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Convex optimization problem — standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

with variable x ∈ Rn

◮ objective and inequality constraints f0, . . . , fm are convex

for all x , y , θ ∈ [0, 1],

fi(θx + (1 − θ)y) ≤ θfi(x) + (1 − θ)fi(y)

i.e., graphs of fi curve upward

◮ equality constraints are linear
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Convex optimization problem — conic form

minimize cT x

subject to Ax = b

x ∈ K
with variable x ∈ Rn

◮ K is convex cone
◮ x ∈ K is a generalized nonnegativity constraint

◮ linear objective, equality constraints

◮ special cases:
◮ K = Rn

+: linear program (LP)
◮ K = Sn

+: semidefinite program (SDP)

◮ the modern canonical form
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Why convex optimization?

◮ beautiful, fairly complete, and useful theory
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Why convex optimization?

◮ beautiful, fairly complete, and useful theory

◮ solution algorithms that work well in theory and practice
◮ convex optimization is actionable

◮ many applications in
◮ control
◮ combinatorial optimization
◮ signal and image processing
◮ communications, networks
◮ circuit design
◮ machine learning, statistics
◮ finance

. . . and many more
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How do you solve a convex problem?

◮ use someone else’s (‘standard’) solver (LP, QP, SOCP, . . . )
◮ easy, but your problem must be in a standard form
◮ cost of solver development amortized across many users

◮ write your own (custom) solver
◮ lots of work, but can take advantage of special structure

◮ transform your problem into a standard form, and use a
standard solver

◮ extends reach of problems solvable by standard solvers

◮ this talk: methods to formalize and automate last approach

Convex optimization 7
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How can you tell if a problem is convex?

approaches:

◮ use basic definition, first or second order conditions, e.g.,
∇2f (x) � 0

◮ via convex calculus: construct f using
◮ library of basic functions that are convex
◮ calculus rules or transformations that preserve convexity
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Convex functions: Basic examples

◮ xp (p ≥ 1 or p ≤ 0), −xp (0 ≤ p ≤ 1)

◮ ex , − log x , x log x

◮ aT x + b

◮ xT Px (P � 0)

◮ ‖x‖ (any norm)

◮ max(x1, . . . , xn)
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Convex functions: Less basic examples

◮ xT x/y (y > 0), xT Y −1x (Y ≻ 0)

◮ log(ex1 + · · · + exn)

◮ − logΦ(x) (Φ is Gaussian CDF)

◮ log det X−1 (X ≻ 0)

◮ λmax(X ) (X = XT )
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Calculus rules

◮ nonnegative scaling: f convex, α ≥ 0 =⇒ αf convex

◮ sum: f , h convex =⇒ f + g convex

◮ affine composition: f convex −→ f (Ax + b) convex

◮ pointwise maximum: f1, . . . , fm convex =⇒ maxi fi(x) convex

◮ partial minimization: f (x , y) convex =⇒ infy f (x , y) convex

◮ composition: h convex increasing, f convex =⇒ h(f (x)) convex
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Examples

from basic functions and calculus rules, we can show convexity of . . .

◮ piecewise-linear function: maxi=1....,k(a
T
i x + bi)

◮ ℓ1-regularized least-squares cost: ‖Ax − b‖2

2
+ λ‖x‖1, with λ ≥ 0

◮ sum of largest k elements of x : x[1] + · · · + x[k]
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A general composition rule

h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

◮ h is increasing in argument i , and fi is convex, or

◮ h is decreasing in argument i , and fi is concave, or

◮ fi is affine

◮ there’s a similar rule for concave compositions

◮ this one rule subsumes most of the others

◮ in turn, it can be derived from the partial minimization rule
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Constructive convexity verification

◮ start with function given as expression

◮ build parse tree for expression
◮ leaves are variables or constants/parameters
◮ nodes are functions of children, following general rule

◮ tag each subexpression as convex, concave, affine, constant
◮ variation: tag subexpression signs, use for monotonicity

e.g., (·)2 is increasing if its argument is nonnegative

◮ sufficient (but not necessary) for convexity
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Example

for x < 1, y < 1
(x − y)2

1 − max(x , y)

is convex

◮ (leaves) x , y , and 1 are affine expressions

◮ max(x , y) is convex; x − y is affine

◮ 1 − max(x , y) is concave

◮ function u2/v is convex, monotone decreasing in v for v > 0
hence, convex with u = x − y , v = 1 − max(x , y)
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Example

◮ f (x) =
√

1 + x2 is convex

◮ but cannot show this using constructive convex analysis
◮ (leaves) 1 is constant, x is affine
◮ x2 is convex
◮ 1 + x2 is convex
◮ but

√
1 + x2 doesn’t match general rule

◮ writing f (x) = ‖(1, x)‖2, however, works
◮ (1, x) is affine
◮ ‖(1, x)‖2 is convex

Constructive convex analysis 17



Disciplined convex programming (DCP)

◮ framework for describing convex optimization problems

◮ based on constructive convex analysis

◮ sufficient but not necessary for convexity

◮ basis for several domain specific languages and tools for
convex optimization

Constructive convex analysis 18



Disciplined convex program: Structure

a DCP has

◮ zero or one objective, with form
◮ minimize {scalar convex expression} or
◮ maximize {scalar concave expression}

◮ zero or more constraints, with form
◮ {convex expression} <= {concave expression} or
◮ {concave expression} >= {convex expression} or
◮ {affine expression} == {affine expression}
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Disciplined convex program: Expressions

◮ expressions formed from
◮ variables,
◮ constants/parameters,
◮ and functions from a library

◮ library functions have known convexity, monotonicity, and
sign properties

◮ all subexpressions match general composition rule

Constructive convex analysis 20



Disciplined convex program

◮ a valid DCP is
◮ convex-by-construction (cf. posterior convexity analysis)
◮ ‘syntactically’ convex (can be checked ‘locally’)

◮ convexity depends only on attributes of library functions,
and not their meanings

◮ e.g., could swap
√· and 4

√·, or exp · and (·)+, since their
attributes match

Constructive convex analysis 21
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Cone representation

(Nesterov, Nemirovsky)

cone representation of (convex) function f :

◮ f (x) is optimal value of cone program

minimize cT x + dT y + e

subject to A

[

x

y

]

= b,

[

x

y

]

∈ K

◮ cone program in (x , y), we but minimize only over y

◮ i.e., we define f by partial minimization of cone program
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Examples

◮ f (x) = −(xy)1/2 is optimal value of SDP

minimize −t

subject to

[

x t

t y

]

� 0

with variable t

◮ f (x) = x[1] + · · · + x[k] is optimal value of LP

minimize 1T λ − kν
subject to x + ν1 = λ − µ

λ � 0, µ � 0

with variables λ, µ, ν

Cone representation 24



SDP representations

Nesterov, Nemirovsky, and others have worked out SDP
representations for many functions, e.g.,

◮ xp, p ≥ 1 rational

◮ −(det X )1/n

◮

∑k
i=1 λi(X ) (X = XT )

◮ ‖X‖ = σ1(X ) (X ∈ Rm×n)

◮ ‖X‖∗ =
∑

i σi(X ) (X ∈ Rm×n)

some of these representations are not obvious . . .

Cone representation 25
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Canonicalization

◮ start with problem in DCP form, with cone representable
library functions

◮ automatically transform to equivalent cone program
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Canonicalization: How it’s done

◮ for each (non-affine) library function f (x) appearing in
parse tree, with cone representation

minimize cT x + dT y + e

subject to A

[

x

y

]

= b,

[

x

y

]

∈ K

◮ add new variable y , and constraints above
◮ replace f (x) with affine expression cT x + dT y + e

◮ yields problem with linear equality and cone constaints

◮ DCP ensures equivalence of resulting cone program

Canonicalization 28
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Parser/solvers and parser/generators

◮ parser/solver (CVX, YALMIP)
◮ canonicalize problem instance (with numeric parameters)
◮ solve using cone program solver
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Parser/solvers and parser/generators

◮ parser/solver (CVX, YALMIP)
◮ canonicalize problem instance (with numeric parameters)
◮ solve using cone program solver

◮ parser/generator (CVXGEN, QCML)
◮ canonicalize problem family (with symbolic parameters)
◮ generate mapping from original problem to cone program
◮ connect to generic (QCML) or custom (CVXGEN) cone

program solver

Parser/solvers and parser/generators 30



Example

◮ constrained least-squares problem with ℓ1 regularization

minimize ‖Ax − b‖2
2
+ λ‖x‖1

subject to ‖x‖∞ ≤ 1

◮ variable x ∈ Rn

◮ constants/parameters A, b, λ > 0

Parser/solvers and parser/generators 31



CVX

◮ parser/solver (M. Grant)

◮ embedded in Matlab; targets multiple cone solvers

◮ CVX specification for example problem:

cvx begin

variable x(n) % declare vector variable

minimize (sum(square(A*x-b,2)) + lambda*norm(x,1))

subject to norm(x,inf) <= 1

cvx end

◮ here A, b, λ are constants
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Some functions in the CVX library

function meaning attributes

norm(x, p) ‖x‖p, p ≥ 1 cvx

square(x) x2 cvx

square_pos(x) (x+)
2 cvx, nondecr

pos(x) x+ cvx, nondecr

sum_largest(x,k) x[1] + · · · + x[k] cvx, nondecr

sqrt(x)
√

x , x ≥ 0 ccv, nondecr

inv_pos(x) 1/x , x > 0 cvx, nonincr

max(x) max{x1, . . . , xn} cvx, nondecr

quad_over_lin(x,y) x2/y , y > 0 cvx, nonincr in y

lambda_max(X) λmax(X ), X = XT cvx

huber(x)

{

x2, |x | ≤ 1

2|x | − 1, |x | > 1
cvx
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CVXGEN

◮ parser/generator (J. Mattingley)

◮ domain specific input

◮ emits flat C source that solves problem family

◮ goal:
◮ spend (perhaps much) time generating code
◮ save (hopefully much) time solving problem instances

Parser/solvers and parser/generators 34



CVXGEN specification

◮ CVXGEN specification for example problem:

parameters

lambda positive

A(m,n)

b(m)

end

variables

x(n)

end

minimize

sum(square(A*x - b)) + lambda*norm1(x)

subject to

norm inf(x) <= 1

end

◮ here A, b, λ are symbolic parameters
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Sample solve times for CVXGEN generated code

(on quad-core 3.4GHz Xeon with 16GB of RAM)

problem vars constrs SDPT3 (ms) CVXGEN (ms)

portfolio 110 111 350 0.4

svm 111 200 510 0.6

generator 286 620 470 1.5

battery 144 289 310 0.3
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Quadratic cone modeling language (QCML)

◮ parser/generator (E. Chu)

◮ domain specific input; parser embedded in Python

◮ targets CVXOPT in Python

◮ can generate source code for several targets

◮ goal: seamless transition from prototyping to code
generation
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QCML specification

◮ full Python source

from qcml import QCML

p = QCML() # QCML parser object

p.parse(""" # QCML begin

dimensions m n

parameters A(m,n) b(m)

parameter lambda positive

variable x(n)

minimize sum(square(A*x - b)) + lambda*norm1(x)

norm inf(x) <= 1

""") # QCML end

# canonicalize the problem

p.canonicalize()
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Using QCML as parser/solver

◮ once canonicalized, create a Python solver

p.codegen("cvxopt") # creates Python source code

f = p.solver # bytecode for solver function
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Using QCML as parser/solver

◮ once canonicalized, create a Python solver

p.codegen("cvxopt") # creates Python source code

f = p.solver # bytecode for solver function

◮ f is a Python function mapping parameters into solutions

sol = f(params) # solution for problem instance

◮ params is a dictionary holding parameter values
◮ sol is a dictionary holding optimal value, solver status, . . .
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Using QCML as parser/solver

◮ once canonicalized, create a Python solver

p.codegen("cvxopt") # creates Python source code

f = p.solver # bytecode for solver function

◮ f is a Python function mapping parameters into solutions

sol = f(params) # solution for problem instance

◮ params is a dictionary holding parameter values
◮ sol is a dictionary holding optimal value, solver status, . . .

◮ combine canonicalize, codegen, and solver

sol = p.solve(params)

◮ recreates CVX-like functionality
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Using QCML as parser/generator

◮ once canonicalized, create external source code

p.codegen("ecos") # creates C solver source code
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Using QCML as parser/generator

◮ once canonicalized, create external source code

p.codegen("ecos") # creates C solver source code

◮ generates folder with
◮ C source that maps problem parameters into SOCP
◮ C source that maps SOCP solution into problem solution
◮ Makefile

◮ links with external solver, in this case, ECOS
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◮ Makefile
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Using QCML as parser/generator

◮ once canonicalized, create external source code

p.codegen("ecos") # creates C solver source code

◮ generates folder with
◮ C source that maps problem parameters into SOCP
◮ C source that maps SOCP solution into problem solution
◮ Makefile

◮ links with external solver, in this case, ECOS

◮ recreates CVXGEN-like functionality

◮ (eventually) target custom deployment context
◮ embedded systems, GPGPU, clusters, . . .
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Conclusions

◮ DCP is a formalization of constructive convex analysis
◮ simple method to certify problem as convex
◮ basis of several domain specific languages for convex

optimization

◮ parser/solvers make rapid prototyping easy

◮ parser/generators yield solvers that
◮ are extremely fast
◮ can be embedded in real-time applications

◮ hybrid solution unifies prototyping and deployment
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