Primal-dual subgradient methods for huge-scale problems

Yurii Nesterov, CORE/INMA (UCL)

July 10, 2013 (ROKS, Heverlee)

2nd part: joint work with S.Shpirko (IITP, Moscow)

Outline

- 1 Problems sizes
- 2 Sparse Optimization problems
- 3 Sparse updates for linear operators
- 4 Fast updates in computational trees
- 5 Simple subgradient methods
- 6 Linear Conic Problems: functional form
- **7** Generating the prima-dual solution
- 8 Computational experiments

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 o n^3$	Kilobyte:	10^{3}
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 o n^2$	Megabyte:	10^{6}

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 o n^3$	Kilobyte:	10^{3}
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 o n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 o n$	Gigabyte:	10^{9}

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 \rightarrow n^3$	Kilobyte:	10 ³
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 o n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 \rightarrow n$	Gigabyte:	10 ⁹
Huge-scale	x + y	$10^8 - 10^{12}$	$n \to \log n$	Terabyte:	10^{12}

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 \rightarrow n^3$	Kilobyte:	10^{3}
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 o n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 \rightarrow n$	Gigabyte:	10 ⁹
Huge-scale	x + y	$10^8 - 10^{12}$	$n \to \log n$	Terabyte:	10^{12}

Sources of Huge-Scale problems

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 \rightarrow n^3$	Kilobyte:	10^{3}
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 o n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 o n$	Gigabyte:	10 ⁹
Huge-scale	x + y	$10^8 - 10^{12}$	$n \to \overline{\log n}$	Terabyte:	10 ¹²

Sources of Huge-Scale problems

- Internet (New)
- Telecommunications (New)

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 \rightarrow n^3$	Kilobyte:	10 ³
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 o n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 \rightarrow n$	Gigabyte:	10 ⁹
Huge-scale	x + y	$10^8 - 10^{12}$	$n \to \log n$	Terabyte:	10^{12}

Sources of Huge-Scale problems

- Internet (New)
- Telecommunications (New)
- Finite-element schemes (Old)
- PDE, Weather prediction (Old)

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 \rightarrow n^3$	Kilobyte:	10 ³
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 o n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 \rightarrow n$	Gigabyte:	10 ⁹
Huge-scale	x + y	$10^8 - 10^{12}$	$n \to \log n$	Terabyte:	10^{12}

Sources of Huge-Scale problems

- Internet (New)
- Telecommunications (New)
- Finite-element schemes (Old)
- PDE, Weather prediction (Old)

Main hope: Sparsity.

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^{N} ,

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^N , and

• $f(x) = \Psi(Ax)$, where Ψ is a simple *convex function*:

$$\Psi(y_1) \geq \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in R^M,$$

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^N , and

• $f(x) = \Psi(Ax)$, where Ψ is a simple *convex function*:

$$\Psi(y_1) \geq \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in R^M,$$

• $A: \mathbb{R}^N \to \mathbb{R}^M$ is a sparse matrix.

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^N , and

• $f(x) = \Psi(Ax)$, where Ψ is a simple *convex function*:

$$\Psi(y_1) \ge \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in R^M,$$

• $A: \mathbb{R}^N \to \mathbb{R}^M$ is a sparse matrix.

Let p(x) = # of nonzeros in x.

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^N , and

• $f(x) = \Psi(Ax)$, where Ψ is a simple *convex function*:

$$\Psi(y_1) \ge \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in R^M,$$

• $A: \mathbb{R}^N \to \mathbb{R}^M$ is a *sparse* matrix.

Let p(x) = # of nonzeros in x. Sparsity coefficient: $\gamma(A) \stackrel{\text{def}}{=} \frac{p(A)}{MN}$.

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^N , and

• $f(x) = \Psi(Ax)$, where Ψ is a simple *convex function*:

$$\Psi(y_1) \ge \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in R^M,$$

• $A: \mathbb{R}^N \to \mathbb{R}^M$ is a *sparse* matrix.

Let p(x) = # of nonzeros in x. Sparsity coefficient: $\gamma(A) \stackrel{\text{def}}{=} \frac{p(A)}{MN}$.

Example 1: Matrix-vector multiplication

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^N , and

• $f(x) = \Psi(Ax)$, where Ψ is a simple *convex function*:

$$\Psi(y_1) \ge \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in R^M,$$

• $A: \mathbb{R}^N \to \mathbb{R}^M$ is a *sparse* matrix.

Let p(x) = # of nonzeros in x. Sparsity coefficient: $\gamma(A) \stackrel{\text{def}}{=} \frac{p(A)}{MN}$.

Example 1: Matrix-vector multiplication

• Computation of vector Ax needs p(A) operations.

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^N , and

• $f(x) = \Psi(Ax)$, where Ψ is a simple *convex function*:

$$\Psi(y_1) \ge \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in R^M,$$

• $A: \mathbb{R}^N \to \mathbb{R}^M$ is a *sparse* matrix.

Let p(x) = # of nonzeros in x. Sparsity coefficient: $\gamma(A) \stackrel{\text{def}}{=} \frac{p(A)}{MN}$.

Example 1: Matrix-vector multiplication

- **Computation** of vector Ax needs p(A) operations.
- Initial complexity MN is reduced in $\gamma(A)$ times.

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

Main computational expenses

■ Projection of simple set Q needs O(N) operations.

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax).$

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

Main computational expenses

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

Conclusion:

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

Main computational expenses

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with *full* matrices, we accelerate in $\gamma(A)$ times.

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

Main computational expenses

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with *full* matrices, we accelerate in $\gamma(A)$ times.

Note: For Large- and Huge-scale problems, we often have $\gamma(A) \approx 10^{-4} \dots 10^{-6}$.

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

Main computational expenses

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with *full* matrices, we accelerate in $\gamma(A)$ times.

Note: For Large- and Huge-scale problems, we often have $\gamma(A) \approx 10^{-4} \dots 10^{-6}$. **Can we get more?**



Main idea

Main idea

• After update $x_+ = x + d$

Main idea

lacksquare After update $x_+ = x + d$ we have $y_+ \stackrel{\mathrm{def}}{=} A x_+$

Main idea

• After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote $\sigma(d) = \{j : d^{(j)} \neq 0\}.$

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j),$

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\mathrm{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j),$ can be VERY small!

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small! $\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j)$

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$. Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small!
$$\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$$

$$\kappa_{A}(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_{j}) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_{j}) \cdot MN$$

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum\limits_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$. Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum\limits_{j \in \sigma(d)} p(Ae_j)$, can be VERY small!
$$\kappa_A(d) = M \sum\limits_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum\limits_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$$

$$\leq \gamma(d) \max_{1 \leq j \leq m} \gamma(Ae_j) \cdot MN.$$

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax} + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small! $\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$

$$\kappa_{A}(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_{j}) = \gamma(d) \cdot \frac{1}{\rho(d)} \sum_{j \in \sigma(d)} \gamma(Ae_{j}) \cdot MN$$

$$\leq \gamma(d) \max_{1 \leq i \leq m} \gamma(Ae_{j}) \cdot MN.$$

If
$$\gamma(d) \leq c\gamma(A)$$
, $\gamma(A_j) \leq c\gamma(A)$,

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax} + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small! $\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$

$$\kappa_{A}(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_{j}) = \gamma(d) \cdot \frac{1}{\rho(d)} \sum_{j \in \sigma(d)} \gamma(Ae_{j}) \cdot MN$$

$$\leq \gamma(d) \max_{1 < j < m} \gamma(Ae_{j}) \cdot MN.$$

If
$$\gamma(d) \leq c\gamma(A)$$
, $\gamma(A_j) \leq c\gamma(A)$, $\Rightarrow \kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN$

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small! $\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$

$$\leq \gamma(d) \max_{1 \leq j \leq m} \gamma(Ae_j) \cdot MN.$$

If
$$\gamma(d) \leq c\gamma(A)$$
, $\gamma(A_j) \leq c\gamma(A)$, $\Rightarrow \kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN$

Expected acceleration:

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small! $\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$

$$\leq \gamma(d) \max_{1 \leq j \leq m} \gamma(Ae_j) \cdot MN.$$

If
$$\gamma(d) \leq c\gamma(A)$$
, $\gamma(A_j) \leq c\gamma(A)$, $\Rightarrow \kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN$

Expected acceleration: $(10^{-6})^2 = 10^{-12}$

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_+ + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small! $\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$

$$\leq \gamma(d) \max_{1 \leq j \leq m} \gamma(Ae_j) \cdot MN.$$
If $\gamma(d) \leq c\gamma(A)$, $\gamma(A_j) \leq c\gamma(A)$, $\Rightarrow \kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN$

Expected acceleration: $(10^{-6})^2 = 10^{-12} \Rightarrow 1 \text{ sec}$

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax} + Ad$.
- What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_{A}(d) \stackrel{\mathrm{def}}{=} \sum p(Ae_{j})$, can be VERY small! $\kappa_{A}(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_{j}) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_{j}) \cdot MN$

$$\kappa_{A}(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_{j}) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_{j}) \cdot MN$$

$$\leq \gamma(d) \max_{1 \leq i \leq m} \gamma(Ae_{j}) \cdot MN.$$

If
$$\gamma(d) \leq c\gamma(A)$$
, $\gamma(A_j) \leq c\gamma(A)$, $\Rightarrow \kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN$

Expected acceleration: $(10^{-6})^2 = 10^{-12} \Rightarrow 1 \sec \approx 32\,000$ years!

■ Simple methods:

■ Simple methods: No full-vector operations!

■ Simple methods: No full-vector operations! (Is it possible?)

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems:

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

```
Let us try:
```

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

1 Quadratic function $f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$.

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle$. The gradient $f'(x) = Ax - b, \quad x \in \mathbb{R}^N$,

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

1 Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle$. The gradient $f'(x) = Ax - b, \quad x \in \mathbb{R}^N$, is *not* sparse even if A is sparse.

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

- Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$. The gradient $f'(x) = Ax b, \quad x \in \mathbb{R}^N$, is *not* sparse even if A is sparse.
- 2 Piece-wise linear function $g(x) = \max_{1 \le i \le m} [\langle a_i, x \rangle b^{(i)}].$

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

- Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$. The gradient $f'(x) = Ax b, \quad x \in \mathbb{R}^N$, is *not* sparse even if A is sparse.
- Piece-wise linear function $g(x) = \max_{1 \le i \le m} [\langle a_i, x \rangle b^{(i)}]$. Its subgradient $f'(x) = a_{i(x)}$, $i(x) : f(x) = \langle a_{i(x)}, x \rangle b^{(i(x))}$,

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

- Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$. The gradient $f'(x) = Ax b, \quad x \in \mathbb{R}^N$, is *not* sparse even if A is sparse.
- 2 Piece-wise linear function $g(x) = \max_{1 \le i \le m} [\langle a_i, x \rangle b^{(i)}]$. Its subgradient $f'(x) = a_{i(x)}$, $i(x) : f(x) = \langle a_{i(x)}, x \rangle b^{(i(x))}$, can be sparse is a_i is sparse!

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

- Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$. The gradient $f'(x) = Ax b, \quad x \in \mathbb{R}^N$, is *not* sparse even if A is sparse.
- Piece-wise linear function $g(x) = \max_{1 \le i \le m} [\langle a_i, x \rangle b^{(i)}]$. Its subgradient $f'(x) = a_{i(x)}$, $i(x) : f(x) = \langle a_{i(x)}, x \rangle b^{(i(x))}$, can be sparse is a_i is sparse!

But:

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

- Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$. The gradient $f'(x) = Ax b, \quad x \in \mathbb{R}^N$, is *not* sparse even if A is sparse.
- Piece-wise linear function $g(x) = \max_{1 \le i \le m} [\langle a_i, x \rangle b^{(i)}]$. Its subgradient $f'(x) = a_{i(x)}$, $i(x) : f(x) = \langle a_{i(x)}, x \rangle b^{(i(x))}$, can be sparse is a_i is sparse!

But: We need a fast procedure for updating *max-type operations*.

Def: Function f(x), $x \in \mathbb{R}^n$, is short-tree representable, if it can be computed by a short binary tree with the height $\approx \ln n$.

Def: Function f(x), $x \in \mathbb{R}^n$, is short-tree representable, if it can be computed by a short binary tree with the height $\approx \ln n$.

Let $n=2^k$ and the tree has k+1 levels: $v_{0,i}=x^{(i)}$, $i=1,\ldots,n$.

Def: Function f(x), $x \in \mathbb{R}^n$, is short-tree representable, if it can be computed by a short binary tree with the height $\approx \ln n$.

Let $n=2^k$ and the tree has k+1 levels: $v_{0,i}=x^{(i)}$, $i=1,\ldots,n$. Size of the next level halves the size of the previous one:

$$v_{i+1,j} = \psi_{i+1,j}(v_{i,2j-1}, v_{i,2j}), \quad j = 1, \dots, 2^{k-i-1}, \ i = 0, \dots, k-1,$$

where $\psi_{i,j}$ are some bivariate functions.

Def: Function f(x), $x \in \mathbb{R}^n$, is short-tree representable, if it can be computed by a short binary tree with the height $\approx \ln n$.

Let $n=2^k$ and the tree has k+1 levels: $v_{0,i}=x^{(i)}$, $i=1,\ldots,n$. Size of the next level halves the size of the previous one:

$$v_{i+1,j} = \psi_{i+1,j}(v_{i,2j-1}, v_{i,2j}), \quad j = 1, \dots, 2^{k-i-1}, \ i = 0, \dots, k-1,$$

where $\psi_{i,j}$ are some bivariate functions.

$v_{k,1}$						
$V_{k-1,1}$				$V_{k-1,2}$		
V _{2,1}					$V_{2,n/4}$	
$v_{1,1}$	V:	1,2			$V_{1,n/2-1}$ $V_{1,n/2}$	
<i>V</i> _{0,1} <i>V</i> ₀	2 V _{0,3}	<i>V</i> _{0,4}			$V_{0,n-3}V_{0,n-2}V_{0,n-1}V_{0,n}$	

Important examples (symmetric functions)

Important examples (symmetric functions)

$$f(x) = ||x||_p, \quad p \ge 1, \quad \psi_{i,j}(t_1, t_2) \equiv [|t_1|^p + |t_2|^p]^{1/p},$$

Important examples (symmetric functions)

$$\begin{array}{rcl} f(x) & = & \|x\|_p, & p \geq 1, & \psi_{i,j}(t_1,t_2) \equiv \left[\; |t_1|^p + |t_2|^p \; \right]^{1/p}, \\ f(x) & = & \ln\left(\sum\limits_{i=1}^n e^{x^{(i)}}\right), & \psi_{i,j}(t_1,t_2) \equiv \ln\left(e^{t_1} + e^{t_2}\right), \end{array}$$

Important examples (symmetric functions)

$$f(x) = \|x\|_{p}, \quad p \ge 1, \quad \psi_{i,j}(t_{1}, t_{2}) \equiv [|t_{1}|^{p} + |t_{2}|^{p}]^{1/p},$$

$$f(x) = \ln\left(\sum_{i=1}^{n} e^{x^{(i)}}\right), \quad \psi_{i,j}(t_{1}, t_{2}) \equiv \ln\left(e^{t_{1}} + e^{t_{2}}\right),$$

$$f(x) = \max_{1 \le i \le n} x^{(i)}, \qquad \psi_{i,j}(t_{1}, t_{2}) \equiv \max\left\{t_{1}, t_{2}\right\}.$$

Important examples (symmetric functions)

$$f(x) = \|x\|_{p}, \quad p \ge 1, \quad \psi_{i,j}(t_{1}, t_{2}) \equiv [|t_{1}|^{p} + |t_{2}|^{p}]^{1/p},$$

$$f(x) = \ln\left(\sum_{i=1}^{n} e^{x^{(i)}}\right), \quad \psi_{i,j}(t_{1}, t_{2}) \equiv \ln\left(e^{t_{1}} + e^{t_{2}}\right),$$

$$f(x) = \max_{1 \le i \le n} x^{(i)}, \qquad \psi_{i,j}(t_{1}, t_{2}) \equiv \max\left\{t_{1}, t_{2}\right\}.$$

■ The binary tree requires only n-1 auxiliary cells.

Important examples (symmetric functions)

$$f(x) = \|x\|_{p}, \quad p \ge 1, \quad \psi_{i,j}(t_{1}, t_{2}) \equiv [|t_{1}|^{p} + |t_{2}|^{p}]^{1/p},$$

$$f(x) = \ln\left(\sum_{i=1}^{n} e^{x^{(i)}}\right), \quad \psi_{i,j}(t_{1}, t_{2}) \equiv \ln\left(e^{t_{1}} + e^{t_{2}}\right),$$

$$f(x) = \max_{1 \le i \le n} x^{(i)}, \qquad \psi_{i,j}(t_{1}, t_{2}) \equiv \max\left\{t_{1}, t_{2}\right\}.$$

- The binary tree requires only n-1 auxiliary cells.
- Its value needs n-1 applications of $\psi_{i,j}(\cdot,\cdot)$ (\equiv operations).

Important examples (symmetric functions)

$$f(x) = \|x\|_{p}, \quad p \ge 1, \quad \psi_{i,j}(t_{1}, t_{2}) \equiv [|t_{1}|^{p} + |t_{2}|^{p}]^{1/p},$$

$$f(x) = \ln\left(\sum_{i=1}^{n} e^{x^{(i)}}\right), \quad \psi_{i,j}(t_{1}, t_{2}) \equiv \ln\left(e^{t_{1}} + e^{t_{2}}\right),$$

$$f(x) = \max_{1 \le i \le n} x^{(i)}, \qquad \psi_{i,j}(t_{1}, t_{2}) \equiv \max\left\{t_{1}, t_{2}\right\}.$$

- The binary tree requires only n-1 auxiliary cells.
- Its value needs n-1 applications of $\psi_{i,j}(\cdot,\cdot)$ (\equiv operations).
- If x_+ differs from x in one entry only, then for re-computing $f(x_+)$ we need only $k \equiv \log_2 n$ operations.

Important examples (symmetric functions)

$$f(x) = \|x\|_{p}, \quad p \ge 1, \quad \psi_{i,j}(t_{1}, t_{2}) \equiv [|t_{1}|^{p} + |t_{2}|^{p}]^{1/p},$$

$$f(x) = \ln\left(\sum_{i=1}^{n} e^{x^{(i)}}\right), \quad \psi_{i,j}(t_{1}, t_{2}) \equiv \ln\left(e^{t_{1}} + e^{t_{2}}\right),$$

$$f(x) = \max_{1 \le i \le n} x^{(i)}, \qquad \psi_{i,j}(t_{1}, t_{2}) \equiv \max\left\{t_{1}, t_{2}\right\}.$$

- The binary tree requires only n-1 auxiliary cells.
- Its value needs n-1 applications of $\psi_{i,j}(\cdot,\cdot)$ (\equiv operations).
- If x_+ differs from x in one entry only, then for re-computing $f(x_+)$ we need only $k \equiv \log_2 n$ operations.

Thus, we can have pure subgradient minimization schemes with

Important examples (symmetric functions)

$$\begin{array}{lcl} f(x) & = & \|x\|_p, & p \geq 1, & \psi_{i,j}(t_1,t_2) \equiv \left[\; |t_1|^p + |t_2|^p \; \right]^{1/p}, \\ f(x) & = & \ln\left(\sum\limits_{i=1}^n e^{x^{(i)}}\right), & \psi_{i,j}(t_1,t_2) \equiv \ln\left(e^{t_1} + e^{t_2}\right), \\ f(x) & = & \max\limits_{1 \leq i \leq n} x^{(i)}, & \psi_{i,j}(t_1,t_2) \equiv \max\left\{t_1,t_2\right\}. \end{array}$$

- The binary tree requires only n-1 auxiliary cells.
- Its value needs n-1 applications of $\psi_{i,j}(\cdot,\cdot)$ (\equiv operations).
- If x_+ differs from x in one entry only, then for re-computing $f(x_+)$ we need only $k \equiv \log_2 n$ operations.

Thus, we can have pure subgradient minimization schemes with Sublinear Iteration Cost

1. Problem: $f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$, where

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

• Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- the optimal value f^* is known.

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- the optimal value f^* is known.

Consider the following optimization scheme (B.Polyak, 1967):

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- the optimal value f^* is known.

Consider the following optimization scheme (B.Polyak, 1967):

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q \left(x_k - \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k) \right)$, $k \ge 0$.

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- the optimal value f^* is known.

Consider the following optimization scheme (B.Polyak, 1967):

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q \left(x_k - \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k) \right)$, $k \ge 0$.

Denote
$$f_k^* = \min_{0 \le i \le k} f(x_i)$$
.

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- the optimal value f^* is known.

Consider the following optimization scheme (B.Polyak, 1967):

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q \left(x_k - \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k) \right)$, $k \ge 0$.

Denote $f_k^* = \min_{0 \le i \le k} f(x_i)$. Then for any $k \ge 0$ we have:

$$f_k^* - f^* \le \frac{L(f)\|x_0 - \pi_{X_*}(x_0)\|}{(k+1)^{1/2}}.$$

II. Problem: $\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$

```
II. Problem: \min_{x \in Q} \{ f(x) : g(x) \le 0 \}, where
```

Q is closed and convex,

```
II. Problem: \min_{x \in Q} \{ f(x) : g(x) \le 0 \}, where
```

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \}$$
, where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method.

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A):

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$,

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$, else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$, else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

Let $\mathcal{F}_k \subseteq \{0,\ldots,k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i)$.

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$, else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

Let $\mathcal{F}_k \subseteq \{0,\ldots,k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i)$.

Theorem:

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$,
else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

Let $\mathcal{F}_k \subseteq \{0,\ldots,k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i)$.

Theorem: If $k > ||x_0 - x^*||^2/h^2$,

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$, else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

Let $\mathcal{F}_k \subseteq \{0,\ldots,k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i)$.

Theorem: If $k > ||x_0 - x^*||^2/h^2$, then $\mathcal{F}_k \neq \emptyset$

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$, else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

Let $\mathcal{F}_k \subseteq \{0,\ldots,k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i)$.

Theorem: If $k > ||x_0 - x^*||^2/h^2$, then $\mathcal{F}_k \neq \emptyset$ and

$$f_k^* - f(x) \le hL(f), \quad \max_{i \in \mathcal{F}_k} g(x_i) \le hL(g).$$

Assume that the space of primal variables E is partitioned:

$$x^j \in E_j, j = 1, \ldots, n, \quad x = (x^1, \ldots, x^n) \in E,$$

Assume that the space of primal variables E is partitioned:

$$x^j \ \in \ E_j, \, j=1,\ldots,n, \quad x \ = \ \left(x^1,\ldots,x^n\right) \in E,$$

Thus, dim $E = \sum_{j=1}^n \dim E_j$, and $\langle c, x \rangle \stackrel{\text{def}}{=} \sum_{j=1}^n \langle c^j, x^j \rangle$ for any $c \in E^*$.

Assume that the space of primal variables E is partitioned:

$$x^j \ \in \ E_j, \, j=1,\ldots,n, \quad x \ = \ \left(x^1,\ldots,x^n\right) \in E,$$

Thus, dim
$$E=\sum\limits_{j=1}^n\dim E_j$$
, and $\langle c,x\rangle\stackrel{\mathrm{def}}{=}\sum\limits_{j=1}^n\langle c^j,x^j\rangle$ for any $c\in E^*$.

Linear operator:
$$A = (A_1, ..., A_n), A_i \stackrel{\text{def}}{=} \sum_{j=1}^n A_j x^j, x \in E.$$

Assume that the space of primal variables E is partitioned:

$$x^j \ \in \ E_j, \ j=1,\dots,n, \quad x \ = \ \left(x^1,\dots,x^n\right) \in E,$$

Thus, dim $E = \sum_{j=1}^n \dim E_j$, and $\langle c, x \rangle \stackrel{\text{def}}{=} \sum_{j=1}^n \langle c^j, x^j \rangle$ for any $c \in E^*$.

Linear operator: $A = (A_1, ..., A_n), A_i \stackrel{\text{def}}{=} \sum_{j=1}^n A_j x^j, x \in E.$

Primal cone: $x \in K = \bigotimes_{j=1}^{n} K_j$, $K_j \subset E_j$ are closed convex pointed.

Assume that the space of primal variables E is partitioned:

$$x^j \ \in \ E_j, \, j=1,\ldots,n, \quad x \ = \ \left(x^1,\ldots,x^n\right) \in E,$$

Thus, dim $E = \sum_{j=1}^n \dim E_j$, and $\langle c, x \rangle \stackrel{\text{def}}{=} \sum_{j=1}^n \langle c^j, x^j \rangle$ for any $c \in E^*$.

Linear operator: $A = (A_1, ..., A_n), A_i \stackrel{\text{def}}{=} \sum_{j=1}^n A_j x^j, x \in E.$

Primal cone: $x \in K = \bigotimes_{j=1}^{n} K_j$, $K_j \subset E_j$ are closed convex pointed.

Thus,
$$K^* = \bigotimes_{j=1}^n K_j^*$$
.

Assume that the space of primal variables E is partitioned:

$$x^j \ \in \ E_j, \, j=1,\ldots,n, \quad x \ = \ \left(x^1,\ldots,x^n\right) \in E,$$

Thus, dim $E = \sum_{j=1}^n \dim E_j$, and $\langle c, x \rangle \stackrel{\text{def}}{=} \sum_{j=1}^n \langle c^j, x^j \rangle$ for any $c \in E^*$.

Linear operator: $A = (A_1, ..., A_n), A_i \stackrel{\text{def}}{=} \sum_{j=1}^n A_j x^j, x \in E.$

Primal cone: $x \in K = \bigotimes_{j=1}^{n} K_j$, $K_j \subset E_j$ are closed convex pointed.

Thus, $K^* = \bigotimes_{j=1}^n K_j^*$.

Primal problem: $f_* \stackrel{\text{def}}{=} \inf_{x \in K} \{ \langle c, x \rangle : Ax = b \}, b \in \mathbb{R}^m.$

Assume that the space of primal variables *E* is partitioned:

$$x^j \in E_j, j = 1, \dots, n, \quad x = (x^1, \dots, x^n) \in E,$$

Thus, dim $E = \sum_{j=1}^{n} \dim E_j$, and $\langle c, x \rangle \stackrel{\text{def}}{=} \sum_{j=1}^{n} \langle c^j, x^j \rangle$ for any $c \in E^*$.

Linear operator:
$$A = (A_1, ..., A_n), A_i \stackrel{\text{def}}{=} \sum_{j=1}^n A_j x^j, x \in E.$$

Primal cone: $x \in K = \bigotimes_{j=1}^{n} K_j$, $K_j \subset E_j$ are closed convex pointed.

Thus,
$$K^* = \bigotimes_{j=1}^n K_j^*$$
.

$$\begin{array}{ll} \textbf{Primal problem:} & f_* \stackrel{\mathrm{def}}{=} \inf_{x \in K} \{ \ \langle c, x \rangle : \ Ax = b \ \}, \quad b \in R^m. \\ \textbf{Dual problem:} & \sup_{y \in R^m, \ s \in K^*} \{ \ \langle b, y \rangle : \ s + A^*y = c \}. \end{array}$$

Dual problem:
$$\sup_{y \in R^m, s \in K^*} \{ \langle b, y \rangle : s + A^*y = c \}.$$

Linear Conic Problems

Assume that the space of primal variables *E* is partitioned:

$$x^j \ \in \ E_j, \ j=1,\dots,n, \quad x \ = \ \left(x^1,\dots,x^n\right) \in E,$$

Thus, dim $E = \sum_{j=1}^{n} \dim E_j$, and $\langle c, x \rangle \stackrel{\text{def}}{=} \sum_{j=1}^{n} \langle c^j, x^j \rangle$ for any $c \in E^*$.

Linear operator:
$$A = (A_1, ..., A_n), A_i \stackrel{\text{def}}{=} \sum_{j=1}^n A_j x^j, x \in E.$$

Primal cone: $x \in K = \bigotimes_{j=1}^{n} K_j$, $K_j \subset E_j$ are closed convex pointed.

Thus,
$$K^* = \bigotimes_{j=1}^n K_j^*$$
.

Primal problem: $f_* \stackrel{\text{def}}{=} \inf_{x \in K} \{ \langle c, x \rangle : Ax = b \}, b \in \mathbb{R}^m.$

Dual problem: $\sup_{y \in R^m, \ s \in K^*} \{ \langle b, y \rangle : \ s + A^*y = c \}.$

Assumption: Dual Problem is solvable. $\Rightarrow \langle s^*, x^* \rangle = 0$

Note: Constraints in the dual problem are separable

$$\sup_{y \in R^m, \ s \in E^*} \Big\{ \langle b, y \rangle : \ s^j = c^j - A_j^T y \in \mathcal{K}_j^*, \ j = 1, \dots, n \Big\}.$$

Note: Constraints in the dual problem are separable

$$\sup_{y \in R^m, s \in E^*} \Big\{ \langle b, y \rangle : s^j = c^j - A_j^T y \in K_j^*, j = 1, \dots, n \Big\}.$$

We need to write them in a functional form.

Note: Constraints in the dual problem are separable

$$\sup_{y \in R^m, s \in E^*} \Big\{ \langle b, y \rangle : s^j = c^j - A_j^T y \in K_j^*, j = 1, \dots, n \Big\}.$$

We need to write them in a functional form.

Note: Constraints in the dual problem are separable

$$\sup_{y\in R^m,\ s\in E^*}\Big\{\ \langle b,y\rangle:\ s^j=c^j-A_j^Ty\in K_j^*,\ j=1,\ldots,n\Big\}.$$

We need to write them in a functional form.

For
$$u^j \in E_j^*$$
, define $\psi_j(u^j) \stackrel{\text{def}}{=} \min_{\tau} \{ \tau : \tau d^j - u^j \in K_j^* \}$.

Note: Constraints in the dual problem are separable

$$\sup_{y \in R^m, s \in E^*} \Big\{ \langle b, y \rangle : s^j = c^j - A_j^T y \in K_j^*, j = 1, \dots, n \Big\}.$$

We need to write them in a functional form.

For
$$u^j \in E_j^*$$
, define $\psi_j(u^j) \stackrel{\text{def}}{=} \min_{\tau} \{ \ \tau : \ \tau d^j - u^j \in K_j^* \ \}.$

Primal form:
$$\psi_j(u^j) = \max_{x^j \in K_j} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\}$$
.

Note: Constraints in the dual problem are separable

$$\sup_{y\in R^m,\ s\in E^*}\Big\{\ \langle b,y\rangle:\ s^j=c^j-A_j^Ty\in K_j^*,\ j=1,\ldots,n\Big\}.$$

We need to write them in a functional form.

For
$$u^j \in E_j^*$$
, define $\psi_j(u^j) \stackrel{\text{def}}{=} \min_{\tau} \{ \ \tau : \ \tau d^j - u^j \in K_j^* \ \}.$

Primal form:
$$\psi_j(u^j) = \max_{x^j \in \mathcal{K}_i} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\}$$
.

Thus,
$$\partial \psi_j(u^j) = \operatorname{Arg} \max_{x^j \in \mathcal{K}_j} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\} \ni x^j(u^j).$$

Note: Constraints in the dual problem are separable

$$\sup_{y \in R^m, s \in E^*} \Big\{ \langle b, y \rangle : s^j = c^j - A_j^T y \in K_j^*, j = 1, \dots, n \Big\}.$$

We need to write them in a functional form.

For
$$u^j \in E_j^*$$
, define $\psi_j(u^j) \stackrel{\text{def}}{=} \min_{\tau} \{ \ \tau : \ \tau d^j - u^j \in K_j^* \ \}.$

Primal form:
$$\psi_j(u^j) = \max_{x^j \in K_i} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\}$$
.

Thus,
$$\partial \psi_j(u^j) = \operatorname{Arg} \max_{x^j \in \mathcal{K}_j} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\} \ni x^j(u^j).$$

Note:
$$c^j - A_j^T y \in K_j^*$$
 iff $f_j(y) \stackrel{\text{def}}{=} \psi_j (A_j^T y - c^j) \le 0$.

Note: Constraints in the dual problem are separable

$$\sup_{y \in R^m, s \in E^*} \Big\{ \langle b, y \rangle : s^j = c^j - A_j^T y \in K_j^*, j = 1, \dots, n \Big\}.$$

We need to write them in a functional form.

For
$$u^j \in E_j^*$$
, define $\psi_j(u^j) \stackrel{\text{def}}{=} \min_{\tau} \{ \ \tau : \ \tau d^j - u^j \in K_j^* \ \}.$

Primal form:
$$\psi_j(u^j) = \max_{x^j \in K_i} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\}$$
.

Thus,
$$\partial \psi_j(u^j) = \operatorname{Arg} \max_{x^j \in \mathcal{K}_j} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\} \ni x^j(u^j).$$

Note:
$$c^j - A_j^T y \in K_j^*$$
 iff $f_j(y) \stackrel{\text{def}}{=} \psi_j (A_j^T y - c^j) \le 0$.

Subgradients:
$$f'_j(y) \stackrel{\text{def}}{=} A_j x^j (A_j^T y - c^j) \in \partial f_j(y) \subset R^m$$
.

Note: Constraints in the dual problem are separable

$$\sup_{y \in R^m, \ s \in E^*} \Big\{ \ \langle b, y \rangle : \ s^j = c^j - A_j^T y \in K_j^*, \ j = 1, \dots, n \Big\}.$$

We need to write them in a functional form.

For
$$u^j \in E_j^*$$
, define $\psi_j(u^j) \stackrel{\text{def}}{=} \min_{\tau} \{ \ \tau : \ \tau d^j - u^j \in K_j^* \ \}.$

Primal form:
$$\psi_j(u^j) = \max_{x^j \in K_i} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\}$$
.

Thus,
$$\partial \psi_j(u^j) = \operatorname{Arg} \max_{x^j \in \mathcal{K}_j} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\} \ni x^j(u^j).$$

Note:
$$c^j - A_j^T y \in K_j^*$$
 iff $f_j(y) \stackrel{\text{def}}{=} \psi_j (A_j^T y - c^j) \le 0$.

Subgradients:
$$f'_j(y) \stackrel{\text{def}}{=} A_j x^j (A_j^T y - c^j) \in \partial f_j(y) \subset R^m$$
.

Scaling:
$$||f'_j(y)|| \le \sigma_j \stackrel{\text{def}}{=} \lambda_{\max}^{1/2} \left(A_j \nabla^2 F_j^*(d^j) A_j^T \right).$$

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is a basis vector in R^n .

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is a basis vector in R^n .

Let us take $F_j(z) = -\ln z$ and $d^j = 1$.

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is a basis vector in R^n .

Let us take $F_j(z) = -\ln z$ and $d^j = 1$. Then $\nabla^2 F_j(z^j) = 1$ and $\sigma_j^2 = \lambda_{\max}(A_j A_j^T) = \|A_j\|^2$.

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is a basis vector in R^n .

Let us take $F_j(z) = -\ln z$ and $d^j = 1$. Then $\nabla^2 F_j(z^j) = 1$ and $\sigma_j^2 = \lambda_{\max}(A_j A_j^T) = \|A_j\|^2$.

2. Let $K_j = \{S_j \succeq 0_{p \times p}\}.$

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is a basis vector in R^n .

Let us take $F_j(z) = -\ln z$ and $d^j = 1$. Then $\nabla^2 F_j(z^j) = 1$ and $\sigma_j^2 = \lambda_{\max}(A_j A_j^T) = \|A_j\|^2$.

2. Let $K_j = \{S_j \succeq 0_{p \times p}\}$. We take $F_j(z) = -\ln \det z$, and $z^j = d^j = I_p$.

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is a basis vector in R^n .

Let us take $F_j(z) = -\ln z$ and $d^j = 1$. Then $\nabla^2 F_j(z^j) = 1$ and $\sigma_j^2 = \lambda_{\mathsf{max}}(A_j A_J^T) = \|A_j\|^2$.

2. Let $K_j = \{S_j \succeq 0_{p \times p}\}$. We take $F_j(z) = -\ln \det z$, and $z^j = d^j = I_p$.

Then $A_j^*(y) = \sum_{i=1}^m A_j^i y^i$, $y \in R^m$, where A_j^i are symmetric $p \times p$ -matrices.

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is a basis vector in R^n .

Let us take $F_j(z) = -\ln z$ and $d^j = 1$. Then $\nabla^2 F_j(z^j) = 1$ and $\sigma_j^2 = \lambda_{\mathsf{max}}(A_j A_J^T) = \|A_j\|^2$.

2. Let $K_j = \{S_j \succeq 0_{p \times p}\}$. We take $F_j(z) = -\ln \det z$, and $z^j = d^j = I_p$.

Then $A_j^*(y) = \sum_{i=1}^m A_j^i y^i$, $y \in R^m$, where A_j^i are symmetric $p \times p$ -matrices. Thus,

$$\sigma_{j} = \max_{\|y\|=1} \|\sum_{i=1}^{m} A_{j}^{i} y^{i}\|_{F} = \max_{\|y\|=1, \|B\|_{F}=1} \langle \sum_{i=1}^{m} A_{j}^{i} y^{i}, B \rangle = \max_{\|B\|_{F}=1} \left[\sum_{i=1}^{m} \langle A_{j}^{i}, B \rangle^{2} \right]^{1/2}.$$

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is a basis vector in R^n .

Let us take $F_j(z) = -\ln z$ and $d^j = 1$. Then $\nabla^2 F_j(z^j) = 1$ and $\sigma_j^2 = \lambda_{\mathsf{max}}(A_j A_J^T) = \|A_j\|^2$.

2. Let $K_j = \{S_j \succeq 0_{p \times p}\}$. We take $F_j(z) = -\ln \det z$, and $z^j = d^j = I_p$.

Then $A_j^*(y) = \sum_{i=1}^m A_j^i y^i$, $y \in R^m$, where A_j^i are symmetric $p \times p$ -matrices. Thus,

$$\sigma_{j} = \max_{\|y\|=1} \|\sum_{i=1}^{m} A_{j}^{i} y^{i}\|_{F} = \max_{\|y\|=1, \|B\|_{F}=1} \langle \sum_{i=1}^{m} A_{j}^{i} y^{i}, B \rangle = \max_{\|B\|_{F}=1} \left[\sum_{i=1}^{m} \langle A_{j}^{i}, B \rangle^{2} \right]^{1/2}.$$

We assume that all σ_j , $j=1,\ldots,n$, are computed in advance.

Denote $g_j(y) = \frac{1}{\sigma_j} f_j(y)$. Consider the problem:

$$\sup_{y \in R^m, \ s \in E^*} \left\{ \ \langle b, y \rangle : \ g(y) \stackrel{\text{def}}{=} \max_{1 \leq j \leq n} g_j(y) \ \leq \ 0 \ \right\}.$$

Denote $g_j(y) = \frac{1}{\sigma_j} f_j(y)$. Consider the problem:

$$\sup_{y \in R^m, \ s \in E^*} \left\{ \ \langle b, y \rangle : \ g(y) \stackrel{\text{def}}{=} \max_{1 \le j \le n} g_j(y) \ \le \ 0 \ \right\}.$$

Denote by j(y) the active index j such that $g_j(y) = g(y)$. Then

$$g'(y) = \frac{1}{\sigma_{j(y)}} A_{j(y)} x^{j(y)} \left(A_{j(y)}^T y - c^{j(y)} \right), \quad \|g'(y)\| \leq 1.$$

Denote $g_j(y) = \frac{1}{\sigma_j} f_j(y)$. Consider the problem:

$$\sup_{y \in R^m, \ s \in E^*} \left\{ \ \langle b, y \rangle : \ g(y) \stackrel{\mathrm{def}}{=} \max_{1 \leq j \leq n} g_j(y) \ \leq \ 0 \ \right\}.$$

Denote by j(y) the active index j such that $g_j(y) = g(y)$. Then

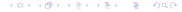
$$g'(y) = \frac{1}{\sigma_{j(y)}} A_{j(y)} x^{j(y)} \left(A_{j(y)}^T y - c^{j(y)} \right), \quad \|g'(y)\| \leq 1.$$

Maximization scheme: Choose h > 0. Define $y_0 = 0$.

For $k \ge 0$ do:

if
$$g(y_k) \le h$$
, then (F): $y_{k+1} = y_k + h \cdot \frac{b}{\|b\|}$,

else (G):
$$y_{k+1} = y_k - g(y_k) \cdot g'(y_k)$$
.



For $N \geq 0$, denote by \mathcal{F}_N the set of iterations of type (F). Let $\mathcal{G}_N \stackrel{\mathrm{def}}{=} \{0, \dots, N\} \setminus \mathcal{F}_N$, $N_f \stackrel{\mathrm{def}}{=} |\mathcal{F}_N|$, and $N_g \stackrel{\mathrm{def}}{=} |\mathcal{G}_N|$.

For $N \ge 0$, denote by \mathcal{F}_N the set of iterations of type (F).

Let
$$\mathcal{G}_N \stackrel{\text{def}}{=} \{0, \dots, N\} \setminus \mathcal{F}_N$$
, $N_f \stackrel{\text{def}}{=} |\mathcal{F}_N|$, and $N_g \stackrel{\text{def}}{=} |\mathcal{G}_N|$.

For step (F),
$$c^j - A_j^* y_k + h \sigma_j d^j \in K_j^*, \ j=1,\ldots,n, \quad k \in \mathcal{F}_N.$$

For $N \geq 0$, denote by \mathcal{F}_N the set of iterations of type (F). Let $\mathcal{G}_N \stackrel{\mathrm{def}}{=} \{0,\dots,N\} \setminus \mathcal{F}_N$, $N_f \stackrel{\mathrm{def}}{=} |\mathcal{F}_N|$, and $N_g \stackrel{\mathrm{def}}{=} |\mathcal{G}_N|$. For step (F), $c^j - A_j^* y_k + h \sigma_j d^j \in K_j^*$, $j = 1,\dots,n$, $k \in \mathcal{F}_N$. Denote $e_j(x^j) \in E$: $e_j^i(x^j) = \left\{ \begin{array}{ll} x^j, & i = j, \\ 0, & \text{otherwise,} \end{array} \right.$ $i = 1,\dots,n$.

For $N \geq 0$, denote by \mathcal{F}_N the set of iterations of type (F).

Let
$$\mathcal{G}_N\stackrel{\mathrm{def}}{=}\{0,\ldots,N\}\setminus\mathcal{F}_N$$
, $N_f\stackrel{\mathrm{def}}{=}|\mathcal{F}_N|$, and $N_g\stackrel{\mathrm{def}}{=}|\mathcal{G}_N|$.

For step (F),
$$c^j - A_j^* y_k + h \sigma_j d^j \in K_j^*, \ j=1,\ldots,n, \quad k \in \mathcal{F}_N.$$

Denote
$$e_j(x^j) \in E$$
: $e_j^i(x^j) = \begin{cases} x^j, & i = j, \\ 0, & \text{otherwise,} \end{cases}$ $i = 1, \dots, n$.

Define the approximate primal-dual solutions as follows:

$$\bar{x}_{N} \stackrel{\text{def}}{=} \frac{\|b\|}{hN_{f}} \sum_{k \in \mathcal{G}_{N}} \frac{g(y_{k})}{\sigma_{j(y_{k})}} e_{j(y_{k})} \left(x^{j(y_{k})} (A_{j(y_{k})}^{*} y_{k} - c^{j(y_{k})}) \right) \in K,$$

$$\bar{y}_{N} = \frac{1}{N_{f}} \sum_{k \in \mathcal{F}_{N}} y_{k}, \quad \bar{s}_{N} = c - A^{T} \bar{y}_{N}.$$

For $N \geq 0$, denote by \mathcal{F}_N the set of iterations of type (F).

Let
$$\mathcal{G}_N\stackrel{\mathrm{def}}{=}\{0,\ldots,N\}\setminus\mathcal{F}_N$$
, $N_f\stackrel{\mathrm{def}}{=}|\mathcal{F}_N|$, and $N_g\stackrel{\mathrm{def}}{=}|\mathcal{G}_N|$.

For step (F),
$$c^j - A_j^* y_k + h \sigma_j d^j \in K_j^*$$
, $j = 1, \ldots, n$, $k \in \mathcal{F}_N$.

Denote
$$e_j(x^j) \in E$$
: $e_j^i(x^j) = \begin{cases} x^j, & i = j, \\ 0, & \text{otherwise,} \end{cases}$ $i = 1, \dots, n$.

Define the approximate primal-dual solutions as follows:

$$\bar{x}_N \stackrel{\text{def}}{=} \frac{\|b\|}{hN_f} \sum_{k \in \mathcal{G}_N} \frac{g(y_k)}{\sigma_{j(y_k)}} e_{j(y_k)} \left(x^{j(y_k)} (A_{j(y_k)}^* y_k - c^{j(y_k)}) \right) \in K,$$

$$\bar{y}_N = \frac{1}{N_f} \sum_{k \in \mathcal{F}_N} y_k, \quad \bar{s}_N = c - A^T \bar{y}_N.$$

This choice is motivated by the following relations:

For $N \geq 0$, denote by \mathcal{F}_N the set of iterations of type (F).

Let
$$\mathcal{G}_N\stackrel{\mathrm{def}}{=}\{0,\ldots,N\}\setminus\mathcal{F}_N$$
, $N_f\stackrel{\mathrm{def}}{=}|\mathcal{F}_N|$, and $N_g\stackrel{\mathrm{def}}{=}|\mathcal{G}_N|$.

For step (F),
$$c^j - A_j^* y_k + h \sigma_j d^j \in K_j^*$$
, $j = 1, \ldots, n$, $k \in \mathcal{F}_N$.

Denote
$$e_j(x^j) \in E$$
: $e_j^i(x^j) = \begin{cases} x^j, & i = j, \\ 0, & \text{otherwise,} \end{cases}$ $i = 1, \dots, n$.

Define the approximate primal-dual solutions as follows:

$$\bar{x}_{N} \stackrel{\text{def}}{=} \frac{\|\dot{b}\|}{hN_{f}} \sum_{k \in \mathcal{G}_{N}} \frac{g(y_{k})}{\sigma_{j(y_{k})}} e_{j(y_{k})} \left(x^{j(y_{k})} (A_{j(y_{k})}^{*} y_{k} - c^{j(y_{k})}) \right) \in K,$$

$$\bar{y}_{N} = \frac{1}{N_{f}} \sum_{k \in \mathcal{F}_{N}} y_{k}, \quad \bar{s}_{N} = c - A^{T} \bar{y}_{N}.$$

This choice is motivated by the following relations:

$$\overline{s}_N^j = c^j - \frac{1}{N_f} \sum_{k \in \mathcal{F}_N} A_j^* y_k \succeq_{K_j^*} -h \sigma_j d^j,$$

For $N \geq 0$, denote by \mathcal{F}_N the set of iterations of type (F).

Let
$$\mathcal{G}_N \stackrel{\text{def}}{=} \{0, \dots, N\} \setminus \mathcal{F}_N$$
, $N_f \stackrel{\text{def}}{=} |\mathcal{F}_N|$, and $N_g \stackrel{\text{def}}{=} |\mathcal{G}_N|$.

For step (F),
$$c^j - A_j^* y_k + h \sigma_j d^j \in K_j^*$$
, $j = 1, \ldots, n$, $k \in \mathcal{F}_N$.

Denote
$$e_j(x^j) \in E$$
: $e_j^i(x^j) = \begin{cases} x^j, & i = j, \\ 0, & \text{otherwise,} \end{cases}$ $i = 1, \dots, n$.

Define the approximate primal-dual solutions as follows:

$$\bar{x}_{N} \stackrel{\text{def}}{=} \frac{\|\dot{b}\|}{hN_{f}} \sum_{k \in \mathcal{G}_{N}} \frac{g(y_{k})}{\sigma_{j(y_{k})}} e_{j(y_{k})} \left(x^{j(y_{k})} (A_{j(y_{k})}^{*} y_{k} - c^{j(y_{k})}) \right) \in K,$$

$$\bar{y}_{N} = \frac{1}{N_{f}} \sum_{k \in \mathcal{F}_{N}} y_{k}, \quad \bar{s}_{N} = c - A^{T} \bar{y}_{N}.$$

This choice is motivated by the following relations:

$$\begin{split} \overline{s}_N^j &= c^j - \frac{1}{N_f} \sum_{k \in \mathcal{F}_N} A_j^* y_k \succeq_{K_j^*} - h \sigma_j d^j, \\ y_{N+1} &= \frac{h N_f}{\|b\|} \cdot b - \sum_{k \in \mathcal{G}_N} \frac{g(y_k)}{\sigma_{j(y_k)}} A e_{j(y_k)} \left(x^{j(y_k)} (A_{j(y_k)}^* y_k - c^{j(y_k)}) \right). \end{split}$$

Denote
$$\hat{d} \in \mathcal{K}^*$$
: $\hat{d}^j = \sigma_j d^j, \quad j = 1, \dots, n.$

Denote
$$\hat{d} \in K^*$$
: $\hat{d}^j = \sigma_j d^j$, $j = 1, \dots, n$.

Theorem. Let
$$\hat{D}=2\left(\frac{\langle \hat{d},x^*\rangle}{\|b\|}+1\right)$$
. For any $N\geq 0$ we have: $N_f\geq \frac{1}{\hat{D}}\left(N+1-\frac{\|y^*\|^2}{h^2}\right)$.

Denote
$$\hat{d} \in K^*$$
: $\hat{d}^j = \sigma_j d^j$, $j = 1, \ldots, n$.

Theorem. Let
$$\hat{D}=2\left(\frac{\langle \hat{d},x^*\rangle}{\|b\|}+1\right)$$
. For any $N\geq 0$ we have: $N_f\geq \frac{1}{\hat{D}}\left(N+1-\frac{\|y^*\|^2}{h^2}\right)$.

If $N_f \geq 1$, then $\langle c, \bar{x}_N \rangle - \langle b, \bar{y}_N \rangle \leq \frac{1}{2} h \|b\|$.

Convergence

Denote $\hat{d} \in K^*$: $\hat{d}^j = \sigma_j d^j$, $j = 1, \ldots, n$.

Theorem. Let $\hat{D}=2\left(\frac{\langle \hat{d},x^*\rangle}{\|b\|}+1\right)$. For any $N\geq 0$ we have: $N_f\geq \frac{1}{\hat{D}}\left(N+1-\frac{\|y^*\|^2}{h^2}\right)$.

If $N_f \geq 1$, then $\langle c, \bar{x}_N \rangle - \langle b, \bar{y}_N \rangle \leq \frac{1}{2} h \|b\|$.

Finally, if $N+1>\frac{\|y^*\|^2}{h^2}$, then

$$\langle x^*, \bar{s}_N \rangle + \langle \bar{x}_N, s^* \rangle \leq h \|b\|,$$

and the residual in the primal-dual system vanishes as $N \to \infty$:

$$\frac{1}{\|b\|}\|b - A\bar{x}_N\| \le \sqrt{\frac{\hat{D}}{N_f}} + \frac{\|y^*\|}{hN_f}.$$

Let
$$K = R_+^n$$
. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$.

Let $K = R_+^n$. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$. Assume the data is uniformly sparse: for all i and j $p(c) \leq r$, $p(A^Te_i) \leq r$, $p(b) \leq q$, $p(Ae_j) \leq q$, with $r \ll n$ and $q \ll m$.

Let $K = R_+^n$. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$. Assume the data is uniformly sparse: for all i and j $p(c) \leq r$, $p(A^Te_i) \leq r$, $p(b) \leq q$, $p(Ae_j) \leq q$, with $r \ll n$ and $q \ll m$.

Preliminary work: O(p(A)) operations at most.

Let $K = R_+^n$. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$. Assume the data is uniformly sparse: for all i and j $p(c) \leq r$, $p(A^Te_i) \leq r$, $p(b) \leq q$, $p(Ae_j) \leq q$, with $r \ll n$ and $q \ll m$.

Preliminary work: O(p(A)) operations at most.

One iteration:

Let $K = R_+^n$. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$. Assume the data is uniformly sparse: for all i and j $p(c) \leq r, \quad p(A^Te_i) \leq r, \quad p(b) \leq q, \quad p(Ae_j) \leq q$, with $r \ll n$ and $q \ll m$.

Preliminary work: O(p(A)) operations at most.

One iteration:

■ Update y_k : O(q) operations at most.

Let $K = R_+^n$. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$. Assume the data is uniformly sparse: for all i and j $p(c) \leq r$, $p(A^Te_i) \leq r$, $p(b) \leq q$, $p(Ae_j) \leq q$, with $r \ll n$ and $q \ll m$.

Preliminary work: O(p(A)) operations at most.

One iteration:

- Update y_k : O(q) operations at most.
- Update new slack s_{k+1} : $O(rq \log_2 n)$ operations.

Let $K = R_+^n$. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$. Assume the data is uniformly sparse: for all i and j $p(c) \leq r$, $p(A^Te_i) \leq r$, $p(b) \leq q$, $p(Ae_j) \leq q$, with $r \ll n$ and $q \ll m$.

Preliminary work: O(p(A)) operations at most.

One iteration:

- Update y_k : O(q) operations at most.
- Update new slack s_{k+1} : $O(rq \log_2 n)$ operations.
- Update the norm $||y_k||^2$: O(q) operations.

Let
$$K = R_+^n$$
. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$.
Assume the data is uniformly sparse: for all i and j $p(c) \leq r$, $p(A^Te_i) \leq r$, $p(b) \leq q$, $p(Ae_j) \leq q$, with $r \ll n$ and $q \ll m$.

Preliminary work: O(p(A)) operations at most.

One iteration:

- Update y_k : O(q) operations at most.
- Update new slack s_{k+1} : $O(rq \log_2 n)$ operations.
- Update the norm $||y_k||^2$: O(q) operations.

Conclusion: cost of one iteration is $O(rq \log_2 n)$.

NB: Often r and q do not depend on n.

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with *p* nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \leq i \leq M} \kappa_A(A^T e_i) = p^2$$
.

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with *p* nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \leq i \leq M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost: $GM_s \leq \kappa(A) \log_2 N$

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with *p* nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \leq i \leq M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost: $GM_s \leq \kappa(A) \log_2 N \approx p^2 \log_2 N$,

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with *p* nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \leq i \leq M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost: $GM_s \le \kappa(A) \log_2 N \approx p^2 \log_2 N$, $GM \approx pN$.

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with *p* nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \le i \le M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost: $GM_s \le \kappa(A) \log_2 N \approx p^2 \log_2 N$, $GM \approx pN$. $(\log_2 10^3 = 10,$

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with *p* nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \le i \le M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost: $GM_s \le \kappa(A) \log_2 N \approx p^2 \log_2 N$, $GM \approx pN$. $(\log_2 10^3 = 10, \log_2 10^6 = 20,$

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with *p* nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \le i \le M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost:
$$GM_s \le \kappa(A) \log_2 N \approx p^2 \log_2 N$$
, $GM \approx pN$. $(\log_2 10^3 = 10, \log_2 10^6 = 20, \log_2 10^9 = 30)$

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with *p* nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \le i \le M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost:
$$GM_s \le \kappa(A) \log_2 N \approx \rho^2 \log_2 N$$
, $GM \approx \rho N$. $(\log_2 10^3 = 10, \log_2 10^6 = 20, \log_2 10^9 = 30)$

Time for 10^4 iterations (p = 32)

Ν	$\kappa(A)$	GM_s	GM
1024	1632	3.00	2.98
2048	1792	3.36	6.41
4096	1888	3.75	15.11
8192	1920	4.20	139.92
16384	1824	4.69	408.38

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with p nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \leq i \leq M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost:
$$GM_s \le \kappa(A) \log_2 N \approx p^2 \log_2 N$$
, $GM \approx pN$. $(\log_2 10^3 = 10, \log_2 10^6 = 20, \log_2 10^9 = 30)$

Time for 10^4 iterations (p = 32) Time for 10^3 iterations (p = 16)

			()
Ν	$\kappa(A)$	GM_s	GM
1024	1632	3.00	2.98
2048	1792	3.36	6.41
4096	1888	3.75	15.11
8192	1920	4.20	139.92
16384	1824	4.69	408.38

$ GM_s $ $ GM $
0.19 213.9
0.25 477.8
0.32 1095.5
0.40 2590.8
,

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Problem: Maximum of linear functions with p nonzero diagonals.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \le i \le M} \kappa_A(A^T e_i) = p^2$$
.

Iteration Cost:
$$GM_s \le \kappa(A) \log_2 N \approx p^2 \log_2 N$$
, $GM \approx pN$. $(\log_2 10^3 = 10, \log_2 10^6 = 20, \log_2 10^9 = 30)$

Time for 10^4 iterations (p = 32) Time for 10^3 iterations (p = 16)

Ν	$\kappa(A)$	GM_s	GM
1024	1632	3.00	2.98
2048	1792	3.36	6.41
4096	1888	3.75	15.11
8192	1920	4.20	139.92
16384	1824	4.69	408.38
	1024 2048 4096 8192	1024 1632 2048 1792 4096 1888 8192 1920	1024 1632 3.00 2048 1792 3.36 4096 1888 3.75 8192 1920 4.20

			(10 - 0)
N	$\kappa(A)$	GM_s	GM
131072	576	0.19	213.9
262144	592	0.25	477.8
524288	592	0.32	1095.5
1048576	608	0.40	2590.8
		<u>~~ · </u>	ī

1 sec ≈ 100 min!

Let N = 1048576, p = 8, $\kappa(A) = 192$, and L(f) = 0.21.

Let N = 1048576, p = 8, $\kappa(A) = 192$, and L(f) = 0.21.

Iterations	$f - f^*$	Time (sec)
0	2.000000	0.00
$1.0\cdot 10^5$	0.546662	7.69
$4.0\cdot 10^5$	0.276866	30.74
$1.0 \cdot 10^6$	0.137822	76.86
$2.5 \cdot 10^{6}$	0.063099	192.14
$5.1\cdot10^6$	0.032092	391.97
$9.9 \cdot 10^6$	0.016162	760.88
$1.5\cdot 10^7$	0.010009	1183.59

Let N = 1048576, p = 8, $\kappa(A) = 192$, and L(f) = 0.21.

Iterations	$f - f^*$	Time (sec)
0	2.000000	0.00
$1.0 \cdot 10^5$	0.546662	7.69
$4.0\cdot 10^5$	0.276866	30.74
$1.0 \cdot 10^6$	0.137822	76.86
$2.5 \cdot 10^{6}$	0.063099	192.14
$5.1 \cdot 10^{6}$	0.032092	391.97
$9.9 \cdot 10^{6}$	0.016162	760.88
$1.5\cdot 10^7$	0.010009	1183.59

Final point \bar{x}_* : $\|\bar{x}_*\|_{\infty} = 2.941497$, $R_0^2 \stackrel{\text{def}}{=} \|\bar{x}_* - e\|_2^2 = 1.2 \cdot 10^5$.

Let N = 1048576, p = 8, $\kappa(A) = 192$, and L(f) = 0.21.

Iterations	$f - f^*$	Time (sec)
0	2.000000	0.00
$1.0\cdot 10^5$	0.546662	7.69
$4.0\cdot 10^5$	0.276866	30.74
$1.0 \cdot 10^6$	0.137822	76.86
$2.5 \cdot 10^{6}$	0.063099	192.14
$5.1\cdot10^6$	0.032092	391.97
$9.9 \cdot 10^6$	0.016162	760.88
$1.5\cdot 10^7$	0.010009	1183.59

Final point \bar{x}_* : $\|\bar{x}_*\|_{\infty} = 2.941497$, $R_0^2 \stackrel{\text{def}}{=} \|\bar{x}_* - e\|_2^2 = 1.2 \cdot 10^5$.

Theoretical bound: $\frac{L^2(f)R_0^2}{e^2} = 5.3 \cdot 10^7$.

Let N = 1048576, p = 8, $\kappa(A) = 192$, and L(f) = 0.21.

Iterations	$f - f^*$	Time (sec)
0	2.000000	0.00
$1.0 \cdot 10^5$	0.546662	7.69
$4.0\cdot 10^5$	0.276866	30.74
$1.0 \cdot 10^6$	0.137822	76.86
$2.5 \cdot 10^{6}$	0.063099	192.14
$5.1 \cdot 10^{6}$	0.032092	391.97
$9.9 \cdot 10^{6}$	0.016162	760.88
$1.5\cdot 10^7$	0.010009	1183.59

Final point \bar{x}_* : $\|\bar{x}_*\|_{\infty} = 2.941497$, $R_0^2 \stackrel{\text{def}}{=} \|\bar{x}_* - e\|_2^2 = 1.2 \cdot 10^5$. Theoretical bound: $\frac{L^2(f)R_0^2}{e^2} = 5.3 \cdot 10^7$. Time for GM: ≈ 1 year!

THANK YOU FOR YOUR ATTENTION!