Connections between the Lasso and

Support Vector Machines

Martin Jaggi

Ecole Polytechnique
2013/07/08
ROKS: 3 -International Workshop on Advances in Regularization, Optimization,

Outline

- An Equivalence between the Lasso and Support Vector Machines
-Reduction from Lasso:to:SVM
-Reduction from SVM: to Llasso
A Aplications
- Greedy Algorithms
(from optimization and signal processing)

SVM

= large margin linear classifier

Training data

SVM
= large margin linear classifier

SVM
= large margin linear classiffer

SVM
= large margin linear classifier

SVM

SVM

Polytope distance

Polytope distance

Polytope distance

Polytope distance

SVM variants

 whose dual problem is of the form, $\min \|A x\|^{2}$

SVM variants

whose dual problem is of the form $\min \|A x\|^{2}$

SVM variants

whose dual problem is of the form $\min \|A x\|^{2}$

(all with or without using kernels)

$$
A x \|^{2}=x^{T} A^{T} A x
$$

Lasso

$=\ell_{1}$-regularized least squares regression

$$
\min _{\|x\| i \leq t}\|A x-b\|^{2}
$$

Lasso

$=\ell_{1}$-regularized least squares regression

$$
\min \|x\| x=t \|^{2}
$$

- Sparseregression

Lasso

$=\ell_{1}$-regularized least squares regression

$$
\min _{\|x\| 1 \leq t}\|A x \quad b\|^{2}
$$

- Sparse regression
- Feature selection

Lasso

$=\ell_{1}$-regularized least squares regression

$$
\min _{x \in L_{1}} \| A x-\left.b\right|^{2}
$$

- Sparseregression
- Feature selection
(Lasso $\preceq ~ S V M) ~$

Given a Lasso $\quad \min _{x \in L_{1}}\|A x-b\|^{2}$
construct an equivalent SVM instance $\min _{x^{\prime} \in \Delta}\left\|\tilde{A} x^{\prime}\right\|^{2}$
(Lasso $\preceq ~ S V M) ~$

Given a Lasso $\quad \min _{x \in L_{1}}\|A x-b\|^{2}$
construct an equivalent SVM instance $\min _{x^{\prime} \in \Delta}\left\|\tilde{A} x^{\prime}\right\|^{2}$
(Lasso $\preceq ~ S V M) ~$
$A \in \mathbb{R}^{d \times n}$
$b \in \mathbb{R}^{d}$

Given a Lasso $\quad \min _{x \in L_{1}}\|A x-b\|^{2}$
construct an equivalent SVM instance $\min _{x^{\prime} \in \Delta}\left\|\tilde{A} x^{\prime}\right\|^{2}$

Given a Lasso $\min _{x \in L_{1}}\|A x-b\|^{2}$
construct an equivalent SVM instance $\min _{x^{\prime} \in \Delta}\left\|\tilde{A} x^{\prime}\right\|^{2}$

$A \in \mathbb{R}^{d \times n}$
$b \in \mathbb{R}^{d}$

Given a Lasso
 $$
\min _{x \in L_{1}}\|A x-b\|^{2}
$$

construct an equivalent SVM instance $\min _{x^{\prime} \in \Delta}\left\|\tilde{A} x^{\prime}\right\|^{2}$

(Lasso \preceq SVM)
Geometric interpretation:

$$
\min _{x \in I_{1}}+A x \|^{2}
$$

(Lasso \preceq SVM)
 Geometric interpretation:
 $$
\min \lim _{i n} \operatorname{Ax}-6 \|^{2}
$$

(Lasso \preceq SVM)
 Geometric interpretation:
 $$
\min \lim _{2} 4 x=-6 \|^{2}
$$

(Lasso \preceq SVM)
 Geometric interpretation:
 $$
\min \lim _{\mathrm{x}}^{\mathrm{L}} \mathrm{~A}-6 \|^{2}
$$

$$
6
$$

(Lasso \preceq SVM)
 Geometric interpretation:
 $$
\min _{2 \in E_{i}} \mid 4 x-\sigma \|^{2}
$$

b

(Lasso \preceq SVM)
 Geometric interpretation:
 $$
\min 14 x-6 \|^{2}
$$

b

$A L_{1}$

(Lasso \preceq SVM)

Geometric interpretation:

$$
\min
$$

b

$A L_{1}-A \operatorname{conv}\left(\left\{ \pm \mathrm{e}_{h}\right\}\right)$

(Lasso \preceq SVM)

Geometric interpretation:

$$
\min 14 x-s, 6 \|^{2}
$$

b

$A \operatorname{conv}(S)$

$$
=\operatorname{conv}(A S)
$$

$A L_{1}-A \operatorname{conv}\left(\left\{ \pm \mathrm{e}_{i}\right\}\right)=\operatorname{conv}\left(A\left\{ \pm \mathrm{e}_{i}\right\}\right)$

(Lasso \preceq SVM)

Geometric interpretation:

$$
\min \operatorname{lif}_{2 \in L_{1}}-b \|^{2}
$$

b

$A \operatorname{conv}(S)$
$A L_{1}=A \operatorname{conv}\left(\left\{ \pm \mathrm{e}_{i}\right\}\right)=\operatorname{conv}\left(A\left\{ \pm \mathrm{e}_{i}\right\}\right)=\operatorname{conv}\left(\left\{ \pm A_{i}\right\}\right)$

(SVM \preceq Lasso)

Given an SVM $\min _{x \in \triangle}\|A x\|^{2}$ construct an equivalent Lasso instance $\min _{x \in L_{1}}\|\tilde{A} x-\hat{b}\|^{2}$

more challenging reduction!

(SVM \preceq Lasso)

Given an SVM $\quad \min _{x \in \Delta}\|A x\|^{2}$
construct an equivalent Lasso instance $\min _{x \in L_{1}}\|\tilde{A} x-\tilde{b}\|^{2}$
more challenging reduction!

Lasso:

$$
\begin{aligned}
& \tilde{A}=A+\tilde{b} 1^{T} \\
& \in \mathbb{R}^{d \times n} \\
& \text { b oc-w }
\end{aligned}
$$

(SVM \preceq Lasso)

Given an SVM $\min _{x \in \Delta}\|A x\|^{2}$
construct an equivalent Lasso instance $\min _{x \in L_{1}}\|\tilde{A} x-\tilde{b}\|^{2}$
more challenging reduction!

$$
\begin{aligned}
& \text { Lasso: } \\
& \tilde{A}=A+b 1^{T} \\
& \in \mathbb{R}^{d \times n}
\end{aligned}
$$

w weakly separating for A

(SVM \preceq Lasso)

Geometric interpretation:

$$
\begin{aligned}
& A: A+b 1^{T} \quad \in \mathbb{R}^{d \times n} \\
& b \propto-w
\end{aligned}
$$

Geometric interpretation:

Geometric interpretation:

(SVM \preceq Lasso)

Geometric interpretation:

$$
\begin{aligned}
& A=A+\hat{b} 1^{T} \in \mathbb{R}^{d \times n} \\
& \hat{b} \propto-w
\end{aligned}
$$

(SVM \preceq Lasso)
Properties of the constructed Lasso instance

$$
\min _{x \in L_{1}}\|\tilde{A} x-\tilde{b}\|^{2}
$$

Theorem:

For any $x \in L_{1}$ for the Lasso, there is a vector
$x^{\prime} \in \Delta^{\prime}$, of the same or better Lasso objective.
This $x^{\prime} \in \Delta$ attains the same objective in the SVM.

$$
\begin{aligned}
& \hat{A}=A+\tilde{b} 1^{T} \in \mathbb{R}^{d \times n} \\
& \hat{b} \propto-w
\end{aligned}
$$

Implications:

Implications:

- Algorithms apply to both problems

Implications:

- Algorithms apply to both problems
sublinear time algorithms: $Q(n)$

Implications:

- Algorithms apply to both problems
sublinear time algorithms: $\mathcal{Q}(\stackrel{n}{n}+\mathbb{a})$

Implications for Lasso

Implications:

- Algorithms apply to both problems
sublinear time algorithms: $\mathcal{Q}(\underline{n}+\mathbb{t})$

Implications for Lasso

- Kernelized version

Implications:

- Algorithms apply to both problems
sublinear time algorithms: $\mathcal{Q}(\underline{n}+\mathbb{t})$

Implications for Lasso

- Kernelized version
defined in terms of $\kappa\left(A_{i}, A_{j}\right), \kappa\left(A_{i}, b\right), \kappa(b, b)$

$$
\kappa(y, z)=\langle\Psi(y), \Psi(z)\rangle
$$

Implications for SVMs

- Support vectors
$=$ non-zeros in the Lasso solution
o number:of:SV/s

Implications for SVMs

- Support vectors
= non-zeros in the Lasso solution
onumber of SV/s
- Screening rules
(discardpointswhichean be guarantee d to be nonsvs)

Implications for SVMs

- Support vectors
$=$ non-zeros in the Easso solution
onumber of SV/s
- Screeningrules
(discardpoints when canbe
guarante d to be nonsV/s)

Implications for SVMs

- Support vectors
$=$ non-zeros in the Easso solution
onumber of SV/s
- Screeningrules
(discardpoints whicheanbe
guarantee d to be nonsvs)

Implications for SVMs

- Support vectors
$=$ non-zeros in the Easso solution
- number:ofsV/s
- Screening rules
(discardpoints which can be guaranteed to be nonsVs)

Implications for SVMs

- Support vectors
$=$ non-zeros in the Lasso solution
- number of SV/s
- Screening rules
(discardpoints which can be guarante ed to be non SVS)

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}}\|A x-b\|^{2}
$$

Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of $A x$

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}}\|A x-b\|^{2}
$$

Signalprocessing sparse recovery methods recover a sparse x from a noisy measurement b of $A x$

Frank-Wolfe

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}} \| A x
$$

Signalprocessing sparse recovery methods recover a sparse x from a noisy measurement b of $A x$

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}} \| A x
$$

Signalprocessing sparse recovery methods recover a sparse x from a noisy measurement b of $A x$

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}}\|A x-b\|^{2}
$$

Signalprocessing sparse recovery methods recover a sparse x from a noisy measurement b of $A x$

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}}\|A x-b\|^{2}
$$

Signalprocessing sparse recovery methods recover a sparse x from a noisy measurement b of $A x$

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}}\|A x-b\|^{2}
$$

Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of $A x$

$$
i=\operatorname{argmax}\left|\nabla f(x)_{i}\right|
$$

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}}\|A x-b\|^{2}
$$

Frank-Wolfe

Signal processing

 sparse recovery methods recover a sparse x from a noisy measurement b of $A x$selects the same
matching pursuit

$$
i=\operatorname{argmax}\left|\nabla f(x)_{i}\right|
$$

Greedy Algorithms

Convex optimization methods applied to

$$
\min _{x \in L_{1}}\|A x-b\|^{2}
$$

selects the same

$$
i=\arg \max |\nabla f(x)|
$$

fully corrective
Frank-Wolfe
Frank-Wolfe

> equivalent to

Signal processing

 sparse recovery methods recover a sparse x from a noisy measurement b of $A x$matching pursuit

OMP

Thanks

