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Source separation in 5 minutes

◮ Recover source estimates from a mixed signal

◮ We consider the single-channel setting :

xt = s
(1)
t + s

(2)
t .

Ill-posed problem, need prior information.



Read mix waveform

0 5 10 15 20 25

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time (seconds)

x



Short time Fourier transform

Short time Fourier transform

Cfn =

F
∑

t=1

xt+(n−1)Hwt exp

(

−
2(f − 1)π(t − 1)

F

)



Remove phase information
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Output of source separation program
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Time-frequency masking

Estimates of each source’s complex STFT are obtained by :

Sg ,fn =
Xg ,fn

∑

l Xl,fn

Cfn



Estimate waveforms from STFT
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Annotation informed source separation

[Lefèvre et al., 2012, Bryan and Mysore, 2013]: interaction between
user and source separation software.

[Lefèvre et al., 2012]: detector trained on development database
(random forest, SVM, nearest-neighbour, etc.).

Figure : Detections in the spectrogram



AISS nmf: non-convex

Annotation informed source separation.

Information is used as additional constraints : Mg ⊙ Xg = Mg ⊙ Tg .

[Lefèvre et al., 2012] : nonnegative matrix factorization (nmf) with
constraints :

minD,A ‖Y −
∑

g DgAg‖
2
F

s.t. D ∈ RF×K
+ ,A ∈ RK×N

+

Mg ⊙ (DgAg ) = Mg ⊙ Tg

Y ∈ RF×N
+ is the input spectrogram.

Need only D1A1 ≥ 0, but impose stronger constraint : D1 ≥ 0,
A1 ≥ 0 (NMF).

nmf is hard ... see talk by Nicolas Gillis.



AISS lownuc : convex

Informed souce separation : X1, . . . ,XG ∈ RF×N .

minX
1
2‖Y −

∑G

g=1 Xg‖
2
F + λ

∑G

g=1 ‖Xg‖∗
s.t. Mg ⊙ Xg = Mg ⊙ Tg

Xg ≥ 0

The rank of a matrix is revealed in its SVD : X = PΣQ⊤.

◮ σ1 ≥ σ2 ≥ · · · ≥ σF ≥ 0 singular values.

‖Xg‖∗ =
∑F

f=1 σf .

Projecting on Xg ≥ 0 is straightforward.

Instead of one nmf, we will make repeated calls to svd to compute
‖Xg‖∗ and additional information.



Algorithms for informed source separation

Convex but nonsmooth problem.

Related approaches if no noise and no inequality constraints (Recht
et al., 2010) :

min ‖X‖∗
s.t. A(X ) = b

where A : RF×NG 7→ Rp, b ∈ Rp (p ≪ m× n) is linear.

Link with SDP optimization :

min t
s.t. A(X ) = b

(

tI X
X tI

)

� 0

Use interior-point solver, which has superlinear convergence rate.

BUT Hessian has size O(F 2N2), i.e. 1010 for a ten seconds audio
track. This is too large !



Subgradient descent

Objective function f is convex so it admits derivatives in all
directions :

f ′(X ;D) = lim
t↓0

f (X + tD)− f (X )

t

Subgradients generalize the gradient :

Z ∈ ∂f (X ) ↔ f ′(X ;D) ≥ 〈Z ,D〉

〈Z ,D〉 =
∑

g Tr Z
⊤
g Dg

Projected subgradient descent : X (t+1) = Π(X (t) − µtZ
(t)).

Warning : f (X (t+1)) � f (X (t)).

Guarantee :µt = µ0(1 + t)−
1
2 ⇒ ‖X (t) − X ∗‖ ց 0.



Controlled experiments
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(b) First few seconds

Figure : (Left) Evolution of SDR as a function of CPU time (in seconds), for
(green) our method and (red) NMF started from several initial points.

SDR is a measure of how well we have separated sources (the higher
the better).



Shrinkage of singular values
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Figure : Magnitude of singular values in decreasing order, for various values of
λ. Dotted line is the true singular value profile.



Smoothing technique [Nesterov, 2003]

minX
1
2‖Y −

∑G
g=1 Xg‖

2
F + λ

∑G
g=1 ‖Xg‖∗,µ

s.t. Mg ⊙ Xg = Mg ⊙ Tg

Xg ≥ 0

‖ · ‖∗,µ is C(1,1 with Lipschitz constant 1
µ
and :

‖X‖∗,µ ≤ ‖X‖∗ ≤ ‖X‖∗,µ + µC ∀X ∈ RF×N

‖X‖∗ = max{Tr U⊤X , σ1(U) ≤ 1}

‖X‖∗,µ = max{Tr U⊤X − ‖U‖2F , σ1(U) ≤ 1}

Apply accelerated gradient descent to the smooth minimization
problem.

µ = 0 : slow convergence but accurate solutions.

Large µ : fast but inaccurate solutions.



Comparison with subgradient
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Figure : Decrease of the objective function as a function of the allowed CPU
time, for various algorithms



Effect of µ
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Figure : Decrease of the objective function as a function of the allowed CPU
time, for various values of µ.

We display the original objective function :

1

2
‖Y −

G
∑

g=1

Xg‖
2
F + λ

G
∑

g=1

‖Xg‖∗ .



Conclusion

Our formulation contributes to the field of informed source
separation methods, where knowledge is directly relevant to the
query audio track, and involves interaction with the user.

These methods are the state of the art in single-channel source
separation benchmarks.

Our convex formulation compares well with its NMF counterpart,
even with a subgradient algorithm.

The smoothing technique allows to retrieve more accurate solutions
for a given CPU budget.

More complex constraints ? E.g., source estimates should classify
correctly : 〈W ,Xg 〉+ b ≤ 0.



Proximal operator :

prox(X̄ ) =
arg minX

1
2‖X̄ − X‖2F + λ‖X‖∗ ,

s.t. Mg ⊙ Xg = Mg ⊙ Tg ,

Necessary and sufficient conditions :

0 ∈ X − X̄ + λ(PQ⊤ +W ) +M ⊙ E

W⊤X = 0

WX⊤ = 0

M ⊙ X = M ⊙ T

‖W ‖op ≤ 1

where E ∈ RF×N are Lagrangian multiplicators associated with the
constraint M ⊙ X = 0. Note that here, X = PΣQ⊤ is an economy-size
SVD of X and not X̄ , so P and Q depend on X .
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