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Nonlinear Optimization: problems sizes

Class Operations Dimension Iter.Cost Memory
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Nonlinear Optimization: problems sizes

Class Operations Dimension Iter.Cost Memory
Small-size All 10°-10> n* = n® Kilobyte: 103
Medium-size Al 103 —10* n® — n®> Megabyte: 10°
Large-scale Ax 10° - 10" n?> = n  Gigabyte: 10°

’ Huge-scale xX+y 108 — 10 n —logn Terabyte: 10%° ‘

Sources of Huge-Scale problems

m Internet (New)

m Telecommunications (New)

m Finite-element schemes (Old)
m PDE, Weather prediction (Old)

Main hope: Sparsity.
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Problem: mig f(x), where Q is closed and convex in RN and
XE

m f(x) = W(Ax), where V is a simple convex function:

V(y1) > V(y2) + (W (y2), 91 — y2),  y1,¥2 € RM,

m A: RV — RM is a sparse matrix.

def p(A)
= MN-

Example 1: Matrix-vector multiplication

m Computation of vector Ax needs p(A) operations.

Let p(x) = # of nonzeros in x. Sparsity coefficient: v(A)

m Initial complexity MN is reduced in y(A) times.
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Example: Gradient Method

x0 € Q, xky1=mo(xk — hf'(xk)), k=>0.

Main computational expenses

m Projection of simple set Q needs O(N) operations.
m Displacement xx — xx — hf’(xx) needs O(N) operations.

m f/(x) = ATU/(Ax). If U is simple, then the main efforts are
spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with full matrices, we accelerate in

~v(A) times.

Note: For Large- and Huge-scale problems, we often have
v(A) =~ 1074...107°. Can we get more?
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Sparse updating strategy

m After update x; = x + d we have yy o Axy = Ax +Ad.

y
m What happens if d is sparse?

Denote o(d) = {j : dU) #£0}. Then y, =y + > dU). Ae;.

jea(d)
Its complexity, /<;A(d)d§f >. p(Aej), can be VERY smalll
jeo(d)
ka(d) = M 3 A(Ag) = y(d) 55y > (Ae)  MN
j€a(d) jea(d)
< (d) max 7(Aej) - MN.

If y(d) < cy(A), Y(A) < cv(A), = |ra(d) < ¢ -7*(A) - MN

Expected acceleration: (107°%)2 = 10712 = 1 sec ~ 32000
years!
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m Simple methods: No full-vector operations! (Is it possible?)

m Simple problems: Functions with sparse gradients.

Let us try:

Quadratic function f(x) = 3(Ax, x) — (b, x). The gradient
f'(x)=Ax—b, xeRV,
is not sparse even if A is sparse.

Piece-wise linear function g(x) = max [(a;, x) — b()]. Its
1<i<m

subgradient f'(x) = aj(x), i(x) 1 f(x) = (aj(x), x) — bUC,
can be sparse is a; is sparse!
But: We need a fast procedure for updating max-type operations.
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be computed by a short binary tree with the height = In n.

Let n = 2k and the tree has k + 1 levels: vo,i = 0D i=1,...n
Size of the next level halves the size of the previous one:
Vierj = Yiy1j(Vigim1,vigg), j=1,...,2k 1 i=0,... k-1,
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Fast updates in short computational trees

Def: Function f(x), x € R", is short-tree representable, if it can
be computed by a short binary tree with the height = In n.

Let n = 2k and the tree has k + 1 levels: vo,i = 0D i=1,...n
Size of the next level halves the size of the previous one:
Vierj = Yiy1j(Vigim1,vigg), j=1,...,2k 1 i=0,... k-1,

where 1); ; are some bivariate functions.

Vi1
Vk—1,1 [ Vk—1,2
21 V2.n/4
Vi1 2 e Vin/2-1 Vin/2
Vo1 [ Y,2 | V03 [ Vo4 V0,n—3V0,n—20,n—1] Vo,n
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Main advantages

m Important examples (symmetric functions)
) = Ixlp. P21, dijtnte) = [[aff + P17,
n .
f(x) = In (Z eX(')> . Yij(t, ) = In(et + e?),
i=1
f(x) = max x{) i j(t, t2) = max{ty, t2}.
1<i<n
m The binary tree requires only n — 1 auxiliary cells.
m Its value needs n — 1 applications of v; (-, ) ( = operations).
m If x; differs from x in one entry only, then for re-computing

f(x4) we need only k = log, n operations.
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Main advantages

m Important examples (symmetric functions)

fx) = lIxlp, P>1, wij(ti,t2) = [|ta]P + |02]P ]MP,

f(x) = In (Z ex(i)>, Vi j(t, t2) = In(e" +e®),
i=1

Fo) = maxx " vt ) = max{t.t).

m The binary tree requires only n — 1 auxiliary cells.

m Its value needs n — 1 applications of v; (-, ) ( = operations).

m If x; differs from x in one entry only, then for re-computing
f(x4) we need only k = log, n operations.

Thus, we can have pure subgradient minimization schemes with
Sublinear Iteration Cost
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Simple subgradient methods

I. Problem:  £* % min f(x), where
xXEQ

m Q is a closed and convex and ||f'(x)|| < L(f), x € Q,

m the optimal value f* is known.
Consider the following optimization scheme (B.Polyak, 1967):

f(xk)—fF*
X0 € Q, Xk+1 = TQ <Xk — H(f/k()Xk)Hzfl(Xk)> 5 k 2 0.
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Simple subgradient methods

I. Problem:  £* % min f(x), where
xXEQ

m Q is a closed and convex and ||f'(x)|| < L(f), x € Q,

m the optimal value f* is known.

Consider the following optimization scheme (B.Polyak, 1967):

f(xk)—fF*
X0 € Q, Xk+1 = TQ <Xk — H(f/k()Xk)Hzfl(Xk)> 5 k 2 0.

Denote f = min f(x;).
0<i<k
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Simple subgradient methods

I. Problem:  £* % min f(x), where
xXEQ

m Q is a closed and convex and ||f'(x)|| < L(f), x € Q,

m the optimal value f* is known.

Consider the following optimization scheme (B.Polyak, 1967):
f(xx)—f*,
X0 € Q, Xkqp1 = 7rQ<Xk—f(xk) , k>0.
" 1/ (xe) 12

Denote f = min f(x;). Then for any k > 0 we have:

0<i<k

* * L() [l x0—7x, (x0)l
fe—f" < e
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X€e

Yu. Nesterov Primal-dual methods for huge-scale problems 11/21



Constrained minimization (N.Shor (1964) & B.Polyak)

[I. Problem: mig{f(x) . g(x) <0}, where
X€e

m Q@ is closed and convex,

Yu. Nesterov Primal-dual methods for huge-scale problems 11/21



Constrained minimization (N.Shor (1964) & B.Polyak)
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m Q@ is closed and convex,

m 7, g have uniformly bounded subgradients.
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Constrained minimization (N.Shor (1964) & B.Polyak)

[I. Problem: mig{f(x) . g(x) <0}, where
X€e

m Q@ is closed and convex,

m 7, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If g(xk) > h|lg’(xk)||, then (A):
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m Q is closed and convex,
m 7, g have uniformly bounded subgradients.
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[I. Problem: mig{f(x) . g(x) <0}, where
X€e

m Q@ is closed and convex,
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[I. Problem: mig{f(x) . g(x) <0}, where
X€e

m Q is closed and convex,
m 7, g have uniformly bounded subgradients.
Consider the following method. It has step-size parameter h > 0.

It g(xk) > hllg/ ()l then (A): xici1 =7 (6 — 5 &/(x0))

else (B):  xky1=mQ (xk — W (xk)) -

X
Let Fix € {0,..., k} be the set (B)-iterations, and f = .m? f(x)-
ISVl
Theorem:
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Constrained minimization (N.Shor (1964) & B.Polyak)

[I. Problem: mig{f(x) . g(x) <0}, where
X€e

m Q@ is closed and convex,

m 7, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

It g(xk) > hllg/ ()l then (A): xici1 =7 (6 — 5 &/(x0))
else (B):  xky1=mQ (xk — m (xk)) -

Let Fix € {0,..., k} be the set (B)-iterations, and f = min f(x;).

i€Fy
Theorem: If k > |xo — x*||2/h?,
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Constrained minimization (N.Shor (1964) & B.Polyak)

[I. Problem: mig{f(x) . g(x) <0}, where
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Consider the following method. It has step-size parameter h > 0.

It g(xk) > hllg/ ()l then (A): xici1 =7 (6 — 5 &/(x0))
else (B):  xky1=mQ (xk — m (xk)) -

Let Fix € {0,..., k} be the set (B)-iterations, and f = .m? f(x)-
1€k
Theorem: If k > ||xo — x*||?/h?, then Fy # ()

Yu. Nesterov Primal-dual methods for huge-scale problems 11/21



Constrained minimization (N.Shor (1964) & B.Polyak)

[I. Problem: mig{f(x) . g(x) <0}, where
X€e

m Q@ is closed and convex,

m 7, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

It g(xk) > hllg/ ()l then (A): xici1 =7 (6 — 5 &/(x0))
else (B):  xky1=mQ (xk — m f(xk)) -
Let Fix € {0,..., k} be the set (B)-iterations, and f = {2}2 f(x)-
Theorem: If k > ||xo — x*||?/h?, then Fy # () and

fi — f(x) < hL(f), maxg(x;) < hl(g).
IE€EFy
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Linear Conic Problems

Assume that the space of primal variables E is partitioned:

X € Ei,j=1,...,n, x = (xl,...,x”)GE,
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Linear Conic Problems

Assume that the space of primal variables E is partitioned:

Xl € E,j=1,...,n, ,x") € E,

Thus, dim E = Z dim E;, and (c, x) df

n
Z(cJ xJ) for any ¢ € E*.
Jj=1 Jj=1
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Assume that the space of primal variables E is partitioned:

xl € E,j=1,...,n ,x") € E,

9

Thus, dim E = Z dim E;, and (c, x) e Z(cJ xJ) for any c € E*.
Jj=1 Jj=1

n .
Linear operator: A= (Aj,...,A,), Ax def Y AX, xeE.
j=1
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Xl € E,j=1,...,n, ,x") € E,

Thus, dim E = Z dim E;, and (c, x) e Z(cJ xJ) for any c € E*.
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Primal cone: x € K = Q K], K; C E; are closed convex pointed.
j=1
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Linear Conic Problems

Assume that the space of primal variables E is partitioned:

Xl € E,j=1,...,n, = (x,...,x") € E,
n
Thus, dim E = Zd|m Ej, and (c, x) e Z(cJ xJ) for any c € E*.
Jj=1 Jj=1
n .
Linear operator: A= (Aj,...,A,), Ax def Y AX, xeE.

Jj=1

n
Primal cone: x € K = QQ Kj, K; C E; are closed convex pointed.
J=1

Thus, K* = ® K.
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Linear Conic Problems

Assume that the space of primal variables E is partitioned:

xl € E,j=1,...,n ,x") € E,

n
Thus, dim E = Z dim E;, and (c, x) e Z(cJ xJ) for any c € E*.
Jj=1 Jj=1
n .
Linear operator: A= (Aj,...,A,), Ax def Y AX, xeE.
j=1

n
Primal cone: x € K = QQ Kj, K; C E; are closed convex pointed.
J=1

Thus, K* = @ K.

Primal problem: f, = m}‘({ (¢,x): Ax=b}, beR™
X€
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Linear Conic Problems

Assume that the space of primal variables E is partitioned:

Xl € E,j=1,...,n, = (x,...,x") € E,
n
Thus, dim E = Zld|m Ej, and (c, x) e Z(cJ xJ) for any c € E*.
J_ :
Linear operator: A= (Aj,...,A,), Ax def Z Aixl, x € E.
j=1
Primal cone: x € K = QQ Kj, K; C E; are closed convex pointed.
j=1
n
Thus, K* = @ K.
Primal problem: f, = mf{ (¢,x): Ax=b}, beR™
xeK
Dual problem: sup  {(byy): s+ A*y =c}.
yYERM seK*
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Linear Conic Problems

Assume that the space of primal variables E is partitioned:

Xl € E,j=1,...,n, = (x,...,x") € E,
n
Thus, dim E = Z dim E;, and (c, x) e Z(cJ xJ) for any c € E*.
Jj=1 Jj=1
Linear operator: A= (Aj,...,A,), Ax def Z Aixl, x € E.
j=1
n
Primal cone: x € K = QQ Kj, K; C E; are closed convex pointed.
j=1
n
Thus, K* = @ K.
=1
Primal problem: f, = mf{ (¢,x): Ax=b}, beR™
xeK
Dual problem: sup  {(byy): s+ A*y =c}.
yYERM seK*

Assumption: Dual Problem is solvable. = (s*,x*) =0.
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Functional constraints

Note: Constraints in the dual problem are separable

sup {(b,y):sf:cj—AjTyeKj*,jzl,...,n}.
YERM scE*
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We need to write them in a functional form.
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Functional constraints

Note: Constraints in the dual problem are separable
sup {(b,y):sf:cj—AjTyeKj‘,jzl,...,n}.

YERM scE*
We need to write them in a functional form.
In each cone KJ-* we fix a scaling element d’ € int KJ* j=1...,n

For v/ € E;, define V() et mTin{ ToTd — W€ K’ }.

Primal form: ij(uj) = ma}><<'{<Uj,Xj> IR

J
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Functional constraints

Note: Constraints in the dual problem are separable

sup {(b,y):sf:cj—AjTyeKj‘,jzl,...,n}.
YERM scE*
We need to write them in a functional form.

In each cone KJ* we fix a scaling element d’ € int KJ* j=1...,n
For v/ € E;, define V() et mTin{ ToTd — W€ K’ }.
Primal form: v;(v/) = max{(/, /) : (d/,x)) =1} .

xeK;

J

Thus, 0v;(v) = Arg ma}>{<{<uj,xj> C{dl X)) =1} 3 X ().
xJ e j
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Functional constraints

Note: Constraints in the dual problem are separable

sup {(b,y):sf:cj—AjTyeKj‘,jzl,...,n}.
YERM scE*
We need to write them in a functional form.

In each cone KJ* we fix a scaling element d’ € int KJ* j=1...,n
For v/ € E;, define V() et mTin{ ToTd — W€ K’ }.

Primal form: ij(uj) = max{(/,x) : (d/,xI) =1}.
x €K;

Thus, 0v;(v) = Arg ma}>{<{<uj,xj> C{dl X)) =1} 3 X ().
xJ e j

i . - def :
Note: ¢/ — ATy € K7 iff fi(y) = ¢;(A]y — &) <.
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Functional constraints

Note: Constraints in the dual problem are separable

sup {(b,y):sf:cj—AjTyeKj‘,jzl,...,n}.
YERM scE*
We need to write them in a functional form.

In each cone KJ* we fix a scaling element d’ € int KJ* j=1...,n
For v/ € E;, define V() et mTin{ ToTd — W€ K’ }.
Primal form: v;(v/) = max{(/, /) : (d/,x)) =1} .

xJ KJ

Thus, 0v;(v) = Arg ma}>{<{<uj,xj> C{dl X)) =1} 3 X ().
xJ e j

i . - def :
Note: ¢/ — ATy € K7 iff fi(y) = ¢;(A]y — &) <.

. def P i m
Subgradients: f/(y) = A_jXJ(AJ'Ty_CJ) € ofi(y) C R™
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Functional constraints

Note: Constraints in the dual problem are separable

sup {(b,y):sf:cj—AjTyeKj‘,jzl,...,n}.
YERM scE*
We need to write them in a functional form.

In each cone KJ* we fix a scaling element d’ € int KJ* j=1...,n
For v/ € E;, define V() et mTin{ ToTd — W€ K’ }.
Primal form: v;(v/) = max{(/, /) : (d/,x)) =1} .

xJ KJ

Thus, 0v;(w) = Arg)zpeaé{@j,xj} c(d ) =1} 2 X ().
Note: ¢/ — ATy € K* iff fi(y) & ¢;(A]y — &) <.
Subgradients: /(y) € A;x/(ATy — /) € f(y) C R™
Scaling: ||f/(y)]| < o7 % Aviax (Ajv2Fj*(df)AJT).
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Examples

1 If K; = R then A; = Aej € R™, where g is a basis vector in
R".
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Examples

1 If K; = R}r, then A; = Ae; € R™, where ¢; is a basis vector in
R".
Let us take Fj(z) = —Inz and &/ = 1.Then V2F;(z/) = 1 and

012 = AmaX(AjA}—) = ||Aj||2-
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1 If K; = R}r, then A; = Ae; € R™, where ¢; is a basis vector in
R".
Let us take Fj(z) = —Inz and &/ = 1.Then V2F;(z/) = 1 and

012 = AmaX(AjA}—) = ||Aj||2-

2. Let K; = {5} = Opxp}-
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Examples

1 If K; = R}r, then A; = Ae; € R™, where ¢; is a basis vector in
R".
Let us take Fj(z) = —Inz and &/ = 1.Then V2F;(z/) = 1 and

012 = AmaX(AjA}—) = ||Aj||2-

2. Let Kj = {S; = 0pxp}.We take Fj(z) = —Indet z, and
Z=d =,

m . . .
Then A7 (y) = :; Aiy', y € R™, where A are symmetric

p X p-matrices.
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Examples

oj =

1. If K; = R}r, then A; = Ae; € R™, where ¢; is a basis vector in
R".
Let us take Fj(z) = —Inz and &/ = 1.Then V2F;(z/) = 1 and

UJ2 = )\max(A AT) - ||A ||2

2. Let Kj = {S; = 0pxp}.We take Fj(z) = —Indet z, and
Z=d =,

m . . .
Then A7 (y) = :; Aiy', y € R™, where A are symmetric

p X p-matrices. Thus,

m . m ) 1/2
max | £ Ayle = max (5 4y’ 6) = max |62

yll=1 "= Iyl=1, =y 1BllF=1
—
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Examples

oj =

1. If K; = R}r, then A; = Ae; € R™, where ¢; is a basis vector in
R".
Let us take Fj(z) = —Inz and &/ = 1.Then V2F;(z/) = 1 and

UJ2 = )\max(A AT) - ||A ||2

2. Let Kj = {Sj = Opxp}.We take Fj(z) = —Indet z, and
d=di=1,

m . - .
Then A7 (y) = :; Aiy', y € R™, where A are symmetric

p X p-matrices.Thus,

m . m ) 1/2
max | £ Ayle = max (5 4y’ 6) = max |62
Iyl=1" = I =t 1Blir=1 |7

We assume that all o;, j = 1,...,n, are computed in advance.
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New Dual Problem

Denote gj(y) = U%)j(y) Consider the problem:

def
sup {<b,y>: £) ™ max g(y) < o}.
yERM, seE* 1<j<n
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New Dual Problem

Denote gj(y) = U%)j(y) Consider the problem:

def
sup {<b,y>: £) ™ max g(y) < o}.
yERM, seE* 1<j<n

Denote by j(y) the active index j such that gj(y) = g(y). Then
() = 51 Ay ¥ (ATyy =) gl < 1

Maximization scheme: Choose h > 0. Define yy = 0.
For k > 0 do:

if g(y) < h, then (F): yii1 =yi+h- o,
else (G): yir1 = vk — g(yvk) - & (k).

Yu. Nesterov Primal-dual methods for huge-scale problems 15/21



Primal and dual minimization sequences

Yu. Nesterov Primal-dual methods for huge-scale problems 16/21
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For N > 0, denote by Fy the set of iterations of type (F).

Let Gy 4 {0,..., NI\ Fn, Np % |7, and N & |Gl
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X, i=],

. i=1,...,n.
0, otherwise, T
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Define the approximate primal-dual solutions as follows:
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Primal and dual minimization sequences

For N > 0, denote by Fy the set of iterations of type (F).

Let Gy % {0,..., N} \ Fu, Ny 1 Fy], and N, 2 |Gl

For step (F), cf—Aj’fyk+h0jdf €K', j=1,...,n, keFy.
X, i=],

. i=1,...,n.
0, otherwise, T

Denote ¢j(x/) € E: ej(x/) = {

Define the approximate primal-dual solutions as follows:

- def b h * [
v = er% £ e (OO Ay = V) € K.

IN=§ L Yk S o= c— ATy
keFn
This choice is motivated by the following relations:

= — w2 Ak Zke —hoid),

keFn
hN ; . ;
N1 = Tpf - b= kezg,\, 5,(53 Aejty,) (XJ(Yk)(Aj(yk)yk _ CJ(n))) ,
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Convergence

Denote d € K*: d/ = o;d/, j=1,...,n.
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Convergence

Denote d € K*: d/ = o;d/, j=1,...,n.

Theorem. Let D =2 (ﬁ’g'r) + 1). For any N > 0 we have:

* (|2
Ne> & (N 1- L),
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Convergence

Denote d € K*: d/ = o;d/, j=1,...,n.

Theorem. Let D =2 (%ﬁp + 1). For any N > 0 we have:
Ne> L (N—l— 1_ ||y*||2>
f=p 2 -

If N¢ > 1, then (c,Xn) — (b,yn) < Sh||b]|.
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Convergence

Denote d € K*: &/ = o;d/, j=1,...,n

Theorem. Let D =2 <<||b||> + 1) For any N > 0 we have:
Ne> % (N+1- 128
D
If Nf > 1, then (c, xn) — (b, yn) < 3h|b].
Finally, if N+ 1> 2 then
(x* ,sN> + (%n, s*) < hlb]],

and the residual in the primal-dual system vanishes as N — oo:

Iyl
Teyllb — Axull </ +
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Let K=R]. Then g; = [|A¢j|, j=1,...,n.
Assume the data is uniformly sparse: for all i and j

p(c) < r. p(ATe) < r, p(b) < q, p(Ag) < q,
with r < nand g < m.
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with r < nand g < m.

Preliminary work: O(p(A)) operations at most.

One iteration:
m Update yx: O(q) operations at most.
m Update new slack s 1: O(rqlog, n) operations.
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Example: Solving huge LP

Let K=R]. Then g; = [|A¢j|, j=1,...,n.
Assume the data is uniformly sparse: for all i and j

p(c) < r, p(ATe) < r, p(b) < q, p(Ag) < gq,
with r < nand g < m.

Preliminary work: O(p(A)) operations at most.
One iteration:

m Update yx: O(q) operations at most.

m Update new slack s 1: O(rqlog, n) operations.

m Update the norm ||yx||?: O(q) operations.
Conclusion: cost of one iteration is  O(rqlog, n).

NB: Often r and g do not depend on n.

Yu. Nesterov Primal-dual methods for huge-scale problems 18/21



Computational experiments: Iteration Cost

Yu. Nesterov Primal-dual methods for huge-scale problems 19/21



Computational experiments: Iteration Cost

We compare Polyak's GM with sparse update (GMs) with the
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We compare Polyak's GM with sparse update (GMs) with the
standard one (GM).

Problem: Maximum of linear functions with p nonzero diagonals.
def
Thus, k(A) = max ka(ATe) = p2.
()™ max ra(ATe) = p

Iteration Cost: GM; < k(A)log, N ~ p?log, N, GM = pN.
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Computational experiments: Iteration Cost

We compare Polyak's GM with sparse update (GMs) with the
standard one (GM).

Problem: Maximum of linear functions with p nonzero diagonals.
def
Thus, k(A) = max ka(ATe) = p2.
()™ max ra(ATe) = p

Iteration Cost: GM; < k(A)log, N ~ p?log, N, GM = pN.
(log, 103 =10, log, 10° = 20,
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We compare Polyak's GM with sparse update (GMs) with the
standard one (GM).

Problem: Maximum of linear functions with p nonzero diagonals.
def
Thus, k(A) = max ka(ATe) = p2.
()™ max ra(ATe) = p
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Computational experiments: Iteration Cost

We compare Polyak's GM with sparse update (GMs) with the
standard one (GM).

Problem: Maximum of linear functions with p nonzero diagonals.
def
Thus, k(A) = max ka(ATe) = p2.
()™ max ra(ATe) = p

Iteration Cost: GM; < k(A)log, N ~ p?log, N, GM = pN.
(log, 10 =10, log, 10° =20, log, 10° = 30)

Time for 10* iterations (p = 32)
N w(A)[GM,| GM
1024 | 1632 | 3.00 2.98
2048 | 1792 | 3.36 6.41
4096 | 1888 | 3.75 | 15.11
8192 | 1920 | 4.20 | 139.92
16384 | 1824 | 4.69 | 408.38
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Computational experiments: Iteration Cost

We compare Polyak's GM with sparse update (GMs) with the
standard one (GM).

Problem: Maximum of linear functions with p nonzero diagonals.
def
Th A) = ATej) = p?.
us, k(A) 12%);\/1 ka(Ale)=p
Iteration Cost: GM; < k(A)log, N ~ p?log, N, GM = pN.
(log, 10 =10, log, 10° =20, log, 10° = 30)
Time for 10* iterations (p = 32) Time for 103 iterations (p = 16)

NTw(A)Y[GM;| GM NTw(A)Y[GMs| GM
1024 | 1632 | 3.00| 2.98 131072 | 576 | 0.19 | 213.9
2048 | 1792 | 3.36 | 6.41 262144 | 592 | 0.25 | 477.8
4096 | 1888 | 3.75 | 15.11 524288 | 592 | 0.32 | 1095.5
8192 | 1920 | 4.20 | 139.92 1048576 | 608 | 0.40 | 2590.8
16384 | 1824 | 4.69 | 408.38
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Computational experiments: Iteration Cost

We compare Polyak's GM with sparse update (GMs) with the
standard one (GM).

Problem: Maximum of linear functions with p nonzero diagonals.
def
Th A) = ATej) = p?.
us, k(A) 12%);\/1 ka(Ale)=p
Iteration Cost: GM; < k(A)log, N ~ p?log, N, GM = pN.
(log, 10 =10, log, 10° =20, log, 10° = 30)
Time for 10* iterations (p = 32) Time for 103 iterations (p = 16)

NTw(A)Y[GM;| GM NTw(A)Y[GMs| GM
1024 | 1632 | 3.00| 2.98 131072 | 576 | 0.19 | 213.9
2048 | 1792 | 3.36 | 6.41 262144 | 592 | 0.25 | 477.8
4096 | 1888 | 3.75 | 15.11 524288 | 592 | 0.32 | 1095.5
8192 | 1920 | 4.20 | 139.92 1048576 | 608 | 0.40 | 2590.8
16384 | 1824 | 4.69 | 408.38 1 sec ~ 100 min!
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Let N = 1048576, p = 8, k(A) = 192, and L(f) = 0.21.
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Convergence of GM: Large Scale

Let N = 1048576, p = 8, k(A) = 192, and L(f) = 0.21.

Iterations f—f*| Time (sec)

0 | 2.000000 0.00
1.0-10° | 0.546662 7.69
4.0-10% | 0.276866 30.74
1.0-10° | 0.137822 76.86

2.5-10° | 0.063099 192.14
5.1-10° | 0.032092 391.97
9.9-10° | 0.016162 760.88
1.5-107 | 0.010009 1183.59
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Convergence of GM: Large Scale

Let N = 1048576, p = 8, k(A) = 192, and L(f) = 0.21.

Iterations f—f*| Time (sec)

0 | 2.000000 0.00
1.0-10° | 0.546662 7.69
4.0-10% | 0.276866 30.74
1.0-10° | 0.137822 76.86

2.5-10° | 0.063099 192.14
5.1-10° | 0.032092 391.97
9.9-10° | 0.016162 760.88
1.5-107 | 0.010009 1183.59

Final point %,: ||%[c = 2.941497, R2 % %, — e|2 = 1.2 105.

Theoretical bound: % =5.3-10". Time for GM: =~ 1 year!
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THANK YOU FOR YOUR ATTENTION!
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