Connections between the Lasso and Support Vector Machines

Martin Jaggi Ecole Polytechnique 2013 / 07 / 08

ROKS '13 - International Workshop on Advances in Regularization, Optimization, Kernel Methods and Support Vector Machines: Theory and Applications

Outline

- An Equivalence between the Lasso and Support Vector Machines
 - Reduction from Lasso to SVM
 - Reduction from SVM to Lasso
 - Applications
- Greedy Algorithms (from optimization and signal processing)

w

 \boldsymbol{w}

n points in \mathbb{R}^d

 \boldsymbol{w}

 w^*

n points in \mathbb{R}^d

 $\boldsymbol{\mathcal{U}}$

 w^*

n points in \mathbb{R}^d

 $\boldsymbol{\mathcal{U}}$

 w^*

n points in \mathbb{R}^d

$$\min_{x \in \Delta} \|Ax\|^2$$

SVM variants

whose dual problem is of the form

 $\min_{x \in \Delta} \|Ax\|^2$

	Hard margin	Soft margin (L2-loss)	Soft margin (LI-loss)
Two class no offset/bias	\checkmark	\checkmark	×
Two class regularized offset/bias			×
One Class	\checkmark	\checkmark	×

SVM variants

whose dual problem is of the form

 $\min_{x \in \Delta} \|Ax\|^2$

	Hard margin	Soft margin (L2-loss)	Soft margin (LI-loss)
Two class no offset/bias	\checkmark	\checkmark	X
Two class regularized offset/bias			×
One Class	\checkmark	\checkmark	×

 $\frac{1}{2} \|\bar{w}\|_2^2 - \rho + \frac{C}{2} \sum_i \xi_i^2$ $\min_{\substack{\bar{w}\in\mathbb{R}^d,\ \rho\in\mathbb{R},\\\xi\in\mathbb{R}^n}}$ s.t. $y_i \cdot \bar{w}^T X_i \ge \rho - \xi_i \quad \forall i \in [1..n]$

s.t. $y_i \cdot \bar{w}^T X_i \ge \rho - \xi_i \quad \forall i \in [1..n]$

SVM variants

whose dual problem is of the form

 $\min_{x \in \Delta} \|Ax\|^2$

$$\min_{\|x\|_1 \le t} \|Ax - b\|^2$$

$$\min_{\|x\|_1 \le t} \|Ax - b\|^2$$

Sparse regression

$$\min_{\|x\|_1 \le t} \|Ax - b\|^2$$

Feature selection

- Sparse regression
- Feature selection

Geometric interpretation:

 $\min_{x \in L_1} \|Ax - b\|^2$

 $(Lasso \leq SVM)$ Geometric interpretation:

 $\min_{x \in L_1} \|Ax - b\|^2$

Geometric interpretation:

 $\min_{x \in L_1} \|Ax - b\|^2$

 $AL_1 = A \operatorname{conv}(\{\pm \mathbf{e}_i\})$

 $(SVM \leq Lasso)$

 $A \in \mathbb{R}^{d \times n}$

more challenging reduction!

 $(SVM \leq Lasso)$

$$A \in \mathbb{R}^{d \times n}$$

Given an SVM
$$\min_{x \in \Delta} ||Ax||^2$$
construct an equivalent Lasso instance $\min_{x \in L_1} ||\tilde{A}x - \tilde{b}||^2$

more challenging reduction!

Lasso:

$$\tilde{A} := A + \tilde{b}\mathbf{1}^T$$
 $\in \mathbb{R}^{d \times n}$
 $\tilde{b} \propto -w$

 $(SVM \preceq Lasso)$

$$A \in \mathbb{R}^{d \times n}$$

Given an SVM
$$\min_{x \in \Delta} ||Ax||^2$$
construct an equivalent Lasso instance $\min_{x \in L_1} ||\tilde{A}x - \tilde{b}||^2$

more challenging reduction!

A second constants
$$\widetilde{A} := A + \widetilde{b} \mathbf{1}^T$$

 $\widetilde{b} \propto -w$

$$\in \mathbb{R}^{d \times n}$$

w weakly separating for A

$(SVM \leq Lasso)$ Geometric interpretation:

 $\{\tilde{A}_i\}$

w weakly separating for A

 w^*

$(SVM \preceq Lasso)$ Geometric interpretation:

$$\begin{aligned} \tilde{A} &:= A + \tilde{b} \mathbf{1}^T \\ \tilde{b} &\propto -w \end{aligned} \in \mathbb{R}^{d \times n}$$

 $\{\tilde{A}_i\}$

w weakly separating for A

 w^*

•

 \overline{w}

 $\begin{aligned} \tilde{A} &:= A + \tilde{b} \mathbf{1}^T \\ \tilde{b} &\propto -w \end{aligned} \in \mathbb{R}^{d \times n}$

RÃ;

w weakly separating for A

 w^*

w weakly separating for A

$(SVM \leq Lasso)$

Properties of the constructed Lasso instance

$$\min_{x \in L_1} \|\tilde{A}x - \tilde{b}\|^2$$

Theorem:

For any $x \in L_1$ for the Lasso, there is a vector $x' \in \Delta$, of the same or better Lasso objective. This $x' \in \Delta$ attains the same objective in the SVM.

$$\begin{split} \tilde{A} &:= A + \tilde{b} \mathbf{1}^T \\ \tilde{b} &\propto -w \end{split} \in \mathbb{R}^{d \times n} \end{split}$$

w weakly separating for A

w

11

 \tilde{A}_i

Algorithms apply to both problems

Algorithms apply to both problems

sublinear time algorithms $ilde{O}(n+d)$

Algorithms apply to both problems

sublinear time algorithms $ilde{O}(n+d)$

Implications for Lasso

Algorithms apply to both problems

sublinear time algorithms $ilde{O}(n+d)$

Implications for Lasso

Kernelized version

$$\min_{x \in L_1} \left\| \sum_i \Psi(A_i) x_i - \Psi(b) \right\|_{\mathcal{H}}^2$$

Algorithms apply to both problems

sublinear time algorithms $ilde{O}(n+d)$

Implications for Lasso

Kernelized version

$$\min_{x \in L_1} \left\| \sum_i \Psi(A_i) x_i - \Psi(b) \right\|_{\mathcal{H}}^2$$

defined in terms of $\kappa(A_i, A_j), \ \kappa(A_i, b), \ \kappa(b, b)$

 $\kappa(y,z) = \langle \Psi(y), \overline{\Psi(z)} \rangle$

Support vectors
 = non-zeros in the Lasso solution
 number of SVs

Support vectors
 = non-zeros in the Lasso solution
 • number of SVs

Screening rules

 (discard points which can be guaranteed to be non-SVs)

Support vectors
 = non-zeros in the Lasso solution
 • number of SVs

20

 Screening rules (discard points which can be guaranteed to be non-SVs)

Support vectors
 = non-zeros in the Lasso solution
 number of SVs

U

 Screening rules (discard points which can be guaranteed to be non-SVs)

Support vectors
non-zeros in the Lasso solution
number of SVs

Screening rules

(discard points which can be

guaranteed to be non-SVs)

Support vectors
non-zeros in the Lasso solution
number of SVs
Screening rules
(discard points which can be

guaranteed to be non-SVs)

Convex optimization

methods applied to

Signal processing

sparse recovery methods

Convex optimization

methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$

Frank-Wolfe

Signal processing

sparse recovery methods

Convex optimization
methods applied to $min ||Ax - b||^2$ $x \in L_1$

 $\cdot x$

 $L_1 \subset \mathbb{R}^n$

Signal processing

sparse recovery methods

Convex optimization methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$

Signal processing

sparse recovery methods

Convex optimization methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$

Signal processing

sparse recovery methods

Convex optimization

methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$

Signal processing

sparse recovery methods

Convex optimization methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$

Signal processing

sparse recovery methods

Signal processing

sparse recovery methods

recover a sparse x from a noisy measurement b of Ax

Frank-Wolfe

selects the same atom per step $i := \arg \max |\nabla f(x)_i|$

matching pursuit

