Domain Specific Languages

for Convex Optimization

Stephen Boyd
joint work with E. Chu, J. Mattingley, M. Grant

Electrical Engineering Department, Stanford University

ROKS 2013, Leuven, 9 July 2013



Outline

Convex optimization
Constructive convex analysis

Cone representation
Canonicalization

Parser/solvers and parser/generators

Conclusions



Outline

Convex optimization

Convex optimization



Convex optimization problem — standard form

minimize  fo(x)
subject to fi(x) <0, i=1,....m
Ax =b
with variable x € R”

> objective and inequality constraints fy, ..., f,, are convex

for all x, y, 6 € [0,1],

fi(0x + (1 —0)y) < 0fi(x) + (1 - 0)fi(y)

i.e., graphs of f; curve upward

> equality constraints are linear

Convex optimization



Convex optimization problem — conic form

minimize ¢’ x

subject to Ax = b
x ek

with variable x € R”

» /C is convex cone
» x € K is a generalized nonnegativity constraint

> linear objective, equality constraints

> special cases:
» IC=RI: linear program (LP)
» IC=S: semidefinite program (SDP)

» the modern canonical form

Convex optimization



Why convex optimization?

» beautiful, fairly complete, and useful theory

Convex optimization



Why convex optimization?

» beautiful, fairly complete, and useful theory
» solution algorithms that work well in theory and practice
» convex optimization is actionable

Convex optimization



Why convex optimization?

» beautiful, fairly complete, and useful theory
» solution algorithms that work well in theory and practice
» convex optimization is actionable
» many applications in
» control
combinatorial optimization
signal and image processing
communications, networks
circuit design
machine learning, statistics
finance

vV VvV vV VY VY

...and many more

Convex optimization



How do you solve a convex problem?

> use someone else's (‘standard’) solver (LP, QP, SOCP, ...)

» easy, but your problem must be in a standard form
» cost of solver development amortized across many users

» write your own (custom) solver
» lots of work, but can take advantage of special structure

» transform your problem into a standard form, and use a
standard solver

» extends reach of problems solvable by standard solvers

> this talk: methods to formalize and automate last approach

Convex optimization



Outline

Constructive convex analysis

Constructive convex analysis



How can you tell if a problem is convex?

approaches:

> use basic definition, first or second order conditions, e.g.,
V2f(x) =0

> via convex calculus: construct f using

» library of basic functions that are convex
» calculus rules or transformations that preserve convexity

Constructive convex analysis



Convex functions: Basic examples

» xP (p=1lorp<0), —xP(0<p<1)
> X, —logx, xlogx

» alx+b

» x"Px (P = 0)

» ||x|| (any norm)

> max(xi,...,Xn)

Constructive convex analysis

10



Convex functions: Less basic examples

» xx/y (y >0), x"Y~Ix (Y =0)
> |0g(eX1 4+ .4 exn)

» —log ®(x) (® is Gaussian CDF)

> logdet X~1 (X = 0)

> Amax(X) (X = XT)

Constructive convex analysis

11



Calculus rules

» nonnegative scaling: f convex, « > 0 = «f convex

> sum: f, h convex —> f + g convex

> affine composition: f convex — f(Ax + b) convex

> pointwise maximum: fi, ..., f, convex = max; f;(x) convex
» partial minimization: f(x,y) convex = inf, f(x, y) convex

> composition: h convex increasing, f convex = h(f(x)) convex

Constructive convex analysis 12



Examples

from basic functions and calculus rules, we can show convexity of ...

» (;-regularized least-squares cost: ||Ax — b||3 + A||x||1, with A >0

> sum of largest k elements of x: xjy) + -+ + X[

Constructive convex analysis 13



A general composition rule

h(fi(x), ..., fk(x)) is convex when h is convex and for each i

> his increasing in argument i, and f; is convex, or

> h is decreasing in argument /, and f; is concave, or

v

f; is affine

there's a similar rule for concave compositions

v

this one rule subsumes most of the others

v

in turn, it can be derived from the partial minimization rule

v

Constructive convex analysis 14



Constructive convexity verification

v

start with function given as expression

v

build parse tree for expression

> leaves are variables or constants/parameters
» nodes are functions of children, following general rule

v

tag each subexpression as convex, concave, affine, constant

» variation: tag subexpression signs, use for monotonicity
e.g., (-)? is increasing if its argument is nonnegative

v

sufficient (but not necessary) for convexity

Constructive convex analysis 15



Example

forx<1l y<l1

(x—y)?
1 — max(x,y)
is convex
> (leaves) x, y, and 1 are affine expressions

v

max(x, y) is convex; x — y is affine

v

1 — max(x,y) is concave

v

function u?/v is convex, monotone decreasing in v for v > 0
hence, convex with u = x — y, v =1 — max(x, y)

Constructive convex analysis

16



Example

» f(x) =1+ x? is convex

» but cannot show this using constructive convex analysis

> (leaves) 1 is constant, x is affine

» x2 is convex

» 1+ x? is convex

» but v/1+ x? doesn’t match general rule

» writing f(x) = ||(1, x)||2, however, works
» (1, x) is affine
> |I(1,x)||2 is convex

Constructive convex analysis

17



Disciplined convex programming (DCP)

v

framework for describing convex optimization problems

v

based on constructive convex analysis

v

sufficient but not necessary for convexity

v

basis for several domain specific languages and tools for
convex optimization

Constructive convex analysis

18



Disciplined convex program: Structure

a DCP has

> zero or one objective, with form

» minimize {scalar convex expression} or
» maximize {scalar concave expression}

> zero or more constraints, with form

> {convex expression} <= {concave expression} or
» {concave expression} >= {convex expression} or
» {affine expression} == {affine expression}

Constructive convex analysis 19



Disciplined convex program: Expressions

> expressions formed from

» variables,
> constants/parameters,
» and functions from a library

» library functions have known convexity, monotonicity, and
sign properties

> all subexpressions match general composition rule

Constructive convex analysis

20



Disciplined convex program

» a valid DCP is

> convex-by-construction (cf. posterior convexity analysis)
> ‘syntactically’ convex (can be checked ‘locally’)

» convexity depends only on attributes of library functions,
and not their meanings

» e.g., could swap /- and /-, or exp- and (), since their
attributes match

Constructive convex analysis 21



Outline

Cone representation

Cone representation

22



Cone representation

(Nesterov, Nemirovsky)

cone representation of (convex) function f:

» f(x) is optimal value of cone program

minimize c'x+d’y+e

subject to AlX]:b, [X]GIC
y y

> cone program in (x,y), we but minimize only over y

> i.e., we define f by partial minimization of cone program

Cone representation 23



Examples
> f(x) = —(xy)'/? is optimal value of SDP
minimize  —t

. X
subject to l ‘

with variable t
> f(x) = xpq) + -+ x| is optimal value of LP
minimize 17\ — kv
subjectto x+vl=X\—p
A=0, p=0

with variables A, u, v

Cone representation 24



SDP representations

Nesterov, Nemirovsky, and others have worked out SDP
representations for many functions, e.g.,

» xP, p > 1 rational

> —(det X)1/n

- SR () (X = XT)

- IX] = 01(X) (X € R™*)

> [ X[l = 225 0i(X) (X € R™T)

some of these representations are not obvious . ..

Cone representation

25



Outline

Canonicalization

Canonicalization

26



Canonicalization

> start with problem in DCP form, with cone representable
library functions

» automatically transform to equivalent cone program

Canonicalization

27



Canonicalization: How it’s done
» for each (non-affine) library function f(x) appearing in
parse tree, with cone representation
minimize c'x+dTy+e

subject to A [ x ] = b,
y

| ex

» add new variable y, and constraints above
> replace f(x) with affine expression c"x +dTy + e

> yields problem with linear equality and cone constaints

> DCP ensures equivalence of resulting cone program

Canonicalization 28



Outline

Parser/solvers and parser/generators

Parser/solvers and parser/generators

29



Parser/solvers and parser/generators

» parser/solver (CVX, YALMIP)

» canonicalize problem instance (with numeric parameters)
» solve using cone program solver

Parser/solvers and parser/generators

30



Parser/solvers and parser/generators

» parser/solver (CVX, YALMIP)

» canonicalize problem instance (with numeric parameters)
» solve using cone program solver

» parser/generator (CVXGEN, QCML)

» canonicalize problem family (with symbolic parameters)

» generate mapping from original problem to cone program

» connect to generic (QCML) or custom (CVXGEN) cone
program solver

Parser/solvers and parser/generators

30



Example

» constrained least-squares problem with ¢; regularization

minimize  ||Ax — b||3 + A||x]1
subject to  [|x]|oo <1

» variable x € R"
> constants/parameters A, b, A >0

Parser/solvers and parser/generators 31



CvX

» parser/solver (M. Grant)

» embedded in Matlab; targets multiple cone solvers

» CVX specification for example problem:

cvx_begin
variable x(n) % declare vector variable
minimize (sum(square(A*x-b,2)) + lambda*norm(x,1))
subject to norm(x,inf) <= 1

cvx_end

» here A, b, )\ are constants

Parser/solvers and parser/generators

32



Some functions in the CVX library

function meaning attributes
norm(x, p) Ix]lp, p>1 cvx
square (x) x? cvX
square_pos (x) (x4)? cvx, nondecr
pos (x) X+ cvx, nondecr
sum_largest (x,k) X1+ X cvx, nondecr
sqrt (x) VX, x>0 ccv, nondecr
inv_pos(x) 1/x, x>0 cvx, nonincr
max (x) max{xy,...,Xn} cvx, nondecr
quad_over_lin(x,y) | x?/y, y >0 cvx, nonincr in y
lambda_max (X) Amax(X), X = XT cvX

{ X2, x| <1
huber (x) cvX

2x| -1, |x|>1

Parser/solvers and parser/generators

33



CVXGEN

v

parser/generator (J. Mattingley)

v

domain specific input

v

emits flat C source that solves problem family

v

goal:

» spend (perhaps much) time generating code
» save (hopefully much) time solving problem instances

Parser/solvers and parser/generators

34



CVXGEN specification

» CVXGEN specification for example problem:

parameters
lambda positive
A(m,n)
b (m)

end

variables
x(n)

end

minimize

sum(square (A*x - b)) + lambda*normil (x)

subject to
norm_inf(x) <= 1
end

> here A, b, )\ are symbolic parameters

Parser/solvers and parser/generators



Sample solve times for CVXGEN generated code

(on quad-core 3.4GHz Xeon with 16GB of RAM)

problem vars constrs | SDPT3 (ms) CVXGEN (ms)
portfolio | 110 111 350 0.4
svm 111 200 510 0.6
generator | 286 620 470 1.5
battery 144 289 310 0.3

Parser/solvers and parser/generators

36



Quadratic cone modeling language (QCML)

v

parser /generator (E. Chu)

v

domain specific input; parser embedded in Python
targets CVXOPT in Python
> can generate source code for several targets

v

v

goal: seamless transition from prototyping to code
generation

Parser/solvers and parser/generators

37



QCML specification

» full Python source

from gecml import QCML
p = QCMLQO) # QCML parser object
p-parse(""" # QCML begin
dimensions m n
parameters A(m,n) b(m)
parameter lambda positive
variable x(n)
minimize sum(square(A*x - b)) + lambda*norml (x)
norm_inf(x) <=1
ey # QCML end
# canonicalize the problem
p.canonicalize()

Parser/solvers and parser/generators



Using QCML as parser/solver

> once canonicalized, create a Python solver

p.codegen("cvxopt") # creates Python source code
f = p.solver # bytecode for solver function

Parser/solvers and parser/generators 39



Using QCML as parser/solver

> once canonicalized, create a Python solver

p.codegen("cvxopt") # creates Python source code
f = p.solver # bytecode for solver function

» f is a Python function mapping parameters into solutions

sol = f(params) # solution for problem instance

» params is a dictionary holding parameter values
» sol is a dictionary holding optimal value, solver status, ...

Parser/solvers and parser/generators 39



Using QCML as parser/solver

> once canonicalized, create a Python solver

p.codegen ( ) # creates Python source code
£ p.solver # bytecode for solver function

» f is a Python function mapping parameters into solutions
sol = f(params) # solution for problem instance
» params is a dictionary holding parameter values

» sol is a dictionary holding optimal value, solver status, ...

» combine canonicalize, codegen, and solver
sol = p.solve(params)

> recreates CVX-like functionality

Parser/solvers and parser/generators 39



Using QCML as parser/generator

» once canonicalized, create external source code

p-codegen("ecos" # creates C solver source code

Parser/solvers and parser/generators

40



Using QCML as parser/generator

» once canonicalized, create external source code

p-codegen ( )  # creates C solver source code

» generates folder with

» C source that maps problem parameters into SOCP
» C source that maps SOCP solution into problem solution
> Makefile

> links with external solver, in this case, ECOS

Parser/solvers and parser/generators

40



Using QCML as parser/generator

» once canonicalized, create external source code

p-codegen ( )  # creates C solver source code

» generates folder with

» C source that maps problem parameters into SOCP
» C source that maps SOCP solution into problem solution
> Makefile

> links with external solver, in this case, ECOS

> recreates CVXGEN-like functionality

Parser/solvers and parser/generators

40



Using QCML as parser/generator

» once canonicalized, create external source code

p-codegen ( )  # creates C solver source code

» generates folder with
» C source that maps problem parameters into SOCP
» C source that maps SOCP solution into problem solution
> Makefile

> links with external solver, in this case, ECOS

> recreates CVXGEN-like functionality

» (eventually) target custom deployment context

» embedded systems, GPGPU, clusters, ...

Parser/solvers and parser/generators

40



Outline

Conclusions

Conclusions

41



Conclusions

v

DCP is a formalization of constructive convex analysis
» simple method to certify problem as convex
» basis of several domain specific languages for convex
optimization

v

parser /solvers make rapid prototyping easy

v

parser/generators yield solvers that

> are extremely fast
» can be embedded in real-time applications

v

hybrid solution unifies prototyping and deployment

Conclusions 42



References

» Disciplined Convex Programming (Grant, Boyd, Ye)

» Graph Implementations for Nonsmooth Convex Programs
(Grant, Boyd)

» Automatic Code Generation for Real-Time Convex
Optimization (Mattingley, Boyd)

» Code Generation for Embedded Second-Order Cone
Programming (Chu, Parikh, Domahidi, Boyd)

» CVX (Grant, Boyd)
» CVXGEN (Mattingley, Boyd)
QCML (Chu, Boyd)

v

Conclusions

43



	Convex optimization
	Constructive convex analysis
	Cone representation
	Canonicalization
	Parser/solvers and parser/generators
	Conclusions

