Domain Specific Languages for Convex Optimization

Stephen Boyd

joint work with E. Chu, J. Mattingley, M. Grant Electrical Engineering Department, Stanford University

ROKS 2013, Leuven, 9 July 2013

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Convex optimization

Convex optimization problem - standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

with variable $x \in \mathbf{R}^{n}$

- objective and inequality constraints f_{0}, \ldots, f_{m} are convex for all $x, y, \theta \in[0,1]$,

$$
f_{i}(\theta x+(1-\theta) y) \leq \theta f_{i}(x)+(1-\theta) f_{i}(y)
$$

i.e., graphs of f_{i} curve upward

- equality constraints are linear

Convex optimization problem - conic form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \in \mathcal{K}
\end{array}
$$

with variable $x \in \mathbf{R}^{n}$

- \mathcal{K} is convex cone
- $x \in \mathcal{K}$ is a generalized nonnegativity constraint
- linear objective, equality constraints
- special cases:
- $\mathcal{K}=\mathbf{R}_{+}^{n}$: linear program (LP)
- $\mathcal{K}=\mathbf{S}_{+}^{n}$: semidefinite program (SDP)
- the modern canonical form

Why convex optimization?

- beautiful, fairly complete, and useful theory

Why convex optimization?

- beautiful, fairly complete, and useful theory
- solution algorithms that work well in theory and practice
- convex optimization is actionable

Why convex optimization?

- beautiful, fairly complete, and useful theory
- solution algorithms that work well in theory and practice
- convex optimization is actionable
- many applications in
- control
- combinatorial optimization
- signal and image processing
- communications, networks
- circuit design
- machine learning, statistics
- finance
... and many more

How do you solve a convex problem?

- use someone else's ('standard') solver (LP, QP, SOCP, ...)
- easy, but your problem must be in a standard form
- cost of solver development amortized across many users
- write your own (custom) solver
- lots of work, but can take advantage of special structure
- transform your problem into a standard form, and use a standard solver
- extends reach of problems solvable by standard solvers
- this talk: methods to formalize and automate last approach

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Constructive convex analysis

How can you tell if a problem is convex?

approaches:

- use basic definition, first or second order conditions, e.g., $\nabla^{2} f(x) \succeq 0$
- via convex calculus: construct f using
- library of basic functions that are convex
- calculus rules or transformations that preserve convexity

Convex functions: Basic examples

- $x^{p}(p \geq 1$ or $p \leq 0),-x^{p}(0 \leq p \leq 1)$
- $e^{x},-\log x, x \log x$
- $a^{T} x+b$
- $x^{\top} P x(P \succeq 0)$
- $\|x\|$ (any norm)
- $\max \left(x_{1}, \ldots, x_{n}\right)$

Convex functions: Less basic examples

- $x^{\top} x / y(y>0), x^{T} Y^{-1} x(Y \succ 0)$
- $\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$
- $-\log \Phi(x)(\Phi$ is Gaussian CDF)
- $\log \operatorname{det} X^{-1}(X \succ 0)$
- $\lambda_{\max }(X)\left(X=X^{T}\right)$

Calculus rules

- nonnegative scaling: f convex, $\alpha \geq 0 \Longrightarrow \alpha f$ convex
- sum: f, h convex $\Longrightarrow f+g$ convex
- affine composition: f convex $\longrightarrow f(A x+b)$ convex
- pointwise maximum: f_{1}, \ldots, f_{m} convex $\Longrightarrow \max _{i} f_{i}(x)$ convex
- partial minimization: $f(x, y)$ convex $\Longrightarrow \inf _{y} f(x, y)$ convex
- composition: h convex increasing, f convex $\Longrightarrow h(f(x))$ convex

Examples

from basic functions and calculus rules, we can show convexity of ...

- piecewise-linear function: $\max _{i=1 \ldots, k}\left(a_{i}^{T} x+b_{i}\right)$
- ℓ_{1}-regularized least-squares cost: $\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}$, with $\lambda \geq 0$
- sum of largest k elements of $x: x_{[1]}+\cdots+x_{[k]}$

A general composition rule

$h\left(f_{1}(x), \ldots, f_{k}(x)\right)$ is convex when h is convex and for each i

- h is increasing in argument i, and f_{i} is convex, or
- h is decreasing in argument i, and f_{i} is concave, or
- f_{i} is affine
- there's a similar rule for concave compositions
- this one rule subsumes most of the others
- in turn, it can be derived from the partial minimization rule

Constructive convexity verification

- start with function given as expression
- build parse tree for expression
- leaves are variables or constants/parameters
- nodes are functions of children, following general rule
- tag each subexpression as convex, concave, affine, constant
- variation: tag subexpression signs, use for monotonicity e.g., $(\cdot)^{2}$ is increasing if its argument is nonnegative
- sufficient (but not necessary) for convexity

Example

for $x<1, y<1$

$$
\frac{(x-y)^{2}}{1-\max (x, y)}
$$

is convex

- (leaves) x, y, and 1 are affine expressions
- $\max (x, y)$ is convex; $x-y$ is affine
- $1-\max (x, y)$ is concave
- function u^{2} / v is convex, monotone decreasing in v for $v>0$ hence, convex with $u=x-y, v=1-\max (x, y)$

Example

- $f(x)=\sqrt{1+x^{2}}$ is convex
- but cannot show this using constructive convex analysis
- (leaves) 1 is constant, x is affine
- x^{2} is convex
- $1+x^{2}$ is convex
- but $\sqrt{1+x^{2}}$ doesn't match general rule
- writing $f(x)=\|(1, x)\|_{2}$, however, works
- $(1, x)$ is affine
- $\|(1, x)\|_{2}$ is convex

Disciplined convex programming (DCP)

- framework for describing convex optimization problems
- based on constructive convex analysis
- sufficient but not necessary for convexity
- basis for several domain specific languages and tools for convex optimization

Disciplined convex program: Structure

a DCP has

- zero or one objective, with form
- minimize \{scalar convex expression\} or
- maximize \{scalar concave expression\}
- zero or more constraints, with form
- \{convex expression\} <= \{concave expression\} or
- \{concave expression\} >= \{convex expression\} or
- \{affine expression $\}==$ affine expression $\}$

Disciplined convex program: Expressions

- expressions formed from
- variables,
- constants/parameters,
- and functions from a library
- library functions have known convexity, monotonicity, and sign properties
- all subexpressions match general composition rule

Disciplined convex program

- a valid DCP is
- convex-by-construction (cf. posterior convexity analysis)
- 'syntactically' convex (can be checked 'locally')
- convexity depends only on attributes of library functions, and not their meanings
- e.g., could swap $\sqrt{ } \cdot$ and $\sqrt[4]{ }$, or $\exp \cdot$ and $(\cdot)_{+}$, since their attributes match

Outline

Convex optimization
 Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Cone representation

(Nesterov, Nemirovsky)
cone representation of (convex) function f :

- $f(x)$ is optimal value of cone program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d^{T} y+e \\
\text { subject to } & A\left[\begin{array}{l}
x \\
y
\end{array}\right]=b, \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathcal{K}
\end{array}
$$

- cone program in (x, y), we but minimize only over y
- i.e., we define f by partial minimization of cone program

Examples

- $f(x)=-(x y)^{1 / 2}$ is optimal value of SDP

$$
\begin{array}{ll}
\operatorname{minimize} & -t \\
\text { subject to } & {\left[\begin{array}{ll}
x & t \\
t & y
\end{array}\right] \succeq 0}
\end{array}
$$

with variable t

- $f(x)=x_{[1]}+\cdots+x_{[k]}$ is optimal value of LP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} \lambda-k \nu \\
\text { subject to } & x+\nu \mathbf{1}=\lambda-\mu \\
& \lambda \succeq 0, \quad \mu \succeq 0
\end{array}
$$

with variables λ, μ, ν

SDP representations

Nesterov, Nemirovsky, and others have worked out SDP representations for many functions, e.g.,

- $x^{p}, p \geq 1$ rational
- $-(\operatorname{det} X)^{1 / n}$
- $\sum_{i=1}^{k} \lambda_{i}(X)\left(X=X^{T}\right)$
- $\|X\|=\sigma_{1}(X)\left(X \in \mathbf{R}^{m \times n}\right)$
- $\|X\|_{*}=\sum_{i} \sigma_{i}(X)\left(X \in \mathbf{R}^{m \times n}\right)$
some of these representations are not obvious ...

Outline

```
Convex optimization
Constructive convex analysis
Cone representation
```

Canonicalization

Parser/solvers and parser/generators

Conclusions

Canonicalization

Canonicalization

- start with problem in DCP form, with cone representable library functions
- automatically transform to equivalent cone program

Canonicalization: How it's done

- for each (non-affine) library function $f(x)$ appearing in parse tree, with cone representation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d^{T} y+e \\
\text { subject to } & A\left[\begin{array}{l}
x \\
y
\end{array}\right]=b, \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathcal{K}
\end{array}
$$

- add new variable y, and constraints above
- replace $f(x)$ with affine expression $c^{T} x+d^{T} y+e$
- yields problem with linear equality and cone constaints
- DCP ensures equivalence of resulting cone program

Outline

Convex optimization
 Constructive convex analysis

Cone representation

Canonicalization

Parser/solvers and parser/generators

Conclusions

Parser/solvers and parser/generators

Parser/solvers and parser/generators

- parser/solver (CVX, YALMIP)
- canonicalize problem instance (with numeric parameters)
- solve using cone program solver

Parser/solvers and parser/generators

- parser/solver (CVX, YALMIP)
- canonicalize problem instance (with numeric parameters)
- solve using cone program solver
- parser/generator (CVXGEN, QCML)
- canonicalize problem family (with symbolic parameters)
- generate mapping from original problem to cone program
- connect to generic (QCML) or custom (CVXGEN) cone program solver

Example

- constrained least-squares problem with ℓ_{1} regularization

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
\text { subject to } & \|x\|_{\infty} \leq 1
\end{array}
$$

- variable $x \in \mathbf{R}^{n}$
- constants/parameters $A, b, \lambda>0$

CVX

- parser/solver (M. Grant)
- embedded in Matlab; targets multiple cone solvers
- CVX specification for example problem:

```
cvx_begin
    variable x(n) % declare vector variable
    minimize (sum(square(A*x-b,2)) + lambda*norm(x,1))
    subject to norm(x,inf) <= 1
cvx_end
```

- here A, b, λ are constants

Some functions in the CVX library

function	meaning	attributes		
$\operatorname{norm}(\mathrm{x}, \mathrm{p})$	$\\|x\\|_{p,} p \geq 1$	CVX		
square (x)	x^{2}	CVX		
square_pos(x)	$\left(x_{+}\right)^{2}$	cvx, nondecr		
pos (x)	χ_{+}	cvx, nondecr		
sum_largest (x,k)	$x_{[1]}+\cdots+x_{[k]}$	CVx, nondecr		
sqrt (x)	$\sqrt{x}, x \geq 0$	ccv, nondecr		
inv_pos (x)	$1 / x, x>0$	CVX, nonincr		
$\max (\mathrm{x})$	$\max \left\{x_{1}, \ldots, x_{n}\right\}$	cvx, nondecr		
quad_over_lin(x,y)	$x^{2} / y, y>0$	CVX, nonincr in y		
lambda_max (X)	$\lambda_{\max }(X), X=X^{T}$	CVX		
huber (x)	$\begin{cases}x^{2}, & \|x\| \leq 1 \\ 2\|x\|-1, & \|x\|>1\end{cases}$	CVX		

CVXGEN

- parser/generator (J. Mattingley)
- domain specific input
- emits flat C source that solves problem family
- goal:
- spend (perhaps much) time generating code - save (hopefully much) time solving problem instances

CVXGEN specification

- CVXGEN specification for example problem:

```
parameters
    lambda positive
    A(m,n)
    b (m)
end
variables
    x(n)
end
minimize
    sum(square(A*x - b)) + lambda*norm1(x)
subject to
    norm_inf(x) <= 1
end
```

- here A, b, λ are symbolic parameters

Sample solve times for CVXGEN generated code

(on quad-core 3.4 GHz Xeon with 16GB of RAM)

problem	vars	constrs	SDPT3 (ms)	CVXGEN (ms)
portfolio	110	111	350	0.4
svm	111	200	510	0.6
generator	286	620	470	1.5
battery	144	289	310	0.3

Quadratic cone modeling language (QCML)

- parser/generator (E. Chu)
- domain specific input; parser embedded in Python
- targets CVXOPT in Python
- can generate source code for several targets
- goal: seamless transition from prototyping to code generation

QCML specification

- full Python source
from qcml import QCML
$\mathrm{p}=$ QCML () \# QCML parser object
p.parse(""" \# QCML begin
dimensions m n
parameters A(m,n) b(m)
parameter lambda positive
variable x(n)
minimize sum(square (A*x - b)) + lambda*norm1 (x) norm_inf(x) <= 1
""") \# QCML end
\# canonicalize the problem
p.canonicalize()

Using QCML as parser/solver

- once canonicalized, create a Python solver

$$
\begin{array}{ll}
\text { p.codegen("cvxopt") } & \text { \# creates Python source code } \\
\text { f }=\text { p.solver } & \text { \# bytecode for solver function }
\end{array}
$$

Using QCML as parser/solver

- once canonicalized, create a Python solver

```
p.codegen("cvxopt") # creates Python source code
f = p.solver # bytecode for solver function
```

- f is a Python function mapping parameters into solutions sol = f(params) \# solution for problem instance
- params is a dictionary holding parameter values
- sol is a dictionary holding optimal value, solver status, ...

Using QCML as parser/solver

- once canonicalized, create a Python solver
p.codegen("cvxopt") \# creates Python source code f = p.solver \# bytecode for solver function
- f is a Python function mapping parameters into solutions sol = f(params) \# solution for problem instance
- params is a dictionary holding parameter values
- sol is a dictionary holding optimal value, solver status, ...
- combine canonicalize, codegen, and solver sol = p.solve(params)
- recreates CVX-like functionality

Using QCML as parser/generator

- once canonicalized, create external source code

```
p.codegen("ecos") # creates C solver source code
```


Using QCML as parser/generator

- once canonicalized, create external source code

```
p.codegen("ecos") # creates C solver source code
```

- generates folder with
- C source that maps problem parameters into SOCP
- C source that maps SOCP solution into problem solution
- Makefile
- links with external solver, in this case, ECOS

Using QCML as parser/generator

- once canonicalized, create external source code

```
p.codegen("ecos") # creates C solver source code
```

- generates folder with
- C source that maps problem parameters into SOCP
- C source that maps SOCP solution into problem solution
- Makefile
- links with external solver, in this case, ECOS
- recreates CVXGEN-like functionality

Using QCML as parser/generator

- once canonicalized, create external source code

```
p.codegen("ecos") # creates C solver source code
```

- generates folder with
- C source that maps problem parameters into SOCP
- C source that maps SOCP solution into problem solution
- Makefile
- links with external solver, in this case, ECOS
- recreates CVXGEN-like functionality
- (eventually) target custom deployment context
- embedded systems, GPGPU, clusters, ...

Outline

```
Convex optimization
Constructive convex analysis
Cone representation
Canonicalization
Parser/solvers and parser/generators
```

Conclusions

Conclusions

- DCP is a formalization of constructive convex analysis
- simple method to certify problem as convex
- basis of several domain specific languages for convex optimization
- parser/solvers make rapid prototyping easy
- parser/generators yield solvers that
- are extremely fast
- can be embedded in real-time applications
- hybrid solution unifies prototyping and deployment

References

- Disciplined Convex Programming (Grant, Boyd, Ye)
- Graph Implementations for Nonsmooth Convex Programs (Grant, Boyd)
- Automatic Code Generation for Real-Time Convex Optimization (Mattingley, Boyd)
- Code Generation for Embedded Second-Order Cone Programming (Chu, Parikh, Domahidi, Boyd)
- CVX (Grant, Boyd)
- CVXGEN (Mattingley, Boyd)
- QCML (Chu, Boyd)

