
Domain Specific Languages

for Convex Optimization

Stephen Boyd

joint work with E. Chu, J. Mattingley, M. Grant

Electrical Engineering Department, Stanford University

ROKS 2013, Leuven, 9 July 2013

1

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

2

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Convex optimization 3

Convex optimization problem — standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

with variable x ∈ Rn

◮ objective and inequality constraints f0, . . . , fm are convex

for all x , y , θ ∈ [0, 1],

fi(θx + (1 − θ)y) ≤ θfi(x) + (1 − θ)fi(y)

i.e., graphs of fi curve upward

◮ equality constraints are linear

Convex optimization 4

Convex optimization problem — conic form

minimize cT x

subject to Ax = b

x ∈ K
with variable x ∈ Rn

◮ K is convex cone
◮ x ∈ K is a generalized nonnegativity constraint

◮ linear objective, equality constraints

◮ special cases:
◮ K = Rn

+: linear program (LP)
◮ K = Sn

+: semidefinite program (SDP)

◮ the modern canonical form

Convex optimization 5

Why convex optimization?

◮ beautiful, fairly complete, and useful theory

Convex optimization 6

Why convex optimization?

◮ beautiful, fairly complete, and useful theory

◮ solution algorithms that work well in theory and practice
◮ convex optimization is actionable

Convex optimization 6

Why convex optimization?

◮ beautiful, fairly complete, and useful theory

◮ solution algorithms that work well in theory and practice
◮ convex optimization is actionable

◮ many applications in
◮ control
◮ combinatorial optimization
◮ signal and image processing
◮ communications, networks
◮ circuit design
◮ machine learning, statistics
◮ finance

. . . and many more

Convex optimization 6

How do you solve a convex problem?

◮ use someone else’s (‘standard’) solver (LP, QP, SOCP, . . .)
◮ easy, but your problem must be in a standard form
◮ cost of solver development amortized across many users

◮ write your own (custom) solver
◮ lots of work, but can take advantage of special structure

◮ transform your problem into a standard form, and use a
standard solver

◮ extends reach of problems solvable by standard solvers

◮ this talk: methods to formalize and automate last approach

Convex optimization 7

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Constructive convex analysis 8

How can you tell if a problem is convex?

approaches:

◮ use basic definition, first or second order conditions, e.g.,
∇2f (x) � 0

◮ via convex calculus: construct f using
◮ library of basic functions that are convex
◮ calculus rules or transformations that preserve convexity

Constructive convex analysis 9

Convex functions: Basic examples

◮ xp (p ≥ 1 or p ≤ 0), −xp (0 ≤ p ≤ 1)

◮ ex , − log x , x log x

◮ aT x + b

◮ xT Px (P � 0)

◮ ‖x‖ (any norm)

◮ max(x1, . . . , xn)

Constructive convex analysis 10

Convex functions: Less basic examples

◮ xT x/y (y > 0), xT Y −1x (Y ≻ 0)

◮ log(ex1 + · · · + exn)

◮ − logΦ(x) (Φ is Gaussian CDF)

◮ log det X−1 (X ≻ 0)

◮ λmax(X) (X = XT)

Constructive convex analysis 11

Calculus rules

◮ nonnegative scaling: f convex, α ≥ 0 =⇒ αf convex

◮ sum: f , h convex =⇒ f + g convex

◮ affine composition: f convex −→ f (Ax + b) convex

◮ pointwise maximum: f1, . . . , fm convex =⇒ maxi fi(x) convex

◮ partial minimization: f (x , y) convex =⇒ infy f (x , y) convex

◮ composition: h convex increasing, f convex =⇒ h(f (x)) convex

Constructive convex analysis 12

Examples

from basic functions and calculus rules, we can show convexity of . . .

◮ piecewise-linear function: maxi=1....,k(a
T
i x + bi)

◮ ℓ1-regularized least-squares cost: ‖Ax − b‖2

2
+ λ‖x‖1, with λ ≥ 0

◮ sum of largest k elements of x : x[1] + · · · + x[k]

Constructive convex analysis 13

A general composition rule

h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

◮ h is increasing in argument i , and fi is convex, or

◮ h is decreasing in argument i , and fi is concave, or

◮ fi is affine

◮ there’s a similar rule for concave compositions

◮ this one rule subsumes most of the others

◮ in turn, it can be derived from the partial minimization rule

Constructive convex analysis 14

Constructive convexity verification

◮ start with function given as expression

◮ build parse tree for expression
◮ leaves are variables or constants/parameters
◮ nodes are functions of children, following general rule

◮ tag each subexpression as convex, concave, affine, constant
◮ variation: tag subexpression signs, use for monotonicity

e.g., (·)2 is increasing if its argument is nonnegative

◮ sufficient (but not necessary) for convexity

Constructive convex analysis 15

Example

for x < 1, y < 1
(x − y)2

1 − max(x , y)

is convex

◮ (leaves) x , y , and 1 are affine expressions

◮ max(x , y) is convex; x − y is affine

◮ 1 − max(x , y) is concave

◮ function u2/v is convex, monotone decreasing in v for v > 0
hence, convex with u = x − y , v = 1 − max(x , y)

Constructive convex analysis 16

Example

◮ f (x) =
√

1 + x2 is convex

◮ but cannot show this using constructive convex analysis
◮ (leaves) 1 is constant, x is affine
◮ x2 is convex
◮ 1 + x2 is convex
◮ but

√
1 + x2 doesn’t match general rule

◮ writing f (x) = ‖(1, x)‖2, however, works
◮ (1, x) is affine
◮ ‖(1, x)‖2 is convex

Constructive convex analysis 17

Disciplined convex programming (DCP)

◮ framework for describing convex optimization problems

◮ based on constructive convex analysis

◮ sufficient but not necessary for convexity

◮ basis for several domain specific languages and tools for
convex optimization

Constructive convex analysis 18

Disciplined convex program: Structure

a DCP has

◮ zero or one objective, with form
◮ minimize {scalar convex expression} or
◮ maximize {scalar concave expression}

◮ zero or more constraints, with form
◮ {convex expression} <= {concave expression} or
◮ {concave expression} >= {convex expression} or
◮ {affine expression} == {affine expression}

Constructive convex analysis 19

Disciplined convex program: Expressions

◮ expressions formed from
◮ variables,
◮ constants/parameters,
◮ and functions from a library

◮ library functions have known convexity, monotonicity, and
sign properties

◮ all subexpressions match general composition rule

Constructive convex analysis 20

Disciplined convex program

◮ a valid DCP is
◮ convex-by-construction (cf. posterior convexity analysis)
◮ ‘syntactically’ convex (can be checked ‘locally’)

◮ convexity depends only on attributes of library functions,
and not their meanings

◮ e.g., could swap
√· and 4

√·, or exp · and (·)+, since their
attributes match

Constructive convex analysis 21

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Cone representation 22

Cone representation

(Nesterov, Nemirovsky)

cone representation of (convex) function f :

◮ f (x) is optimal value of cone program

minimize cT x + dT y + e

subject to A

[

x

y

]

= b,

[

x

y

]

∈ K

◮ cone program in (x , y), we but minimize only over y

◮ i.e., we define f by partial minimization of cone program

Cone representation 23

Examples

◮ f (x) = −(xy)1/2 is optimal value of SDP

minimize −t

subject to

[

x t

t y

]

� 0

with variable t

◮ f (x) = x[1] + · · · + x[k] is optimal value of LP

minimize 1T λ − kν
subject to x + ν1 = λ − µ

λ � 0, µ � 0

with variables λ, µ, ν

Cone representation 24

SDP representations

Nesterov, Nemirovsky, and others have worked out SDP
representations for many functions, e.g.,

◮ xp, p ≥ 1 rational

◮ −(det X)1/n

◮

∑k
i=1 λi(X) (X = XT)

◮ ‖X‖ = σ1(X) (X ∈ Rm×n)

◮ ‖X‖∗ =
∑

i σi(X) (X ∈ Rm×n)

some of these representations are not obvious . . .

Cone representation 25

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Canonicalization 26

Canonicalization

◮ start with problem in DCP form, with cone representable
library functions

◮ automatically transform to equivalent cone program

Canonicalization 27

Canonicalization: How it’s done

◮ for each (non-affine) library function f (x) appearing in
parse tree, with cone representation

minimize cT x + dT y + e

subject to A

[

x

y

]

= b,

[

x

y

]

∈ K

◮ add new variable y , and constraints above
◮ replace f (x) with affine expression cT x + dT y + e

◮ yields problem with linear equality and cone constaints

◮ DCP ensures equivalence of resulting cone program

Canonicalization 28

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Parser/solvers and parser/generators 29

Parser/solvers and parser/generators

◮ parser/solver (CVX, YALMIP)
◮ canonicalize problem instance (with numeric parameters)
◮ solve using cone program solver

Parser/solvers and parser/generators 30

Parser/solvers and parser/generators

◮ parser/solver (CVX, YALMIP)
◮ canonicalize problem instance (with numeric parameters)
◮ solve using cone program solver

◮ parser/generator (CVXGEN, QCML)
◮ canonicalize problem family (with symbolic parameters)
◮ generate mapping from original problem to cone program
◮ connect to generic (QCML) or custom (CVXGEN) cone

program solver

Parser/solvers and parser/generators 30

Example

◮ constrained least-squares problem with ℓ1 regularization

minimize ‖Ax − b‖2
2
+ λ‖x‖1

subject to ‖x‖∞ ≤ 1

◮ variable x ∈ Rn

◮ constants/parameters A, b, λ > 0

Parser/solvers and parser/generators 31

CVX

◮ parser/solver (M. Grant)

◮ embedded in Matlab; targets multiple cone solvers

◮ CVX specification for example problem:

cvx begin

variable x(n) % declare vector variable

minimize (sum(square(A*x-b,2)) + lambda*norm(x,1))

subject to norm(x,inf) <= 1

cvx end

◮ here A, b, λ are constants

Parser/solvers and parser/generators 32

Some functions in the CVX library

function meaning attributes

norm(x, p) ‖x‖p, p ≥ 1 cvx

square(x) x2 cvx

square_pos(x) (x+)
2 cvx, nondecr

pos(x) x+ cvx, nondecr

sum_largest(x,k) x[1] + · · · + x[k] cvx, nondecr

sqrt(x)
√

x , x ≥ 0 ccv, nondecr

inv_pos(x) 1/x , x > 0 cvx, nonincr

max(x) max{x1, . . . , xn} cvx, nondecr

quad_over_lin(x,y) x2/y , y > 0 cvx, nonincr in y

lambda_max(X) λmax(X), X = XT cvx

huber(x)

{

x2, |x | ≤ 1

2|x | − 1, |x | > 1
cvx

Parser/solvers and parser/generators 33

CVXGEN

◮ parser/generator (J. Mattingley)

◮ domain specific input

◮ emits flat C source that solves problem family

◮ goal:
◮ spend (perhaps much) time generating code
◮ save (hopefully much) time solving problem instances

Parser/solvers and parser/generators 34

CVXGEN specification

◮ CVXGEN specification for example problem:

parameters

lambda positive

A(m,n)

b(m)

end

variables

x(n)

end

minimize

sum(square(A*x - b)) + lambda*norm1(x)

subject to

norm inf(x) <= 1

end

◮ here A, b, λ are symbolic parameters

Parser/solvers and parser/generators 35

Sample solve times for CVXGEN generated code

(on quad-core 3.4GHz Xeon with 16GB of RAM)

problem vars constrs SDPT3 (ms) CVXGEN (ms)

portfolio 110 111 350 0.4

svm 111 200 510 0.6

generator 286 620 470 1.5

battery 144 289 310 0.3

Parser/solvers and parser/generators 36

Quadratic cone modeling language (QCML)

◮ parser/generator (E. Chu)

◮ domain specific input; parser embedded in Python

◮ targets CVXOPT in Python

◮ can generate source code for several targets

◮ goal: seamless transition from prototyping to code
generation

Parser/solvers and parser/generators 37

QCML specification

◮ full Python source

from qcml import QCML

p = QCML() # QCML parser object

p.parse(""" # QCML begin

dimensions m n

parameters A(m,n) b(m)

parameter lambda positive

variable x(n)

minimize sum(square(A*x - b)) + lambda*norm1(x)

norm inf(x) <= 1

""") # QCML end

canonicalize the problem

p.canonicalize()

Parser/solvers and parser/generators 38

Using QCML as parser/solver

◮ once canonicalized, create a Python solver

p.codegen("cvxopt") # creates Python source code

f = p.solver # bytecode for solver function

Parser/solvers and parser/generators 39

Using QCML as parser/solver

◮ once canonicalized, create a Python solver

p.codegen("cvxopt") # creates Python source code

f = p.solver # bytecode for solver function

◮ f is a Python function mapping parameters into solutions

sol = f(params) # solution for problem instance

◮ params is a dictionary holding parameter values
◮ sol is a dictionary holding optimal value, solver status, . . .

Parser/solvers and parser/generators 39

Using QCML as parser/solver

◮ once canonicalized, create a Python solver

p.codegen("cvxopt") # creates Python source code

f = p.solver # bytecode for solver function

◮ f is a Python function mapping parameters into solutions

sol = f(params) # solution for problem instance

◮ params is a dictionary holding parameter values
◮ sol is a dictionary holding optimal value, solver status, . . .

◮ combine canonicalize, codegen, and solver

sol = p.solve(params)

◮ recreates CVX-like functionality

Parser/solvers and parser/generators 39

Using QCML as parser/generator

◮ once canonicalized, create external source code

p.codegen("ecos") # creates C solver source code

Parser/solvers and parser/generators 40

Using QCML as parser/generator

◮ once canonicalized, create external source code

p.codegen("ecos") # creates C solver source code

◮ generates folder with
◮ C source that maps problem parameters into SOCP
◮ C source that maps SOCP solution into problem solution
◮ Makefile

◮ links with external solver, in this case, ECOS

Parser/solvers and parser/generators 40

Using QCML as parser/generator

◮ once canonicalized, create external source code

p.codegen("ecos") # creates C solver source code

◮ generates folder with
◮ C source that maps problem parameters into SOCP
◮ C source that maps SOCP solution into problem solution
◮ Makefile

◮ links with external solver, in this case, ECOS

◮ recreates CVXGEN-like functionality

Parser/solvers and parser/generators 40

Using QCML as parser/generator

◮ once canonicalized, create external source code

p.codegen("ecos") # creates C solver source code

◮ generates folder with
◮ C source that maps problem parameters into SOCP
◮ C source that maps SOCP solution into problem solution
◮ Makefile

◮ links with external solver, in this case, ECOS

◮ recreates CVXGEN-like functionality

◮ (eventually) target custom deployment context
◮ embedded systems, GPGPU, clusters, . . .

Parser/solvers and parser/generators 40

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Conclusions 41

Conclusions

◮ DCP is a formalization of constructive convex analysis
◮ simple method to certify problem as convex
◮ basis of several domain specific languages for convex

optimization

◮ parser/solvers make rapid prototyping easy

◮ parser/generators yield solvers that
◮ are extremely fast
◮ can be embedded in real-time applications

◮ hybrid solution unifies prototyping and deployment

Conclusions 42

References

◮ Disciplined Convex Programming (Grant, Boyd, Ye)

◮ Graph Implementations for Nonsmooth Convex Programs

(Grant, Boyd)

◮ Automatic Code Generation for Real-Time Convex

Optimization (Mattingley, Boyd)

◮ Code Generation for Embedded Second-Order Cone

Programming (Chu, Parikh, Domahidi, Boyd)

◮ CVX (Grant, Boyd)

◮ CVXGEN (Mattingley, Boyd)

◮ QCML (Chu, Boyd)

Conclusions 43

	Convex optimization
	Constructive convex analysis
	Cone representation
	Canonicalization
	Parser/solvers and parser/generators
	Conclusions

