,1] and Ω(c) ≤ Ω(1)c for c ∈ [1,∞).

If Ω′+(0) = 0, then for each i, czi vanishes if and only if either

λxi = 0 or Szi = 0.

So for Ω(|c|) = |c|2 corresponding to (1) (ridge regression),

sparsity is hard to get.

Concave exponent q ∈ [0,1]: For our mathematical analysis,

we assume that for some q ∈ [0,1] and C∗Ω > 0 there holds

Ω(c) ≤ C∗Ωc
q, ∀c ∈ (0,1].
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Theorem 3 Assume fρ = LrK(gρ) for some r > 1
2 and gρ ∈ HK,

D1i
−α ≤ λi ≤ D2i

−α, ∀i ∈ N (4)

for some positive constants D1, D2 and α with 2αmax {r,1} >
1. Let 0 < δ < 1. If we choose

γ = C1(D2/λ1)r+1
(

log
4m

δ

)1+2r
m−

3
4, (5)

then with confidence 1− δ we have

czi = 0, ∀ mθsp + 1 ≤ i ≤ m with θsp =
1

α(1 + 2r)
< 1 (6)

and

‖fz − fρ‖K ≤ C2

(
log

4m

δ

)1+2r
m−θrate

with θrate = αmin{6r−1,4r(2−q)}−2(2−q)
4(2r+1)(2−q)α , and constants C1 and

C2 independent of m or δ.
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Simulation on MHC-peptide binding data

The quantitative Immune Epitope Database (IEDB) bench-
mark data set of human leukocyte antigen (HLA)–peptide
binding affinities consists of 14 groups, each containing the
affinities of a set Pa of peptides to a specific HLA allele a. For
p ∈ Pa, the affinity yp ∈ [0,1] ⊂ Y = R is a real number.

Nielsen and Lund used an artificial neural network-based algo-
rithm called NN-align and gave on this data set the state-
of-the-art prediction in 2009. Shen-Wong-Xiao-Guo-Smale
(2012) developed a string kernel K̂3, and applied it with the
regularized kernel least squares regression algorithm (RLS),
which produced slightly better prediction than NN-align on the
same data set. We use this K̂3 in (2) with Ω(c) = |c|q, where
q is set to be 1, 2/3, and 1/3, and with the SCAD penalty, and
achieve some sparsity in addition to the comparable (slightly
better) precision.
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We divide Pa into 5 disjoint subsets for a 5-fold cross-validation.

Within the training data, another 5-fold cross-validation is em-

ployed to select the regularization parameter to minimize the

RMSE score. Then algorithm (2) is trained to predict the

affinities. Each peptide p ∈ Pa has a predicted affinity ỹp. We

use

ERMSE,a =

 1

#Pa

∑
p∈Pa

(ỹp − yp)2

1/2

as the RMSE score. A lower RMSE score indicates a better

performance.
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The area under the receiver operating characteristic (ROC)

curve (AUC), defined as

EAUC,a =
#
{

(p, p′) : p ∈ Pa,B, p′ ∈ Pa,N , ỹp > ỹp′
}

(
#Pa,B

) (
#Pa,N

) ∈ [0,1],

is another performance index. Here Pa,B = {p ∈ Pa : yp > 0.426}
and Pa,N = Pa\Pa,B are the sets of binding peptides and non-

binding ones, with the threshold 0.426. A higher AUC score

indicates a better performance.

The simulation is summarized in the following able. Each

cell consists of the average of proportions of the non-zero

coefficients in the five rounds of test (the top percentage),

RMSE (the middle number), and AUC (the bottom number).
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Allele a #Pa NN-align RLS
RKPCA

q = 1 q = 2/3 q = 1/3
– – 74.65% 59.30% 60.81%

DRB1*0101 5166 – 0.18660 0.18690 0.18746 0.18830
0.836 0.85707 0.85651 0.85512 0.85306

– – 88.04% 71.84% 56.47%
DRB1*0301 1020 – 0.18497 0.18476 0.18495 0.18551

0.816 0.82813 0.82995 0.82950 0.82714
– – 72.39% 60.16% 61.40%

DRB1*0401 1024 – 0.24055 0.24089 0.24202 0.24277
0.771 0.78431 0.78023 0.77697 0.77505

– – 70.55% 57.84% 57.88%
DRB1*0404 663 – 0.20702 0.20797 0.20918 0.20878

0.818 0.81425 0.81695 0.81134 0.80801
– – 81.47% 69.56% 63.06%

DRB1*0405 630 – 0.20069 0.20037 0.20017 0.20076
0.781 0.79296 0.79837 0.79929 0.79791

– – 98.65% 91.76% 86.96%
DRB1*0701 853 – 0.21944 0.21826 0.21840 0.21849

0.841 0.83440 0.83883 0.83918 0.83916
– – 96.85% 93.75% 87.98%

DRB1*0802 420 – 0.19666 0.19555 0.19557 0.19572
0.832 0.83538 0.83968 0.83938 0.83749
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– – 73.11% 53.35% 50.94%
DRB1*0901 530 – 0.25398 0.25563 0.25653 0.25784

0.616 0.66591 0.66293 0.66273 0.66163
– – 94.61% 83.82% 80.21%

DRB1*1101 950 – 0.20776 0.20799 0.20802 0.20780
0.823 0.83703 0.83679 0.83680 0.83706

– – 84.99% 72.64% 62.25%
DRB1*1302 498 – 0.22569 0.22518 0.22540 0.22578

0.831 0.80410 0.80479 0.80439 0.80303
– – 75.80% 64.94% 74.79%

DRB1*1501 934 – 0.23268 0.23318 0.23401 0.23419
0.758 0.76436 0.76258 0.76086 0.76058

– – 92.94% 89.57% 87.52%
DRB3*0101 549 – 0.15945 0.15932 0.15916 0.15911

0.844 0.80228 0.80504 0.80546 0.80622
– – 96.75% 81.28% 76.18%

DRB4*0101 446 – 0.20809 0.20765 0.20838 0.20834
0.811 0.81057 0.81096 0.80791 0.80713

– – 100.00% 99.95% 98.76%
DRB5*0101 924 – 0.23038 0.23045 0.23045 0.23046

0.797 0.80568 0.80549 0.80550 0.80557
– – 85.77% 74.98% 71.80%

Average – 0.21100 0.21101 0.21141 0.21170
0.7982 0.80260 0.80351 0.80246 0.80136
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We make some observations from the simulation:

(a) In terms of AUC on this real data set, RLS has better per-

formance than NN-align. The improvement is 0.55% in aver-

age, with better AUC scores for 9 out of 14 test groups while

the score difference is always at the second significant figure.

Algorithm (2) with Ω(c) = |c| has even slightly better perfor-

mance, giving an improvement of 0.11% in average, and better

AUC scores for 8 out of 14 test groups with the score differ-

ence always at the third significant figure only. Improvements

in Shen-Wong-Xiao-Guo-Smale (2012) and in our simulation

seem to be small, but this data set has been well investigat-

ed in the immunological literature and any improvement is

difficult. In particular, the dissimilarity metric BLOSUM62-2

among the 20 basic amino-acids, based on which the string

kernel K̂3 is constructed was obtained in a very tight form

after long-term effort and a vast medical literature (Henikoff

and Henikoff 1992).
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(b) As the parameter q (the same as the concave exponent)

in the `q-regularizer Ω(|c|) = |c|q decreases from 1 to 2
3 and 1

3,

the sparsity improves for 10 out of 14 test groups while the

AUC worsens for 9 out of 14 test groups. The result in terms

of the AUC error is consistent with our theoretical analysis for

the error bound stated in terms of the concave exponent q.

(c) Sparsity and error bounds in terms of both AUC and root-

mean-square error for the simulation with the SCAD penalty is

almost the same on this real data set as that with Ω(|c|) = |c|,
verifying again the role of the concave exponent q = 1.
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III. Minimum error entropy (MEE) principle and kernel
approximation

Principe, Erdogmus-Principe, Suykens, ...

Applications: adaptive system training, blind source separa-
tion, maximally informative subspace projections, clustering,
feature selection, blind deconvolution, ...
Idea: extract from data as much information as possible about
the data generating systems by minimizing error entropies in
various ways.

Shannon’s entropy of a random variable E with pdf pE is

HS(E) = −E[log pE] = −
∫
pE(e) log pE(e)de

and Rényi’s entropy of order α (α > 0 but α 6= 1) is

HR,α(E) =
1

1− α
logE[pα−1

E ] =
1

1− α
log

(∫
(pE(e))αde

)
satisfying limα→1HR,α(E) = HS(E).
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In supervised learning, the random variable E is E = Y − f(X)

when a predictor f(X) is used.

MEE principle: search for a predictor f(X) that contains the

most information of the response variable Y by minimizing

information entropies of the error variable E = Y − f(X).

The classical least squares error E[Y − f(X)]2 =
∫
e2pE(e)de

minimizes the variance of E involving the first two moments

and is perfect to deal with Gaussian noise. But it does not

work necessarily well for problems involving heavy tailed non-

Gaussian noise. For such problems, MEE might still perform

very well in principle since moments of all orders of the error

variable are taken into account by entropies.

Here we only consider Rényi’s entropy of order 2: HR(f) =

HR,2(f(X)− Y ) = − log
∫

(pE(e))2de = − log
∫
pE(e)pE(e)de.
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Kernel approximation of the pdf pE by Parzen windowing

p̂E(e) =
1

mh

m∑
i=1

G(
(e− ei)2

2h2
),

where ei = yi− f(xi), h > 0 is an MEE scaling parameter, and
G is a windowing function (example: G(t) = exp{−t} Gaussian
windowing).

Approximations of Rényi’s entropy is − log( 1
m

∑m
i=1 p̂E(ei)):

ĤR = − log
1

m2h

m∑
i=1

m∑
j=1

G

(
(ei − ej)2

2h2

)
.

The MEE learning algorithm associated with H and G is

fz = arg min
f∈H

− log
1

m2h

m∑
i=1

m∑
j=1

G


[
(yi − f(xi))−

(
yj − f(xj)

)]2
2h2


 .

(7)
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IV. MEE algorithm with large parameter: h ≥ 1

Hu-Fan-Wu-Zhou (2013)

Assumption on the output variable Y :

E[|Y |q] <∞ for some q > 2, and fρ ∈ L∞ρX . (8)

Assumption on the windowing function G: G ∈ C2[0,∞),

G′+(0) = −1, and

CG := sup
t∈(0,∞)

{
|(1 + t)G′(t)|+ |(1 + t)G′′(t)|

}
<∞. (9)

Assumption on the covering number N (H, ε) of H: for some

constants p > 0 and Ap > 0, there holds

logN (H, ε) ≤ Apε−p, ∀ε > 0. (10)
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Theorem 4 For any 0 < δ < 1, with confidence 1− δ we have

var[fz(X)− fρ(X)] ≤ C̃Hm
− min{q−2,2}

(1+p)(1+min{q−2,2}) log
2

δ
+2 inf

f∈H
var[f(X)− fρ(X)] (11)

by taking h = m
1

(1+p) min{q−1,3}.

If |Y | ≤ M almost surely for some M > 0, then by taking

h = m
1

2(1+p), with confidence 1− δ we have

var[fz(X)− fρ(X)] ≤ C̃Hm
− 1

1+p log
2

δ
+ 2 inf

f∈H
var[f(X)− fρ(X)].

(12)

Here C̃H is a constant independent of m, δ or h.
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Key feature for large parameter

The generalization error or information error is

E(h)(f) =
∫
Z

∫
Z
−h2G

[(y − f(x))−
(
y′ − f(x′)

)]2
2h2

 dρ(x, y)dρ(x′, y′).

An essential barrier: fρ may not be a minimizer of E(h). This

is different from E ls(f) =
∫
Z(f(x)− y)2dρ.

Key observation for large h: Under assumptions (8) and (9),

for f ∈ L∞, we have∣∣∣E(h)(f) + h2G(0)− E ls(fρ)− var[f(X)− fρ(X)]
∣∣∣

≤ 5 · 27CG

(
(E[|Y |q])

min{q,4}
q + ‖f‖min{q,4}

∞

)
h−min{q−2,2}.

So var[f(X)− fρ(X)] can be bounded by
∣∣∣E(h)(f)− E(h)(fρ)

∣∣∣.
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V. MEE algorithm with small parameter

Two types of consistency with G(t) = exp{−t}

Entropy consistency:

lim
m→∞Prob

(
HR(fz)− inf

f
HR(f) > ε

)
= 0, ∀ε > 0.

Observation from HR(f) = − log
∫

(pE(e))2de: define V (f) =
−
∫

(pE(e))2de, then there are two positive constants c1, c2 such
that for every f : X → R,

c1

(
V (f)− inf

g
V (g)

)
≤ HR(f)−inf

g
HR(g) ≤ c2

(
V (f)− inf

g
V (g)

)
.

Regression consistency: there is a constant bz such that
fz + bz converges to fρ in probability, i.e.,

lim
m→∞Prob

(
‖fz + bz − fρ‖2ρX > ε

)
= 0, ∀ε > 0.
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Positive result on entropy consistency

Assumption on ρ: the density function pε|X of the noise variable

ε = Y −fρ(X) for given X = x exists and is uniformly bounded.

Assumption on H: a minimizer of the Rényi’s entropy HR(f)

and the regression function fρ are in H.

Theorem 5 If h = h(m) is chosen to satisfy

lim
m→∞h(m) = 0, lim

m→∞h
2√m = +∞, (13)

then the entropy consistency holds true.

If, in addition, p′ε|X exists and is uniformly bounded by a

constant M independent of X, a convergence rate of order

O(m−
1
6) can be obtained by choosing h(m) ∼ m−

1
6.
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Regression consistency for homoskedastic models

The regression mode Y = fρ(X) + ε is homoskedastic if the

noise ε is independent of X. Otherwise it is said to be het-

eroskedastic.

Theorem 6 If the regression model is homoskedastic, then fρ

is a minimizer of the Rényi’s entropy HR(f). Moreover, there

is an absolute constant C̃ such that

‖f − E(f − fρ)− fρ‖2ρX ≤ C̃ (HR(f)−HR(fρ)) , ∀f : X → R.

Hence the regression consistency holds true.
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Fourier analysis for homoskedastic models

Since the noise ε is independent of X, denote the pdf as pε.

Then the pdf of the random variable E = Y − f(X) is

pE(e) =
∫
X
pε(e+ f(x)− fρ(x))dρX(x)

and
∫
R(pE(e))2de = −V (f) can be expressed as∫

X

∫
X

∫
R
pε(e+f(x)−fρ(x))pε(e+f(u)−fρ(u))dedρX(x)dρX(u).

By the Planchel formula, the integral on R equals

1

2π

∫
R
p̂ε(ξ)e

iξ(f(x)−fρ(x))p̂ε(ξ)eiξ(f(u)−fρ(u))dξ.

It follows that fρ minimizes V (f) since |eiξt| ≤ 1 and −V (f)

equals

1

2π

∫
X

∫
X

∫
R
|p̂ε(ξ)|2eiξ(f(x)−fρ(x)−f(u)+fρ(u))dξdρX(x)dρX(u).
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Excess quantity: for any f ∈ H, 2π[V (f)− V (fρ)] equals∫
X

∫
X

∫
R
|p̂ε(ξ)|2

(
1− eiξ(f(x)−fρ(x)−f(u)+fρ(u))

)
dξdρXdρX

=
∫
X

∫
X

∫
R
|p̂ε(ξ)|22 sin2 ξ(f(x)− fρ(x)− f(u) + fρ(u))

2
dξdρXdρX

≥
∫
X

∫
X

∫
|ξ|≤ π

4M

|p̂ε(ξ)|22(
1

π
|ξ(f(x)− fρ(x)− f(u) + fρ(u))|)2dξdρXdρX

≥ c̃
∫
X

∫
X

(f(x)− fρ(x)− f(u) + fρ(u))2ρX(x)dρX(u)

= 2c̃var[f(X)− fρ(X)].

So there holds

var[fz(X)−fρ(X)] ≤
π

c̃
(V (fz)− V (fρ)) ≤

π

c1c̃

(
HR(fz)− inf

g
HR(g)

)
.
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Fourier analysis for heteroskedastic models:

One example: Let X = X1
⋃
X2 = [0, 1

2]
⋃

[1, 3
2] and ρX be

uniform on X (so that dρX = dx). The conditional distri-
bution of ε|X is uniform on [−1

2,
1
2] if x ∈ [0, 1

2] and uniform
on [−3

2,−
1
2]
⋃

[1
2,

3
2] if x ∈ [1, 3

2]. Then we have the following
statements.

(1) A function f∗ : X → R is a minimizer of HR(f) if and only
if there are two constant f1, f2 with |f1 − f2| = 1 such that
f∗ = f11X1

+ f21X2
.

(2) infg:X→RHR(g) = − log(5
8) and HR(fρ) = − log(3

8). So the
regression function fρ is not a minimizer of the entropy HR(f).

(3) Let F denote the set of all minimizers of HR(f). There is
an absolute constant Ĉ such that

min
g∈F
‖f − g‖2ρX ≤ Ĉ

(
HR(f)− inf

g
HR(g)

)
, ∀f : X → [−M,M ].
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(4) If the entropy consistency is true, there holds

min
g∈F
‖fz − g‖2ρX −→ 0 and min

b∈R
‖fz + b− fρ‖2ρX −→

1

2

in probability. As a result, the regression consistency cannot

be true.

Method of analysis by bracket products: analysis∑
`∈Z

p̂∗(ξ + 2`π) ̂p∗(· − b)(ξ + 2`π)

=
∑
`∈Z
〈p∗(· − `), p∗(· − b)〉L2(R)e

i`ξ.



THANK YOU!
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