Introduction	WellSVM	SSL	MIL	MMC	Conclusion
			000000000000000000000000000000000000000		

Learning from Weakly Labeled Data

James Kwok

Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong

(joint work with Yufeng Li, Ivor Tsang, Zhi-Hua Zhou)

ROKS 2013

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
•0000000		0000000	000000000000000000000000000000000000000		
Outline					

- Introduction
- WellSVM
- Example applications
 - semi-supervised learning
 - 2 multiple instance learning
 - 3 maximum margin clustering
- Conclusion

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
o●oooooo	00000000	0000000000000	000000000000	000000	
Introduction					

Obtaining labeled data is expensive and difficult

- may involve hazardous experiments
- may involve expensive expertise (e.g., drug prediction)

Weakly labeled data: labels are incomplete / partially known

- semi-supervised learning (SSL)
- multiple instance learning (MIL)
- maximum margin clustering (MMC)

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
0000000	00000000	00000000000000	000000000000	000000	
Introduction					

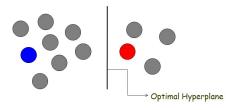
Obtaining labeled data is expensive and difficult

- may involve hazardous experiments
- may involve expensive expertise (e.g., drug prediction)

Weakly labeled data: labels are incomplete / partially known

- semi-supervised learning (SSL)
- multiple instance learning (MIL)
- maximum margin clustering (MMC)

Semi-Supervised Learning (SSL)



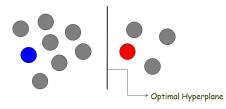
• few labeled data, lots of unlabeled data

Applications

• text categorization, medical image segmentation, word sense disambiguation, object detection

labels are partially known

Semi-Supervised Learning (SSL)

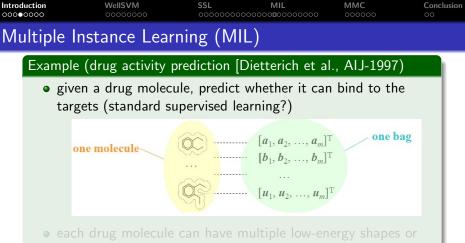


• few labeled data, lots of unlabeled data

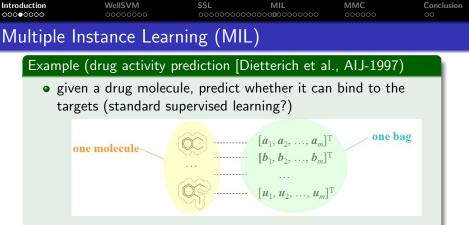
Applications

• text categorization, medical image segmentation, word sense disambiguation, object detection

labels are partially known



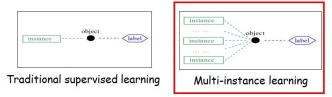
- conformations
- a molecule can bind to a target if at least one of its conformations can bind
- biochemists can only tell the binding capability of a molecule, but not a particular conformation



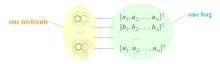
- each drug molecule can have multiple low-energy shapes or conformations
- a molecule can bind to a target if at least one of its conformations can bind
- biochemists can only tell the binding capability of a molecule, but not a particular conformation



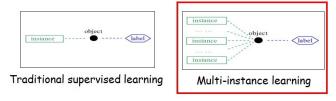
- each shape \Rightarrow instance; each molecule \Rightarrow bag
- a bag is labeled positive when it contains at least one positive instance (key instance), and is labeled negative otherwise
- only the bags (but not individual instances) have known labels



labels only implicitly known



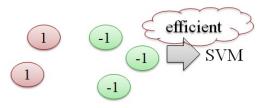
- each shape \Rightarrow instance; each molecule \Rightarrow bag
- a bag is labeled positive when it contains at least one positive instance (key instance), and is labeled negative otherwise
- only the bags (but not individual instances) have known labels



labels only implicitly known

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
00000000	00000000	0000000	000000000000000000000000000000000000000	000000	00
Clustering					
Clustering					

Supervised learning



Maximum margin clustering [Xu et al, NIPS-2005]

labels are totally unknown

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
○○○○○○●○	00000000	000000000	000000000000000000000000000000000000	000000	
Weak-Label	Learning				

Besides learning the parameters, needs to infer the integer-valued labels of the samples

difficult mixed-integer programming

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
○○○○○○○●	00000000	0000000000000	00000000000	000000	
Existing Alg	orithms				

- branch and bound [Chapelle et al., JMLR-2008], deterministic annealing [Sindhwani et al., ICML-2006]
- not quite scalable
- semidefinite (SDP) relaxations [Xu et al., NIPS-2005]
 - convex
 - used on small data sets (thousands of examples)
- non-convex optimization
 - alternating minimization [Andrews et al., NIPS-2003], convex-concave procedure [Collobert et al., JMLR-2006]
 - often efficient, but can get stuck in local minima

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
○○○○○○○●	00000000	00000000	000000000000000000000000000000000000	000000	
Existing Alg	orithms				

- branch and bound [Chapelle et al., JMLR-2008], deterministic annealing [Sindhwani et al., ICML-2006]
- not quite scalable
- semidefinite (SDP) relaxations [Xu et al., NIPS-2005]
 - convex
 - used on small data sets (thousands of examples)
- non-convex optimization
 - alternating minimization [Andrews et al., NIPS-2003], convex-concave procedure [Collobert et al., JMLR-2006]
 - often efficient, but can get stuck in local minima

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
○○○○○○○●	00000000	00000000	000000000000000000000000000000000000	000000	
Existing Alg	orithms				

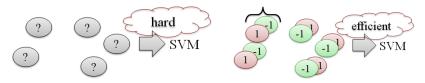
- branch and bound [Chapelle et al., JMLR-2008], deterministic annealing [Sindhwani et al., ICML-2006]
- not quite scalable
- semidefinite (SDP) relaxations [Xu et al., NIPS-2005]
 - convex
 - used on small data sets (thousands of examples)
- non-convex optimization
 - alternating minimization [Andrews et al., NIPS-2003], convex-concave procedure [Collobert et al., JMLR-2006]
 - often efficient, but can get stuck in local minima

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
○○○○○○○●	00000000	00000000	000000000000000000000000000000000000	000000	
Existing Alg	orithms				

- branch and bound [Chapelle et al., JMLR-2008], deterministic annealing [Sindhwani et al., ICML-2006]
- not quite scalable
- semidefinite (SDP) relaxations [Xu et al., NIPS-2005]
 - convex
 - used on small data sets (thousands of examples)
- non-convex optimization
 - alternating minimization [Andrews et al., NIPS-2003], convex-concave procedure [Collobert et al., JMLR-2006]
 - often efficient, but can get stuck in local minima

WELLSVM (WEakly LabeLed SVM)

A variant of the (convex) SVM with label generation



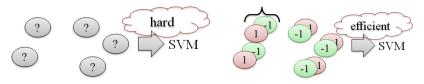
- generate the label vectors
- 2 combine them via multiple kernel learning

Advantages

- a tight convex relaxation of the original mixed integer programming problem
 - at least as tight as existing convex relaxations
- can make use of state-of-the-art SVM softwares
 - scalable and efficient

WELLSVM (WEakly LabeLed SVM)

A variant of the (convex) SVM with label generation



- generate the label vectors
- 2 combine them via multiple kernel learning

Advantages

- a tight convex relaxation of the original mixed integer programming problem
 - at least as tight as existing convex relaxations
- can make use of state-of-the-art SVM softwares
 - scalable and efficient

Large-Margin Weak-Label Learning

- data set $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N \ (\mathbf{x}_i \in \mathcal{X}: \text{ input; } y_i \in \{\pm 1\}: \text{ output})$
- find $f : \mathcal{X} \to \{\pm 1\}$ to minimize the structural risk functional $\min_f \Omega(f) + C \ \ell_f(\mathcal{D})$
 - Ω : regularizer; $\ell_f(\mathcal{D})$: empirical loss on \mathcal{D}
 - Ω and ℓ_f are convex

Labels $\hat{\mathbf{y}} = [\hat{y}_1, \cdots, \hat{y}_N]' \in \{\pm 1\}^N$ not available on all N examples \Rightarrow need to be learned

• minimize w.r.t. f and (unknown labels in) $\hat{\mathbf{y}}$

 $\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{f} \Omega(f) + C \ell_f(\{\mathbf{x}_i, \hat{y}_i\}_{i=1}^N)$

• \mathcal{B} : set of candidate label assignments

Example

+ve and -ve examples are known to be approximately balanced

• $\mathcal{B} = \{ \hat{\mathbf{y}} : -\beta \leq \sum_{i=1}^{N} \hat{y}_i \leq \beta \}$ for some constant β

Large-Margin Weak-Label Learning

- data set $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N \ (\mathbf{x}_i \in \mathcal{X}: \text{ input}; \ y_i \in \{\pm 1\}: \text{ output})$
- find $f : \mathcal{X} \to \{\pm 1\}$ to minimize the structural risk functional $\min_f \Omega(f) + C \ell_f(\mathcal{D})$
 - Ω : regularizer; $\ell_f(\mathcal{D})$: empirical loss on \mathcal{D}
 - Ω and ℓ_f are convex

Labels $\hat{\mathbf{y}} = [\hat{y}_1, \cdots, \hat{y}_N]' \in \{\pm 1\}^N$ not available on all N examples \Rightarrow need to be learned

• minimize w.r.t. f and (unknown labels in) $\hat{\mathbf{y}}$

 $\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{f} \Omega(f) + C \ell_f(\{\mathbf{x}_i, \hat{y}_i\}_{i=1}^N)$

• B: set of candidate label assignments

Example

+ve and -ve examples are known to be approximately balanced

• $\mathcal{B} = \{ \hat{\mathbf{y}} : -\beta \leq \sum_{i=1}^{N} \hat{y}_i \leq \beta \}$ for some constant β

Introduction	WellSVM	SSL MIL	MMC	Conclusion
	0000000	000000000000000000000000000000000000000		

Large-Margin Weak-Label Learning

- data set $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N \ (\mathbf{x}_i \in \mathcal{X}: \text{ input}; \ y_i \in \{\pm 1\}: \text{ output})$
- find $f : \mathcal{X} \to \{\pm 1\}$ to minimize the structural risk functional $\min_f \Omega(f) + C \ell_f(\mathcal{D})$
 - Ω : regularizer; $\ell_f(\mathcal{D})$: empirical loss on \mathcal{D}
 - Ω and ℓ_f are convex

Labels $\hat{\mathbf{y}} = [\hat{y}_1, \cdots, \hat{y}_N]' \in \{\pm 1\}^N$ not available on all N examples \Rightarrow need to be learned

• minimize w.r.t. f and (unknown labels in) $\hat{\mathbf{y}}$

 $\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{f} \Omega(f) + C \ell_f(\{\mathbf{x}_i, \hat{y}_i\}_{i=1}^N)$

• \mathcal{B} : set of candidate label assignments

Example

 $+ \mbox{ve}$ and -ve examples are known to be approximately balanced

•
$$\mathcal{B} = \{ \hat{\mathbf{y}} \; : \; -eta \leq \sum_{i=1}^N \hat{y}_i \leq eta \}$$
 for some constant eta

I N.4					
	0000000		000000000000000000000000000000000000000		
Introduction	WellSVM	SSL	MIL	MMC	Conclusion

Large Margin Classifiers

Primal:
$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i : \hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i, \ \xi_i \ge 0$$

Dual:
$$\max_{\alpha} \alpha' \mathbf{1} - \frac{1}{2} \alpha' (\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}') \alpha : C \mathbf{1} \ge \alpha \ge \mathbf{0}$$

e α : dual variable: \mathbf{K} : kernel matrix

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\max_{\alpha} \, \alpha'\mathbf{1} - \tfrac{1}{2}\alpha' \big(\mathsf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}'\big)\alpha \; : \; C\mathbf{1} \ge \alpha \ge \mathbf{0}$$

More generally,

 $\min_{\hat{\mathbf{y}}\in\mathcal{B}}\max_{\boldsymbol{\alpha}\in\mathcal{A}} \ G(\boldsymbol{\alpha},\hat{\mathbf{y}})$

- convex set \mathcal{A} : e.g., $\{ \boldsymbol{\alpha} \mid C \mathbf{1} \geq \boldsymbol{\alpha} \geq \mathbf{0} \}$
- $G(\alpha, \hat{\mathbf{y}})$: concave in α for any fixed $\hat{\mathbf{y}}$
- G(α, ŷ) can be rewritten as G
 [¯](α, M), where M is a psd matrix, and G
 [¯] is concave in α and linear in M

• e.g.,
$$\alpha' 1 - \frac{1}{2} \alpha' (\mathsf{K} \odot \mathsf{M}_{\hat{y}}) \alpha$$
, where $\mathsf{M}_{\hat{y}} = \hat{y} \hat{y}'$

I N.4					
	0000000	000000000000000000000000000000000000000			
Introduction	WellSVM	SSL	MIL	MMC	Conclusion

Large Margin Classifiers

Primal:
$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i : \hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i, \ \xi_i \ge 0$$

Dual:
$$\max_{\alpha} \alpha' \mathbf{1} - \frac{1}{2} \alpha' (\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}') \alpha : C \mathbf{1} \ge \alpha \ge \mathbf{0}$$

 $\mathbf{e}_i \alpha$: dual variable: \mathbf{K} : kernel matrix

$$\min_{\hat{\mathbf{y}} \in \mathcal{B}} \max_{\boldsymbol{\alpha}} \ \boldsymbol{\alpha}' \mathbf{1} - \tfrac{1}{2} \boldsymbol{\alpha}' \big(\mathsf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}' \big) \boldsymbol{\alpha} \ : \ \mathbf{C} \mathbf{1} \geq \boldsymbol{\alpha} \geq \mathbf{0}$$

More generally,

 $\min_{\hat{\mathbf{y}}\in\mathcal{B}}\max_{\boldsymbol{\alpha}\in\mathcal{A}} G(\boldsymbol{\alpha},\hat{\mathbf{y}})$

- convex set \mathcal{A} : e.g., $\{\alpha \mid C\mathbf{1} \geq \alpha \geq \mathbf{0}\}$
- $G(\alpha, \hat{\mathbf{y}})$: concave in α for any fixed $\hat{\mathbf{y}}$
- $G(\alpha, \hat{\mathbf{y}})$ can be rewritten as $\overline{G}(\alpha, \mathbf{M})$, where **M** is a psd matrix, and \overline{G} is concave in α and linear in M

• e.g.,
$$\alpha' 1 - \frac{1}{2} \alpha' (\mathsf{K} \odot \mathsf{M}_{\hat{y}}) \alpha$$
, where $\mathsf{M}_{\hat{y}} = \hat{y} \hat{y}'$

	0000000	000000000000000000000000000000000000000			
Introduction	WellSVM	SSL	MIL	MMC	Conclusion

Large Margin Classifiers

Primal:
$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i : \hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i, \ \xi_i \ge 0$$

Dual:
$$\max_{\alpha} \alpha' \mathbf{1} - \frac{1}{2} \alpha' (\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}') \alpha : C \mathbf{1} \ge \alpha \ge \mathbf{0}$$

 $\mathbf{e} \ \alpha$: dual variable: \mathbf{K} : kernel matrix

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\max_{\boldsymbol{\alpha}}\ \alpha'\mathbf{1}-\tfrac{1}{2}\alpha'\big(\mathsf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}'\big)\alpha\ :\ C\mathbf{1}\geq\alpha\geq\mathbf{0}$$

More generally,

 $\min_{\hat{\mathbf{y}} \in \mathcal{B}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} G(\boldsymbol{\alpha}, \hat{\mathbf{y}})$

- convex set \mathcal{A} : e.g., $\{ \pmb{lpha} \mid \textit{C} \pmb{1} \geq \pmb{lpha} \geq \pmb{0} \}$
- $G(\alpha, \hat{\mathbf{y}})$: concave in α for any fixed $\hat{\mathbf{y}}$
- G(α, ŷ) can be rewritten as G
 [¯](α, M), where M is a psd matrix, and G
 [¯] is concave in α and linear in M

• e.g.,
$${m lpha}' {m 1} - {1\over 2} {m lpha}' ig({m K} \odot {m M}_{\hat{m y}} ig) {m lpha}, \;\;$$
 where ${m M}_{\hat{m y}} = \hat{m y} \hat{m y}'$

Introduction	WellSVM 000€0000	SSL 0000000000	MIL	MMC 000000	Conclusion
Relax					
	min	$_{\hat{\mathbf{y}}\in\mathcal{B}}max_{oldsymbol{lpha}\in\mathcal{A}}$	${\cal G}({m lpha}, \hat{m y})$		
• i	nterchange the orde	er of max $_{oldsymbol{lpha}\in \mathcal{A}}$	$_{4}$ and min $_{\hat{\mathbf{y}}\in\mathcal{B}}$		
	(upper-bound)	$\max_{\alpha \in \mathcal{A}} \min_{\hat{\mathbf{y}} \in \mathcal{B}} \mathbf{G}$	$f(oldsymbol{lpha}, \hat{oldsymbol{y}})$		
	$= \max_{\alpha \in \mathcal{A}} \left\{ \max_{\theta} \right\}$	$\times \theta$ s.t. $G(\alpha$	$(\hat{\mathbf{y}}_t) \geq heta, \ \forall \hat{\mathbf{y}}_t$	$_{t}\in\mathcal{B}\left\{ ight\}$	
• /	$u_t \ge 0$: dual variable	e for each co	onstraint		
	ma æ	$\max_{\boldsymbol{\mathcal{I}} \in \mathcal{A}} \min_{\boldsymbol{\mu} \in \mathcal{M}} \sum_{t: \hat{\mathbf{v}}_t \in I}$	$\mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$		
	• $\mathcal{M} = \{ \boldsymbol{\mu} \mid \sum_t \boldsymbol{\mu} \}$				
	convex in μ and cor and min	ncave in α =	> interchange	order of max	
	$\min_{\mu\in\mathcal{M}}$ m	$\max_{\alpha \in \mathcal{A}} \sum_{t \in \mathcal{A}} \sum_{$	$\hat{\mathbf{y}}_{t}\in\mathcal{B}$ $\mu_{t} G(oldsymbol{lpha}, \mathbf{y})$	\tilde{t}	

Introduction	WellSVM ○○○●○○○○	SSL 0000000000	MIL	MMC 000000	Conclusion
Relax					
	min	$_{\hat{\mathbf{y}}\in\mathcal{B}}max_{oldsymbol{lpha}\in\mathcal{A}}$	$\mathcal{G}(\boldsymbol{lpha}, \hat{\mathbf{y}})$		
٠	interchange the orde	er of max $_{oldsymbol{lpha}\in}$	$_{\mathcal{A}}$ and $min_{\hat{\mathbf{y}}\in \mathcal{E}}$	3	
	(upper-bound)				
	$= \max_{\alpha \in \mathcal{A}} \left\{ \max_{\theta} \right\}$	$\times \theta$ s.t. $G(a)$	$(\mathbf{x}, \hat{\mathbf{y}}_t) \geq heta, \ \forall \hat{\mathbf{y}}_t$	$_t \in \mathcal{B} \bigg\}$	
۲	$\mu_t \ge 0$: dual variabl	e for each c	onstraint		
			$\mathcal{L}_{\mathcal{B}}^{\mu_t} \mathcal{G}(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$		
	• $\mathcal{M} = \{ \boldsymbol{\mu} \mid \sum_t \boldsymbol{\mu}$	$t = 1, \mu_t \ge 0$)} (simplex)		
•	convex in μ and corand min	icave in α =	⇒ interchange	e order of max	
	$\min_{oldsymbol{\mu}\in\mathcal{M}}$ m	$\max_{\alpha\in\mathcal{A}}\ \sum_t$	$\hat{\mathbf{y}}_t \in \mathcal{B} \mu_t G(\boldsymbol{\alpha}, \mathbf{y})$	$\hat{y}_t)$	

Introducti		SSL 000000000	MIL 000000000000000000000000000000000000	MMC 000000	Conclusion
Relax	ĸ				
	mi	$n_{\hat{\mathbf{y}}\in\mathcal{B}}max_{oldsymbol{lpha}\in\mathcal{B}}$	$_{\mathcal{A}} \ G(oldsymbol{lpha}, \hat{oldsymbol{y}})$		
	• interchange the ord	ler of max $_{oldsymbol{lpha}}$	$_{{\mathfrak E}{\mathcal A}}$ and ${\sf min}_{{\hat {f y}}\in {\mathfrak L}}$	3	
	(upper-bound)	$\max \min_{\boldsymbol{\alpha} \in \mathcal{A} \ \hat{\mathbf{y}} \in \mathcal{B}}$	$G(oldsymbol{lpha}, \hat{oldsymbol{y}})$		
	$= \max_{\boldsymbol{\alpha} \in \mathcal{A}} \left\{ m \right\}$	$ax \theta$ s.t. $G(\theta)$	$(oldsymbol{lpha}, \hat{oldsymbol{y}}_t) \geq heta, \ orall \hat{oldsymbol{y}}$	${t}_t \in \mathcal{B} \bigg\}$	
	• $\mu_t \ge 0$: dual variab	le for each	constraint		
	n	$\max_{\boldsymbol{\mu} \in \mathcal{A}} \min_{\boldsymbol{\mu} \in \mathcal{M}} \sum_{t: \hat{\boldsymbol{y}}_{t} \in \mathcal{A}} \sum_{t \in \mathcal{X}_{t}} \sum_{t \in \mathcal{X}_{t$	$\sum_{B} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$		
	• $\mathcal{M} = \{ \boldsymbol{\mu} \mid \sum_t \boldsymbol{\mu} \}$	$\mu_t = 1, \mu_t \ge 1$	0} (simplex)		
	• convex in μ and co and min	ncave in $lpha$	\Rightarrow interchange	e order of max	
	$min_{\mu\in\mathcal{M}}$	$\max_{\alpha \in \mathcal{A}} \sum$	$t: \hat{\mathbf{y}}_t \in \mathcal{B} \mu_t G(\boldsymbol{\alpha}, \mathbf{y})$	$\hat{\mathbf{y}}_t$)	

Introduct		SSL MIL	MMC 000000	Conclusion
Rela	х			
	min	$_{\hat{\mathbf{y}}\in\mathcal{B}}max_{oldsymbol{lpha}\in\mathcal{A}}\;\;\mathcal{G}(oldsymbol{lpha},\hat{\mathbf{y}})$		
	• interchange the orde	er of max $_{oldsymbol{lpha}\in\mathcal{A}}$ and min $_{\hat{oldsymbol{y}}\in\mathcal{A}}$	в	

$$\begin{array}{ll} (\text{upper-bound}) & \max \min_{\boldsymbol{\alpha} \in \mathcal{A}} \ \boldsymbol{\hat{y}} \in \mathcal{B} \\ & = & \max_{\boldsymbol{\alpha} \in \mathcal{A}} \left\{ \max_{\boldsymbol{\theta}} \boldsymbol{\theta} \text{ s.t. } \boldsymbol{G}(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t) \geq \boldsymbol{\theta}, \ \forall \hat{\boldsymbol{y}}_t \in \mathcal{B} \right\} \end{array}$$

• $\mu_t \ge 0$: dual variable for each constraint

$$\max_{\boldsymbol{\alpha} \in \mathcal{A}} \min_{\boldsymbol{\mu} \in \mathcal{M}} \sum_{t: \hat{\boldsymbol{y}}_t \in \mathcal{B}} \mu_t G(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t)$$

• $\mathcal{M} = \{ \boldsymbol{\mu} \mid \sum_t \mu_t = 1, \mu_t \ge 0 \} \text{ (simplex)}$

• convex in μ and concave in $lpha \Rightarrow$ interchange order of max and min

$$\min_{oldsymbol{\mu}\in\mathcal{M}}\max_{oldsymbol{lpha}\in\mathcal{A}}\;\sum_{t:\hat{oldsymbol{y}}_t\in\mathcal{B}}\mu_t G(oldsymbol{lpha},\hat{oldsymbol{y}}_t)$$

Introducti		SSL MIL	MMC 000000	Conclusion
Rela	x			
	min _s	$\hat{oldsymbol{y}}_{oldsymbol{eta}\in\mathcal{B}}max_{oldsymbol{lpha}\in\mathcal{A}}\;\;\mathcal{G}(oldsymbol{lpha},\hat{oldsymbol{y}})$		
	• interchange the orde	r of max $_{oldsymbol{lpha}\in\mathcal{A}}$ and min $_{\hat{f y}\in\mathcal{A}}$	в	

$$\begin{array}{ll} (\text{upper-bound}) & \max \min_{\boldsymbol{\alpha} \in \mathcal{A}} \ \boldsymbol{\hat{y}} \in \mathcal{B} \\ & = & \max_{\boldsymbol{\alpha} \in \mathcal{A}} \left\{ \max_{\boldsymbol{\theta}} \boldsymbol{\theta} \text{ s.t. } \boldsymbol{G}(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t) \geq \boldsymbol{\theta}, \ \forall \hat{\boldsymbol{y}}_t \in \mathcal{B} \right\} \end{array}$$

• $\mu_t \ge 0$: dual variable for each constraint

$$\begin{aligned} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \min_{\boldsymbol{\mu} \in \mathcal{M}} \sum_{t: \hat{\boldsymbol{y}}_t \in \mathcal{B}} \mu_t G(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t) \\ \bullet \ \mathcal{M} = \{ \boldsymbol{\mu} \mid \sum_t \mu_t = 1, \mu_t \geq 0 \} \text{ (simplex)} \end{aligned}$$

• convex in μ and concave in lpha \Rightarrow interchange order of max and min

$$\min_{\mu \in \mathcal{M}} \max_{\boldsymbol{lpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\boldsymbol{lpha}, \hat{\mathbf{y}}_t)$$

Introduction	WellSVM ○○○○●○○○	SSL 000000000	MIL	MMC 000000	Conclusion
Tightest	Convex Relax	ation			
Origina	l problem				
m	$in_{\hat{\mathbf{y}}\in\mathcal{B}}max_{oldsymbol{lpha}\in\mathcal{A}}\ \mathcal{G}$	$(oldsymbol{lpha}, \hat{f y}) = {\sf m}$	in _{M∈𝒴0} max _o	$_{\alpha\in\mathcal{A}} \ \bar{G}(\alpha,M)$	
• Yo	$\mathbf{D} = \left\{ \mathbf{M} \mid \mathbf{M} = \mathbf{M} \right\}$	$_{\hat{\mathbf{y}}} \ (= \hat{\mathbf{y}} \hat{\mathbf{y}}'),$	$\hat{\mathbf{y}} \in \mathcal{B} \Big\}$		
Our rela	axation				
$\min_{oldsymbol{\mu}\in\mathcal{M}} n$	$\max_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{t:\hat{\boldsymbol{y}}_t\in\mathcal{B}}\mu_t G(\boldsymbol{\alpha},$	$\hat{\mathbf{y}}_t) = \prod_{\mu}$	$\min_{\boldsymbol{\alpha}\in\mathcal{M}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{t:\hat{\mathbf{y}}_t\in\mathcal{A}}$	$\mu_t \bar{G}(\boldsymbol{\alpha}, \mathbf{M}_{\hat{\mathbf{y}}_t})$	
		$=$ r $_{\mu}$	$\min_{\in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \bar{G} \left(\right)$	$oldsymbol{lpha}, \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t M_{\hat{\mathbf{y}}}$	$\hat{\ell}_t$
		= r ►	$\min_{\mathbf{l}\in\mathcal{Y}_1}\max_{\alpha\in\mathcal{A}}\bar{G}(\alpha)$	α, M)	
• \mathcal{Y}_1	$_{1}=\left\{ M\midM=\sum ight.$	$\hat{\mathbf{y}}_{t:\hat{\mathbf{y}}_t\in\mathcal{B}}\mu_t\mathbf{M}$	$_{\hat{\mathbf{y}}_t}, \ \boldsymbol{\mu} \in \mathcal{M} ig \}$		
	 convex hull of Y₀ at least as tight 				
	J	ames Kwok	Learning from Weakly	/ Labeled Data	

Introduction	WellSVM 0000€000	SSL 00000000	MIL	MMC 000000	Conclusion
Tightest (Convex Rela>	kation			

 $\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\mathsf{max}_{\alpha\in\mathcal{A}} \ \mathcal{G}(\alpha,\hat{\mathbf{y}}) = \mathsf{min}_{\mathsf{M}\in\mathcal{Y}_0}\mathsf{max}_{\alpha\in\mathcal{A}} \ \bar{\mathcal{G}}(\alpha,\mathsf{M})$

•
$$\mathcal{Y}_0 = \left\{ \mathsf{M} \mid \mathsf{M} = \mathsf{M}_{\hat{\mathbf{y}}} \ (= \hat{\mathbf{y}} \hat{\mathbf{y}}'), \ \hat{\mathbf{y}} \in \mathcal{B} \right\}$$

Our relaxation

$$\begin{aligned} \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\alpha, \hat{\mathbf{y}}_t) &= \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \bar{G}(\alpha, \mathsf{M}_{\hat{\mathbf{y}}_t}) \\ &= \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \bar{G}\left(\alpha, \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathsf{M}_{\hat{\mathbf{y}}_t}\right) \\ &= \min_{\mathsf{M} \in \mathcal{Y}_1} \max_{\alpha \in \mathcal{A}} \bar{G}(\alpha, \mathsf{M}) \end{aligned}$$

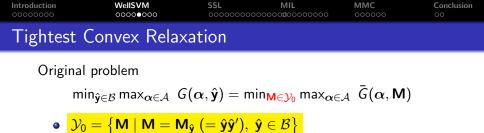
$$\bullet \quad \underbrace{\mathcal{Y}_1 = \{\mathsf{M} \mid \mathsf{M} = \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathsf{M}_{\hat{\mathbf{y}}_t}, \ \mu \in \mathcal{M}\}}_{\bullet \text{ convex hull of } \mathcal{Y}_0 \Rightarrow \text{ tightest convex relaxation}} \\ \bullet \text{ at least as tight as existing SDP relaxations} \end{aligned}$$

 $\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\mathsf{max}_{\alpha\in\mathcal{A}} \ \mathcal{G}(\alpha,\hat{\mathbf{y}}) = \mathsf{min}_{\mathsf{M}\in\mathcal{Y}_0}\mathsf{max}_{\alpha\in\mathcal{A}} \ \bar{\mathcal{G}}(\alpha,\mathsf{M})$

• $\mathcal{Y}_0 = \left\{ \mathsf{M} \mid \mathsf{M} = \mathsf{M}_{\hat{\mathbf{y}}} \ (= \hat{\mathbf{y}} \hat{\mathbf{y}}'), \ \hat{\mathbf{y}} \in \mathcal{B} \right\}$

Our relaxation

 $\min_{\boldsymbol{\mu}\in\mathcal{M}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{t:\hat{\mathbf{y}}_{t}\in\mathcal{B}}\mu_{t}G(\boldsymbol{\alpha},\hat{\mathbf{y}}_{t}) = \min_{\boldsymbol{\mu}\in\mathcal{M}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{t:\hat{\mathbf{y}}_{t}\in\mathcal{B}}\mu_{t}\bar{G}(\boldsymbol{\alpha},\mathsf{M}_{\hat{\mathbf{y}}_{t}})$ $= \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \bar{G} \left(\alpha, \sum_{t \cdot \hat{y}_t \in \mathcal{B}} \mu_t \mathsf{M}_{\hat{y}_t} \right)$ $= \min_{\mathbf{M} \in \mathcal{V}_1} \max_{\alpha \in \mathcal{A}} \bar{G}(\alpha, \mathbf{M})$ • $\mathcal{Y}_1 = \{ \mathbf{M} \mid \mathbf{M} = \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathbf{M}_{\hat{\mathbf{y}}_t}, \ \boldsymbol{\mu} \in \mathcal{M} \}$ • convex hull of $\mathcal{Y}_0 \Rightarrow$ tightest convex relaxation at least as tight as existing SDP relaxations James Kwok Learning from Weakly Labeled Data



 $\min_{\boldsymbol{\mu}\in\mathcal{M}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{t:\hat{\mathbf{y}}_{t}\in\mathcal{B}}\mu_{t}G(\boldsymbol{\alpha},\hat{\mathbf{y}}_{t}) = \min_{\boldsymbol{\mu}\in\mathcal{M}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{t:\hat{\mathbf{y}}_{t}\in\mathcal{B}}\mu_{t}\bar{G}(\boldsymbol{\alpha},\mathsf{M}_{\hat{\mathbf{y}}_{t}})$

Our relaxation

at least as tight as existing SDP relaxations

 $= \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \bar{G} \left(\alpha, \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathsf{M}_{\hat{\mathbf{y}}_t} \right)$

Introduction	WellSVM 0000●000	SSL 00000000	MIL	MMC 000000	Conclusion
Tightest (Convex Rela>	kation			

 $\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\mathsf{max}_{\boldsymbol{\alpha}\in\mathcal{A}} \ \mathcal{G}(\boldsymbol{\alpha},\hat{\mathbf{y}}) = \mathsf{min}_{\mathbf{M}\in\mathcal{Y}_{0}}\mathsf{max}_{\boldsymbol{\alpha}\in\mathcal{A}} \ \bar{\mathcal{G}}(\boldsymbol{\alpha},\mathbf{M})$

• $\mathcal{Y}_0 = \left\{ \mathsf{M} \mid \mathsf{M} = \mathsf{M}_{\hat{\mathbf{y}}} \; (= \hat{\mathbf{y}} \hat{\mathbf{y}}'), \; \hat{\mathbf{y}} \in \mathcal{B} \right\}$

Our relaxation

 $\min_{\boldsymbol{\mu}\in\mathcal{M}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{t:\hat{\mathbf{y}}_{t}\in\mathcal{B}}\mu_{t}G(\boldsymbol{\alpha},\hat{\mathbf{y}}_{t}) = \min_{\boldsymbol{\mu}\in\mathcal{M}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{t:\hat{\mathbf{y}}_{t}\in\mathcal{B}}\mu_{t}\bar{G}(\boldsymbol{\alpha},\mathsf{M}_{\hat{\mathbf{y}}_{t}})$ $= \min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \bar{G} \left(\boldsymbol{\alpha}, \sum_{t: \hat{\boldsymbol{y}}_t \in \mathcal{B}} \mu_t \mathbf{M}_{\hat{\boldsymbol{y}}_t} \right)$ $= \min_{\mathbf{M}\in\mathcal{Y}_1} \max_{\boldsymbol{\alpha}\in\mathcal{A}} \bar{G}(\boldsymbol{\alpha},\mathbf{M})$ • $\mathcal{Y}_1 = \{ \mathbf{M} \mid \mathbf{M} = \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathbf{M}_{\hat{\mathbf{y}}_t}, \ \boldsymbol{\mu} \in \mathcal{M} \}$ • convex hull of $\mathcal{Y}_0 \Rightarrow$ tightest convex relaxation at least as tight as existing SDP relaxations James Kwok Learning from Weakly Labeled Data

 $\min_{\hat{\mathbf{y}} \in \mathcal{B}} \max_{\alpha \in \mathcal{A}} \ G(\alpha, \hat{\mathbf{y}}) = \min_{\mathbf{M} \in \mathcal{Y}_0} \max_{\alpha \in \mathcal{A}} \ \bar{G}(\alpha, \mathbf{M})$

• $\mathcal{Y}_0 = \left\{ \mathsf{M} \mid \mathsf{M} = \mathsf{M}_{\hat{\mathbf{y}}} \ (= \hat{\mathbf{y}} \hat{\mathbf{y}}'), \ \hat{\mathbf{y}} \in \mathcal{B} \right\}$

Our relaxation

$$\begin{aligned} \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\alpha, \hat{\mathbf{y}}_t) &= \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \bar{G}(\alpha, \mathsf{M}_{\hat{\mathbf{y}}_t}) \\ &= \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \bar{G}\left(\alpha, \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathsf{M}_{\hat{\mathbf{y}}_t}\right) \\ &= \min_{\mathsf{M} \in \mathcal{Y}_1} \max_{\alpha \in \mathcal{A}} \bar{G}(\alpha, \mathsf{M}) \end{aligned}$$

$$\bullet \quad \underbrace{\mathcal{Y}_1 = \{\mathsf{M} \mid \mathsf{M} = \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathsf{M}_{\hat{\mathbf{y}}_t}, \ \mu \in \mathcal{M}\}}_{\bullet \text{ convex hull of } \mathcal{Y}_0 \Rightarrow \text{ tightest convex relaxation}} \\ \bullet \text{ at least as tight as existing SDP relaxations} \end{aligned}$$

Introduction	WellSVM ○○○○●○○○	SSL 00000000	MIL	MMC 000000	Conclusion
Tightest Convex Relaxation					

 $\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\mathsf{max}_{\alpha\in\mathcal{A}} \ \mathcal{G}(\alpha,\hat{\mathbf{y}}) = \mathsf{min}_{\mathsf{M}\in\mathcal{Y}_0}\mathsf{max}_{\alpha\in\mathcal{A}} \ \bar{\mathcal{G}}(\alpha,\mathsf{M})$

• $\mathcal{Y}_0 = \left\{ \mathsf{M} \mid \mathsf{M} = \mathsf{M}_{\hat{\mathbf{y}}} \; (= \hat{\mathbf{y}} \hat{\mathbf{y}}'), \; \hat{\mathbf{y}} \in \mathcal{B} \right\}$

Our relaxation

$$\begin{split} \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\alpha, \hat{\mathbf{y}}_t) &= \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \bar{G}(\alpha, \mathsf{M}_{\hat{\mathbf{y}}_t}) \\ &= \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \bar{G}\left(\alpha, \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathsf{M}_{\hat{\mathbf{y}}_t}\right) \\ &= \min_{\mathsf{M} \in \mathcal{Y}_1} \max_{\alpha \in \mathcal{A}} \bar{G}(\alpha, \mathsf{M}) \end{split}$$

$$\bullet \quad \underbrace{\mathcal{Y}_1 = \left\{\mathsf{M} \mid \mathsf{M} = \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathsf{M}_{\hat{\mathbf{y}}_t}, \ \mu \in \mathcal{M} \right\}}_{\bullet \text{ convex hull of } \mathcal{Y}_0 \Rightarrow \text{ tightest convex relaxation}} \\ \bullet \text{ at least as tight as existing SDP relaxations} \end{split}$$

Introduction	WellSVM 00000●00	SSL 0000000000000	MIL 000000000000	MMC 000000	Conclusion
How to S	olve?				
			~ (

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$$

$$\max_{\boldsymbol{\alpha} \in \mathcal{A}} \left\{ \max_{\boldsymbol{\theta}} \theta \text{ s.t. } \boldsymbol{G}(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t) \geq \theta, \; \forall \hat{\boldsymbol{y}}_t \in \boldsymbol{\mathcal{B}} \right\}$$

- exponential number of constraints in B
- direct optimization computationally intractable

 including only a subset of them: a very good approximation ⇒ cutting plane method

 $\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$

Introduction	WellSVM 00000●00	SSL 000000000	MIL	MMC 000000	Conclusion
How to Solv	/e?				

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$$

$$\max_{\boldsymbol{\alpha} \in \mathcal{A}} \left\{ \max_{\boldsymbol{\theta}} \boldsymbol{\theta} \text{ s.t. } \boldsymbol{G}(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t) \geq \boldsymbol{\theta}, \ \forall \hat{\boldsymbol{y}}_t \in \boldsymbol{\mathcal{B}} \right\}$$

- ullet exponential number of constraints in ${\mathcal B}$
- direct optimization computationally intractable

 including only a subset of them: a very good approximation ⇒ cutting plane method

 $\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$

Introduction	WellSVM 00000●00	SSL 00000000	MIL 000000000000000000000000000000000000	MMC 000000	Conclusion
How to Solv	ve?				

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$$

$$\max_{\boldsymbol{\alpha} \in \mathcal{A}} \left\{ \max_{\boldsymbol{\theta}} \boldsymbol{\theta} \text{ s.t. } \boldsymbol{G}(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t) \geq \boldsymbol{\theta}, \; \forall \hat{\boldsymbol{y}}_t \in \boldsymbol{\mathcal{B}} \right\}$$

- exponential number of constraints in ${\cal B}$
- direct optimization computationally intractable

including only a subset of them: a very good approximation
 ⇒ cutting plane method

 $\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$

Introduction	WellSVM ooooo●oo	SSL 00000000000000000000000000000000000	MIL	MMC 000000	Conclusion
How to Solv	ve?				

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$$

$$\max_{\boldsymbol{\alpha} \in \mathcal{A}} \left\{ \max_{\boldsymbol{\theta}} \boldsymbol{\theta} \text{ s.t. } \boldsymbol{G}(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t) \geq \boldsymbol{\theta}, \; \forall \hat{\boldsymbol{y}}_t \in \boldsymbol{\mathcal{B}} \right\}$$

- ullet exponential number of constraints in ${\mathcal B}$
- direct optimization computationally intractable

including only a subset of them: a very good approximation
 ⇒ cutting plane method

 $\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t G(\alpha, \hat{\mathbf{y}}_t)$

Introduction	WellSVM ○○○○○●○○	SSL 00000000000	MIL	MMC 000000	Conclusion
How to Solv	ve?				

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$$

$$\max_{\boldsymbol{\alpha} \in \mathcal{A}} \left\{ \max_{\boldsymbol{\theta}} \boldsymbol{\theta} \text{ s.t. } \boldsymbol{G}(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t) \geq \boldsymbol{\theta}, \; \forall \hat{\boldsymbol{y}}_t \in \boldsymbol{\mathcal{B}} \right\}$$

- ullet exponential number of constraints in ${\mathcal B}$
- direct optimization computationally intractable

including only a subset of them: a very good approximation
 ⇒ cutting plane method

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t G(\boldsymbol{\alpha}, \hat{\mathbf{y}}_t)$$

Introduction	WellSVM ○○○○○○●○	SSL 0000000	MIL	MMC 000000	Conclusion

Cutting Plane Algorithm by Label Generation

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{\boldsymbol{t}: \hat{\boldsymbol{y}}_t \in \mathcal{C}} \mu_t G(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t)$$

- 1: Initialize $\hat{\mathbf{y}}$, $\mathcal{C} = \emptyset$;
- 2: repeat
- 3: update $\mathcal{C} \leftarrow {\hat{\mathbf{y}}} \bigcup \mathcal{C}$;
- 4: obtain α from min $_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t G(\alpha, \hat{\mathbf{y}}_t);$
- 5: generate a violated $\hat{\mathbf{y}}$;
- 6: until G(α, ŷ) > min_{y∈C} G(α, y) − ε (where ε is a small constant) or the decrease of objective value is smaller than a threshold.

ssues

- Given C, how to efficiently solve the above optimization problem?
- 2 How to efficiently find a violated $\hat{\mathbf{y}}$ and update $\mathcal{C} \leftarrow {\{\hat{\mathbf{y}}\} \bigcup \mathcal{C}}$?

Introduction	WellSVM ○○○○○○●○	SSL 000000	MIL 000000000000000000000000000000000000	MMC 000000	Conclusion

Cutting Plane Algorithm by Label Generation

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \sum_{\boldsymbol{t}: \hat{\boldsymbol{y}}_t \in \mathcal{C}} \mu_t G(\boldsymbol{\alpha}, \hat{\boldsymbol{y}}_t)$$

- 1: Initialize $\hat{\mathbf{y}}$, $\mathcal{C} = \emptyset$;
- 2: repeat
- 3: update $\mathcal{C} \leftarrow {\hat{\mathbf{y}}} \bigcup \mathcal{C}$;
- 4: obtain α from min $_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t G(\alpha, \hat{\mathbf{y}}_t);$
- 5: generate a violated $\hat{\mathbf{y}}$;
- 6: **until** $G(\alpha, \hat{\mathbf{y}}) > \min_{\mathbf{y} \in C} G(\alpha, \mathbf{y}) \epsilon$ (where ϵ is a small constant) or the decrease of objective value is smaller than a threshold.

Issues

- Given C, how to efficiently solve the above optimization problem?
- **2** How to efficiently find a violated $\hat{\mathbf{y}}$ and update $\mathcal{C} \leftarrow {\{\hat{\mathbf{y}}\} \bigcup \mathcal{C}?}$

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
	0000000	000000000000000000000000000000000000000			
D					

Properties

- assume that $-G(m{lpha}, \hat{m{y}})$ is λ -strongly convex and M-Lipschitz
- $p^{(t)}$: optimal objective value at the *t*th iteration

$$p^{(t+1)} \leq p^{(t)} - \eta$$
 (where $\eta = \left(rac{-c + \sqrt{c^2 + 4\epsilon}}{2}
ight)^2$, $c = M\sqrt{2/\lambda}$)

The algorithm converges in no more than $rac{p^{(1)}-p^*}{\eta}$ iterations

• magnitude of violation in the *r*th iteration: ϵ_r

The algorithm converges in no more than R iterations where $\sum_{r=1}^{R} \eta_r \ge p^{(1)} - p^*$, where $\eta_r = \left(\frac{-c + \sqrt{c^2 + 4\epsilon_r}}{2}\right)^2$

• the more effort spent on finding a violated label, the faster the convergence

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
	0000000	000000000000000000000000000000000000000			
D C					

Properties

- assume that $-G(m{lpha}, \hat{m{y}})$ is λ -strongly convex and M-Lipschitz
- $p^{(t)}$: optimal objective value at the *t*th iteration

$$p^{(t+1)} \leq p^{(t)} - \eta$$
 (where $\eta = \left(rac{-c + \sqrt{c^2 + 4\epsilon}}{2}
ight)^2$, $c = M\sqrt{2/\lambda}$)

The algorithm converges in no more than $rac{p^{(1)}-p^*}{\eta}$ iterations

• magnitude of violation in the *r*th iteration: ϵ_r

The algorithm converges in no more than R iterations where $\sum_{r=1}^{R} \eta_r \ge p^{(1)} - p^*$, where $\eta_r = \left(\frac{-c + \sqrt{c^2 + 4\epsilon_r}}{2}\right)^2$

• the more effort spent on finding a violated label, the faster the convergence

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
	0000000		000000000000000000000000000000000000000		
D II					

Properties

- assume that $-G(m{lpha}, \hat{m{y}})$ is λ -strongly convex and M-Lipschitz
- $p^{(t)}$: optimal objective value at the *t*th iteration

$$p^{(t+1)} \leq p^{(t)} - \eta$$
 (where $\eta = \left(rac{-c + \sqrt{c^2 + 4\epsilon}}{2}
ight)^2$, $c = M\sqrt{2/\lambda}$)

The algorithm converges in no more than $\frac{p^{(1)}-p^*}{\eta}$ iterations

• magnitude of violation in the *r*th iteration: ϵ_r

The algorithm converges in no more than R iterations where $\sum_{r=1}^{R} \eta_r \ge p^{(1)} - p^*$, where $\eta_r = \left(\frac{-c + \sqrt{c^2 + 4\epsilon_r}}{2}\right)^2$

• the more effort spent on finding a violated label, the faster the convergence

- not all the training labels are known
 - $\mathcal{D}_{\mathcal{L}} = \{\mathbf{x}_i, y_i\}_{i=1}^l$: labeled data; $\mathcal{D}_{\mathcal{U}} = \{\mathbf{x}_j\}_{j=l+1}^N$: unlabeled data
 - index sets: $\mathcal{L} = \{1, \dots, l\}; \mathcal{U} = \{l+1, \dots, N\}$
- hinge loss $+ \ell_2$ -regularizer on **w**

$$\min_{\hat{\mathbf{y}} \in \mathcal{B}} \min_{\mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{i=1}^{l} \xi_i + C_2 \sum_{j=l+1}^{N} \xi_i$$

s.t. $\hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i$

Example

•
$$\mathcal{B} = \{ \hat{\mathbf{y}} \mid \hat{\mathbf{y}}_{\mathcal{L}} = \mathbf{y}_{\mathcal{L}}, \hat{\mathbf{y}}_{\mathcal{U}} \in \{\pm 1\}^{N-l}; \frac{\mathbf{1}' \hat{\mathbf{y}}_{\mathcal{U}}}{N-l} = \frac{\mathbf{1}' \mathbf{y}_{\mathcal{L}}}{l} \}$$

• $\mathbf{y}_{\mathcal{L}} = [y_1, \dots, y_l]', \hat{\mathbf{y}}_{\mathcal{U}} = [\hat{y}_{l+1}, \dots, \hat{y}_N]'$

- not all the training labels are known
 - $\mathcal{D}_{\mathcal{L}} = \{\mathbf{x}_i, y_i\}_{i=1}^l$: labeled data; $\mathcal{D}_{\mathcal{U}} = \{\mathbf{x}_j\}_{j=l+1}^N$: unlabeled data
 - index sets: $\mathcal{L} = \{1, \dots, l\}; \mathcal{U} = \{l+1, \dots, N\}$
- hinge loss $+ \ell_2$ -regularizer on **w**

$$\min_{\hat{\mathbf{y}} \in \mathcal{B}} \min_{\mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{i=1}^{l} \xi_i + C_2 \sum_{j=l+1}^{N} \xi_i$$

s.t. $\hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i$

Example

•
$$\mathcal{B} = \{ \hat{\mathbf{y}} \mid \hat{\mathbf{y}}_{\mathcal{L}} = \mathbf{y}_{\mathcal{L}}, \hat{\mathbf{y}}_{\mathcal{U}} \in \{\pm 1\}^{N-l}; \frac{\mathbf{1}' \hat{\mathbf{y}}_{\mathcal{U}}}{N-l} = \frac{\mathbf{1}' \mathbf{y}_{\mathcal{L}}}{l} \}$$

• $\mathbf{y}_{\mathcal{L}} = [y_1, \dots, y_l]', \hat{\mathbf{y}}_{\mathcal{U}} = [\hat{y}_{l+1}, \dots, \hat{y}_N]'$

- not all the training labels are known
 - $\mathcal{D}_{\mathcal{L}} = \{\mathbf{x}_i, y_i\}_{i=1}^l$: labeled data; $\mathcal{D}_{\mathcal{U}} = \{\mathbf{x}_j\}_{j=l+1}^N$: unlabeled data
 - index sets: $\mathcal{L} = \{1, \dots, l\}; \mathcal{U} = \{l+1, \dots, N\}$
- hinge loss $+ \ell_2$ -regularizer on **w**

$$\min_{\hat{\mathbf{y}} \in \mathcal{B}} \min_{\mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{i=1}^{l} \xi_i + C_2 \sum_{j=l+1}^{N} \xi_i$$
s.t. $\hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i$

Example

•
$$\mathcal{B} = \{ \hat{\mathbf{y}} \mid \hat{\mathbf{y}}_{\mathcal{L}} = \mathbf{y}_{\mathcal{L}}, \hat{\mathbf{y}}_{\mathcal{U}} \in \{\pm 1\}^{N-l}; \frac{\mathbf{1}' \hat{\mathbf{y}}_{\mathcal{U}}}{N-l} = \frac{\mathbf{1}' \mathbf{y}_{\mathcal{L}}}{l} \}$$

• $\mathbf{y}_{\mathcal{L}} = [y_1, \dots, y_l]', \hat{\mathbf{y}}_{\mathcal{U}} = [\hat{y}_{l+1}, \dots, \hat{y}_N]'$

		o●ooooooooooo	0000000000	000000	00
Semi-Superv	icod Loornin	~			

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{\mathbf{w},\boldsymbol{\xi}} \quad \frac{1}{2}\|\mathbf{w}\|^2 + C_1\sum_{i=1}^{l}\xi_i + C_2\sum_{j=l+1}^{N}\xi_i : \hat{y}_i\mathbf{w}'\phi(\mathbf{x}_i) \ge 1 - \xi_i$$

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\max_{\boldsymbol{\alpha}\in\mathcal{A}} \ \mathcal{G}(\boldsymbol{\alpha},\hat{\mathbf{y}}) \equiv \mathbf{1}^{\prime}\boldsymbol{\alpha} - \frac{1}{2}\boldsymbol{\alpha}^{\prime} \Big(\mathbf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}^{\prime}\Big)\boldsymbol{\alpha}$$

•
$$\mathcal{A} = \{ \alpha \mid C_1 \geq \alpha_i \geq 0, C_2 \geq \alpha_j \geq 0, i \in \mathcal{L}, j \in \mathcal{U} \}$$

$$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \mathbf{1}' \alpha - \frac{1}{2} \alpha' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \alpha$$

$$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \mathbf{1}' \alpha - \frac{1}{2} \alpha' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \alpha$$

Introduction	WellSVM 00000000	SSL 0●000000	MIL	MMC 000000	Conclusion
Semi-Supe	ervised Learr	ning			

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{\mathbf{w},\boldsymbol{\xi}} \quad \frac{1}{2}\|\mathbf{w}\|^2 + C_1 \sum_{i=1}^{l} \xi_i + C_2 \sum_{j=l+1}^{N} \xi_i : \hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i$$

$$\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\,\mathsf{max}_{\boldsymbol{\alpha}\in\mathcal{A}}\ \mathcal{G}(\boldsymbol{\alpha},\hat{\mathbf{y}})\equiv\mathbf{1}^{\prime}\boldsymbol{\alpha}-\tfrac{1}{2}\boldsymbol{\alpha}^{\prime}\Big(\mathbf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}^{\prime}\Big)\boldsymbol{\alpha}$$

•
$$\mathcal{A} = \{ \boldsymbol{\alpha} \mid C_1 \geq \alpha_i \geq 0, C_2 \geq \alpha_j \geq 0, i \in \mathcal{L}, j \in \mathcal{U} \}$$

$$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \mathbf{1}' \alpha - \frac{1}{2} \alpha' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \alpha$$

$$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \mathbf{1}' \alpha - \frac{1}{2} \alpha' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t \mathsf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \alpha$$

Introduction	WellSVM 00000000	SSL ○●○○○○○○	MIL 000000000000000000000000000000000000	MMC 000000	Conclusion
Semi-Supe	ervised Learr	ning			

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{\mathbf{w},\boldsymbol{\xi}} \quad \frac{1}{2}\|\mathbf{w}\|^2 + C_1\sum_{i=1}^{l}\xi_i + C_2\sum_{j=l+1}^{N}\xi_j : \hat{y}_i\mathbf{w}'\phi(\mathbf{x}_i) \ge 1 - \xi_i$$

 \Rightarrow

$$\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\,\mathsf{max}_{\boldsymbol{\alpha}\in\mathcal{A}}\ \mathcal{G}(\boldsymbol{\alpha},\hat{\mathbf{y}})\equiv\mathbf{1}^{\prime}\boldsymbol{\alpha}-\tfrac{1}{2}\boldsymbol{\alpha}^{\prime}\Big(\mathbf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}^{\prime}\Big)\boldsymbol{\alpha}$$

•
$$\mathcal{A} = \{ \boldsymbol{\alpha} \mid C_1 \geq \alpha_i \geq 0, C_2 \geq \alpha_j \geq 0, i \in \mathcal{L}, j \in \mathcal{U} \}$$

$$\min_{oldsymbol{\mu}\in\mathcal{M}}\max_{oldsymbol{lpha}\in\mathcal{A}} \ \mathbf{1}'oldsymbol{lpha} - rac{1}{2}oldsymbol{lpha}'\Big(\sum_{t:\hat{oldsymbol{y}}_t\in\mathcal{B}}\mu_t\mathbf{K}\odot\hat{oldsymbol{y}}_t\hat{oldsymbol{y}}_t\Big)oldsymbol{lpha}$$

$$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \ \mathbf{1}' \alpha - \frac{1}{2} \alpha' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t \mathsf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \alpha$$

Introduction	WellSVM	SSL ○●○○○○○○	MIL 000000000000000000000000000000000000	MMC 000000	Conclusion
Semi-Supe	ervised Learr	ning			

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{\mathbf{w},\boldsymbol{\xi}} \quad \frac{1}{2}\|\mathbf{w}\|^2 + C_1\sum_{i=1}^{l}\xi_i + C_2\sum_{j=l+1}^{N}\xi_j : \hat{y}_i\mathbf{w}'\phi(\mathbf{x}_i) \ge 1 - \xi_i$$

 \Rightarrow

 \Rightarrow

$$\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\,\mathsf{max}_{\boldsymbol{\alpha}\in\mathcal{A}}\ \, \mathcal{G}(\boldsymbol{\alpha},\hat{\mathbf{y}})\equiv\mathbf{1}^{\prime}\boldsymbol{\alpha}-\tfrac{1}{2}\boldsymbol{\alpha}^{\prime}\Big(\mathbf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}^{\prime}\Big)\boldsymbol{\alpha}$$

•
$$\mathcal{A} = \{ \boldsymbol{\alpha} \mid C_1 \geq \alpha_i \geq 0, C_2 \geq \alpha_j \geq 0, i \in \mathcal{L}, j \in \mathcal{U} \}$$

$$\min_{\boldsymbol{\mu}\in\mathcal{M}}\max_{\boldsymbol{\alpha}\in\mathcal{A}} \mathbf{1}'\boldsymbol{\alpha} - \frac{1}{2}\boldsymbol{\alpha}' \Big(\sum_{t:\hat{\mathbf{y}}_t\in\mathcal{B}}\mu_t \mathbf{K}\odot\hat{\mathbf{y}}_t\hat{\mathbf{y}}_t'\Big)\boldsymbol{\alpha}$$

$$\operatorname{min}_{\boldsymbol{\mu}\in\mathcal{M}}\operatorname{max}_{\boldsymbol{\alpha}\in\mathcal{A}} \ \mathbf{1}'\boldsymbol{\alpha} - \tfrac{1}{2}\boldsymbol{\alpha}' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \boldsymbol{\alpha}$$

Introduction	WellSVM	SSL 00●00000	MIL	MMC 000000	Conclusion
Cutting PI	ane Algorith	ım			

$$\mathbf{\mathsf{min}}_{\boldsymbol{\mu}\in\mathcal{M}}\,\mathbf{\mathsf{max}}_{\boldsymbol{\alpha}\in\mathcal{A}} \ \mathbf{1}'\boldsymbol{\alpha} - \tfrac{1}{2}\boldsymbol{\alpha}' \Big(\sum_{t: \mathbf{\hat{y}}_t\in\mathcal{C}} \mu_t \mathbf{K} \odot \mathbf{\hat{y}}_t \mathbf{\hat{y}}_t' \Big) \boldsymbol{\alpha}$$

Two important issues

Issue 1

Given \mathcal{C} , how to efficiently solve the above optimization problem?

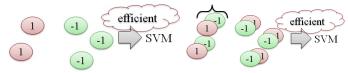
Issue 2

How to efficiently find a violated $\hat{\mathbf{y}}$?

$$\min_{\mu \in \mathcal{M}} \underbrace{\max_{\boldsymbol{\alpha} \in \mathcal{A}} \mathbf{1}^{\prime} \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^{\prime} \Big(\sum_{t: \hat{\mathbf{y}}_{t} \in \mathcal{C}} \mu_{t} \mathbf{K} \odot \hat{\mathbf{y}}_{t} \hat{\mathbf{y}}_{t}^{\prime} \Big) \boldsymbol{\alpha}}_{\text{of standard SV(M (with lower length), } \mathbf{K} \odot \hat{\mathbf{y}}_{t}^{\prime} \hat{\mathbf{y}}_{t}^{\prime} \Big) \boldsymbol{\alpha}}_{\mathbf{x} \in \mathcal{K}}$$

cf. standard SVM (with kernel matrix $\textbf{K} \odot \hat{\textbf{y}} \hat{\textbf{y}}')$

 target kernel matrix is a convex combination of the base kernel matrices {K ⊙ ŷ_tŷ'_t}

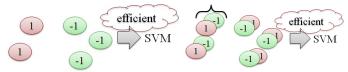


- multiple kernel learning (MKL)
 - given labels y, find the optimal kernel $\sum_t \mu_t \mathbf{K}_t \odot \mathbf{y} \mathbf{y}'$
- multiple label-kernel learning
 - only one kernel **K**, a lot of $\hat{\mathbf{y}}$'s $(\sum_t \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t')$

$$\min_{\mu \in \mathcal{M}} \underbrace{\max_{\boldsymbol{\alpha} \in \mathcal{A}} \mathbf{1}' \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{C}} \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \boldsymbol{\alpha}}_{\mathsf{ef} \ \mathsf{strucked}}$$

cf. standard SVM (with kernel matrix $\textbf{K}\odot \hat{\textbf{y}}\hat{\textbf{y}}')$

 target kernel matrix is a convex combination of the base kernel matrices {K ⊙ ŷ_tŷ'_t}



- multiple kernel learning (MKL)
 - given labels **y**, find the optimal kernel $\sum_t \mu_t \mathbf{K}_t \odot \mathbf{y} \mathbf{y}'$
- multiple label-kernel learning
 - only one kernel **K**, a lot of $\hat{\mathbf{y}}$'s $(\sum_t \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t')$

Introduction	WellSVM	SSL MIL	MMC	Conclusion
		000000000000000000000000000000000000000		

Multiple Label-Kernel Learning

MKL

- use the MKL-group-lasso (MKLGL) algorithm in [Xu et al., ICML-2010]
 - \bullet formulate as minimization problem \Rightarrow alternating minimization

(current working set: $C = \{\hat{\mathbf{y}}_1, \dots, \hat{\mathbf{y}}_T\}$)

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \min_{\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_T], \boldsymbol{\xi}} \frac{\frac{1}{2} \sum_{t=1}^T \frac{1}{\mu_t} ||\mathbf{w}_t||^2 + C_1 \sum_{i=1}^I \xi_i + C_2 \sum_{j=l+1}^N \xi_j }{\text{s.t. } \sum_{t=1}^T \hat{y}_{ti} \mathbf{w}'_t \phi(\mathbf{x}_i) \ge 1 - \xi_i }$$

iterate until convergence

• fix $\boldsymbol{\mu}$, solve for \mathbf{w}_t 's and $\boldsymbol{\xi}$ min $\frac{1}{2} || \tilde{\mathbf{w}} ||^2 + C_1 \sum_{i=1}^l \xi_i + C_2 \sum_{j=l+1}^N \xi_j : \tilde{y}_i \tilde{\mathbf{w}}' \tilde{\mathbf{x}}_i \ge 1 - \xi_i$

• efficiently handled by standard SVM solvers

(a) fix \mathbf{w}_t 's and $\boldsymbol{\xi}$, update $\boldsymbol{\mu}$ as $\boldsymbol{\mu}_t = \frac{\|\mathbf{w}_t\|}{\sum_{t=1}^T \|\mathbf{w}_t\|}$

Introduction	WellSVM 00000000	SSL 0000●0000000	MIL 00000000000	MMC 000000	Conclusion

Multiple Label-Kernel Learning

MKL

- use the MKL-group-lasso (MKLGL) algorithm in [Xu et al., ICML-2010]
 - formulate as minimization problem \Rightarrow alternating minimization

(current working set: $C = \{\hat{\mathbf{y}}_1, \dots, \hat{\mathbf{y}}_T\}$)

$$\min_{\boldsymbol{\mu} \in \mathcal{M}} \min_{\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_T], \boldsymbol{\xi}} \frac{\frac{1}{2} \sum_{t=1}^T \frac{1}{\mu_t} ||\mathbf{w}_t||^2 + C_1 \sum_{i=1}^I \xi_i + C_2 \sum_{j=I+1}^N \xi_j }{\text{s.t. } \sum_{t=1}^T \hat{y}_{ti} \mathbf{w}_t' \phi(\mathbf{x}_i) \ge 1 - \xi_i }$$

iterate until convergence

• fix μ , solve for \mathbf{w}_t 's and $\boldsymbol{\xi}$ min $\frac{1}{2} || \tilde{\mathbf{w}} ||^2 + C_1 \sum_{i=1}^{l} \xi_i + C_2 \sum_{j=l+1}^{N} \xi_j : \tilde{y}_i \tilde{\mathbf{w}}' \tilde{\mathbf{x}}_i \ge 1 - \xi_i$

efficiently handled by standard SVM solvers

2 fix \mathbf{w}_t 's and $\boldsymbol{\xi}$, update $\boldsymbol{\mu}$ as $\mu_t = \frac{\|\mathbf{w}_t\|}{\sum_{t'=1}^T \|\mathbf{w}_{t'}\|}$

Issue 2: Finding a Violated Label Assignment

$$\begin{array}{ll} \text{Recall that} & \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) \\ &= & \max_{\alpha \in \mathcal{A}} \Big\{ \max_{\theta} \theta \text{ s.t. } \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) \geq \theta, \ \forall \hat{\mathbf{y}}_t \in \mathcal{B} \Big\} \end{array}$$

To find the most violated label assignment

$$\arg\min_{\hat{\mathbf{y}}\in\mathcal{B}} G(\alpha, \hat{\mathbf{y}}) = \arg\min_{\hat{\mathbf{y}}\in\mathcal{B}} \mathbf{1}'\alpha - \frac{1}{2}\alpha' \left(\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}'\right) \alpha$$
$$= \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}} \frac{1}{2}\alpha' \left(\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}'\right) \alpha$$
$$= \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \hat{\mathbf{y}} \quad (\mathbf{H} \equiv \mathbf{K} \odot (\alpha \alpha'))$$

• difficult

Cutting plane algorithm only requires the addition of a violated constraint at each iteration

Introduction WellSVM SSL MIL MMC Conclusion

Issue 2: Finding a Violated Label Assignment

$$\begin{array}{ll} \text{Recall that} & \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) \\ &= & \max_{\alpha \in \mathcal{A}} \Big\{ \max_{\theta} \theta \text{ s.t. } \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) \geq \theta, \ \forall \hat{\mathbf{y}}_t \in \mathcal{B} \Big\} \end{array}$$

To find the most violated label assignment

$$\arg\min_{\hat{\mathbf{y}}\in\mathcal{B}} G(\alpha, \hat{\mathbf{y}}) = \arg\min_{\hat{\mathbf{y}}\in\mathcal{B}} \mathbf{1}'\alpha - \frac{1}{2}\alpha' \Big(\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}'\Big)\alpha$$
$$= \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}} \frac{1}{2}\alpha' \Big(\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}'\Big)\alpha$$
$$= \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \hat{\mathbf{y}} \quad (\mathbf{H} \equiv \mathbf{K} \odot (\alpha \alpha'))$$

difficult

Cutting plane algorithm only requires the addition of a violated constraint at each iteration

Issue 2: Finding a Violated Label Assignment

$$\begin{array}{ll} \text{Recall that} & \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) \\ &= & \max_{\alpha \in \mathcal{A}} \Big\{ \max_{\theta} \theta \text{ s.t. } \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) \geq \theta, \ \forall \hat{\mathbf{y}}_t \in \mathcal{B} \Big\} \end{array}$$

To find the most violated label assignment

$$\arg\min_{\hat{\mathbf{y}}\in\mathcal{B}} G(\alpha, \hat{\mathbf{y}}) = \arg\min_{\hat{\mathbf{y}}\in\mathcal{B}} \mathbf{1}'\alpha - \frac{1}{2}\alpha' \Big(\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}'\Big)\alpha$$
$$= \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}} \frac{1}{2}\alpha' \Big(\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}'\Big)\alpha$$
$$= \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \hat{\mathbf{y}} \quad (\mathbf{H} \equiv \mathbf{K} \odot (\alpha \alpha'))$$

difficult

Cutting plane algorithm only requires the addition of a violated constraint at each iteration

Issue 2: Finding a Violated Label Assignment

$$\begin{array}{ll} \text{Recall that} & \min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) \\ &= & \max_{\alpha \in \mathcal{A}} \Big\{ \max_{\theta} \theta \text{ s.t. } \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) \geq \theta, \ \forall \hat{\mathbf{y}}_t \in \mathcal{B} \Big\} \end{array}$$

To find the most violated label assignment

$$\arg\min_{\hat{\mathbf{y}}\in\mathcal{B}} G(\alpha, \hat{\mathbf{y}}) = \arg\min_{\hat{\mathbf{y}}\in\mathcal{B}} \mathbf{1}'\alpha - \frac{1}{2}\alpha' \Big(\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}'\Big)\alpha$$
$$= \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}} \frac{1}{2}\alpha' \Big(\mathbf{K} \odot \hat{\mathbf{y}} \hat{\mathbf{y}}'\Big)\alpha$$
$$= \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \hat{\mathbf{y}} \quad (\mathbf{H} \equiv \mathbf{K} \odot (\alpha \alpha'))$$

difficult

Cutting plane algorithm only requires the addition of a violated constraint at each iteration

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
		00000000	000000000000000000000000000000000000000		

find a
$$y$$
 s.t. $y'Hy > \mathsf{max}_{\hat{y} \in \mathcal{C}} \, \hat{y}'H\hat{y}$

• compute
$$\bar{\mathbf{y}} = \arg \max_{\hat{\mathbf{y}} \in \mathcal{C}} \hat{\mathbf{y}}' \mathbf{H} \hat{\mathbf{y}}$$
 and $\mathbf{y}^* = \arg \max_{\hat{\mathbf{y}} \in \mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \bar{\mathbf{y}}$

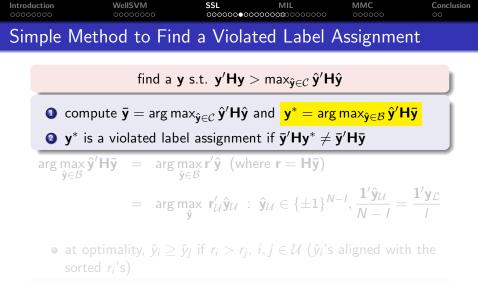
 ${\bf 2}~{\bf y}^*$ is a violated label assignment if ${\bf \bar y}' H {\bf y}^* \neq {\bf \bar y}' H {\bf \bar y}$

$$\underset{\hat{y} \in \mathcal{B}}{\arg\max} \, \hat{y}' H \bar{y} = \arg\max_{\hat{y} \in \mathcal{B}} r' \hat{y} \ \left(\text{where } r = H \bar{y} \right)$$

$$= \arg \max_{\hat{\mathbf{y}}} \mathbf{r}'_{\mathcal{U}} \hat{\mathbf{y}}_{\mathcal{U}} : \ \hat{\mathbf{y}}_{\mathcal{U}} \in \{\pm 1\}^{N-l}, \frac{\mathbf{1}' \hat{\mathbf{y}}_{\mathcal{U}}}{N-l} = \frac{\mathbf{1}' \mathbf{y}_{\mathcal{L}}}{l}$$

- at optimality, $\hat{y}_i \geq \hat{y}_j$ if $r_i > r_j$, $i, j \in U$ (\hat{y}_i 's aligned with the sorted r_i 's)
- $lacksymbol{0}$ sort r_i 's $(i\in\mathcal{U})$ in ascending order

3 to satisfy the balance constraint $\frac{\mathbf{1}'\hat{\mathbf{y}}_{ll}}{N-l} = \frac{\mathbf{1}'\mathbf{y}_{L}}{l}$: the small \hat{y}_{i} 's are assigned -1, while the large ones are assigned 1



 ${f 0}$ sort r_i 's $(i\in {\cal U})$ in ascending order

3 to satisfy the balance constraint $\frac{\mathbf{1}' \hat{\mathbf{y}}_{ll}}{N-l} = \frac{\mathbf{1}' \mathbf{y}_{L}}{l}$: the small \hat{y}_{i} 's are assigned -1, while the large ones are assigned 1

find a
$$y$$
 s.t. $y'Hy > \text{max}_{\hat{y} \in \mathcal{C}} \, \hat{y}'H\hat{y}$

0 compute
$$\bar{\mathbf{y}} = \arg \max_{\hat{\mathbf{y}} \in \mathcal{C}} \hat{\mathbf{y}}' \mathbf{H} \hat{\mathbf{y}}$$
 and $\mathbf{y}^* = \arg \max_{\hat{\mathbf{y}} \in \mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \bar{\mathbf{y}}$

2 \mathbf{y}^* is a violated label assignment if $\mathbf{\bar{y}}'\mathbf{H}\mathbf{y}^* \neq \mathbf{\bar{y}}'\mathbf{H}\mathbf{\bar{y}}$

$$\underset{\hat{\mathbf{y}} \in \mathcal{B}}{\arg \max} \hat{\mathbf{y}}' \mathbf{H} \bar{\mathbf{y}} = \arg \max_{\hat{\mathbf{y}} \in \mathcal{B}} \mathbf{r}' \hat{\mathbf{y}} \text{ (where } \mathbf{r} = \mathbf{H} \bar{\mathbf{y}} \text{)}$$
$$- \arg \max_{\hat{\mathbf{y}} \in \mathcal{B}} \mathbf{r}'_{\hat{\mathbf{y}}} \hat{\mathbf{y}}_{\mathcal{U}} \in \{\pm 1\}^{N-\ell} \frac{\mathbf{1}' \hat{\mathbf{y}}_{\mathcal{U}}}{\mathbf{1}' \hat{\mathbf{y}}_{\mathcal{U}}} - \frac{\mathbf{1}' \mathbf{y}}{2}$$

$$= \arg \max_{\hat{\mathbf{y}}} \mathbf{r}'_{\mathcal{U}} \hat{\mathbf{y}}_{\mathcal{U}} : \hat{\mathbf{y}}_{\mathcal{U}} \in \{\pm 1\}^{N-I}, \frac{\mathbf{I} \mathbf{y}_{\mathcal{U}}}{N-I} = \frac{\mathbf{I} \mathbf{y}_{\mathcal{L}}}{I}$$

- at optimality, $\hat{y}_i \geq \hat{y}_j$ if $r_i > r_j$, $i, j \in U$ (\hat{y}_i 's aligned with the sorted r_i 's)
- $lacksymbol{0}$ sort r_i 's $(i\in\mathcal{U})$ in ascending order

3 to satisfy the balance constraint $\frac{1'\hat{y}_{ll}}{N-l} = \frac{1'y_{C}}{l}$: the small \hat{y}_{i} 's are assigned -1, while the large ones are assigned 1

find a
$$y$$
 s.t. $y'Hy > \text{max}_{\hat{y} \in \mathcal{C}} \, \hat{y}'H\hat{y}$

0 compute
$$\bar{\mathbf{y}} = \arg \max_{\hat{\mathbf{y}} \in \mathcal{C}} \hat{\mathbf{y}}' \mathbf{H} \hat{\mathbf{y}}$$
 and $\mathbf{y}^* = \arg \max_{\hat{\mathbf{y}} \in \mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \bar{\mathbf{y}}$

2 \mathbf{y}^* is a violated label assignment if $\mathbf{\bar{y}}'\mathbf{H}\mathbf{y}^* \neq \mathbf{\bar{y}}'\mathbf{H}\mathbf{\bar{y}}$

$$\begin{array}{lll} \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}}\hat{\mathbf{y}}'\mathbf{H}\bar{\mathbf{y}} &=& \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}}\mathbf{r}'\hat{\mathbf{y}} \ \left(\text{where }\mathbf{r}=\mathbf{H}\bar{\mathbf{y}}\right) \\ &=& \arg\max_{\hat{\mathbf{y}}}\mathbf{r}'_{\mathcal{U}}\hat{\mathbf{y}}_{\mathcal{U}} \ : \ \hat{\mathbf{y}}_{\mathcal{U}}\in\{\pm 1\}^{N-l}, \frac{\mathbf{1}'\hat{\mathbf{y}}_{\mathcal{U}}}{N-l}=\frac{\mathbf{1}'\mathbf{y}}{l} \end{array}$$

- at optimality, $\hat{y}_i \geq \hat{y}_j$ if $r_i > r_j$, $i, j \in U$ (\hat{y}_i 's aligned with the sorted r_i 's)
- $lacksymbol{0}$ sort r_i 's $(i\in\mathcal{U})$ in ascending order

3 to satisfy the balance constraint $\frac{1'\hat{y}_{ll}}{N-l} = \frac{1'y_{C}}{l}$: the small \hat{y}_{i} 's are assigned -1, while the large ones are assigned 1

find a
$$y$$
 s.t. $y'Hy > \text{max}_{\hat{y} \in \mathcal{C}} \, \hat{y}'H\hat{y}$

0 compute
$$\bar{\mathbf{y}} = \arg \max_{\hat{\mathbf{y}} \in \mathcal{C}} \hat{\mathbf{y}}' \mathbf{H} \hat{\mathbf{y}}$$
 and $\mathbf{y}^* = \arg \max_{\hat{\mathbf{y}} \in \mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \bar{\mathbf{y}}$

2 \mathbf{y}^* is a violated label assignment if $\mathbf{\bar{y}}'\mathbf{H}\mathbf{y}^* \neq \mathbf{\bar{y}}'\mathbf{H}\mathbf{\bar{y}}$

$$\begin{array}{lll} \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}}\hat{\mathbf{y}}'\mathbf{H}\bar{\mathbf{y}} &=& \arg\max_{\hat{\mathbf{y}}\in\mathcal{B}}\mathbf{r}'\hat{\mathbf{y}} \ \, (\text{where }\mathbf{r}=\mathbf{H}\bar{\mathbf{y}}) \\ &=& \arg\max_{\hat{\mathbf{y}}}\mathbf{r}'_{\mathcal{U}}\hat{\mathbf{y}}_{\mathcal{U}} \ \, : \ \, \hat{\mathbf{y}}_{\mathcal{U}}\in\{\pm 1\}^{N-l}, \frac{\mathbf{1}'\hat{\mathbf{y}}_{\mathcal{U}}}{N-l}=\frac{\mathbf{1}'\mathbf{y}_{\mathcal{L}}}{l} \end{array}$$

- at optimality, $\hat{y}_i \geq \hat{y}_j$ if $r_i > r_j$, $i, j \in U$ (\hat{y}_i 's aligned with the sorted r_i 's)
- sort r_i 's $(i \in U)$ in ascending order

2 to satisfy the balance constraint $\frac{\mathbf{1}'\hat{\mathbf{y}}_{ll}}{N-l} = \frac{\mathbf{1}'\mathbf{y}_{L}}{l}$: the small \hat{y}_{i} 's are assigned -1, while the large ones are assigned 1

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
		0000000	000000000000000000000000000000000000000		
	[for Somi	Suporvio	ad Loorning		

$\operatorname{WellSVM}$ for Semi-Supervised Learning

1: initialize $\hat{\mathbf{y}}$, $\mathcal{C} = \emptyset$;

2: repeat

- 3: update $\mathcal{C} \leftarrow \{\mathbf{y}^*\} \bigcup \mathcal{C}$.
- 4: obtain the optimal $\{\mu, \mathbf{W}\}$ or α from MKL solver;
- 5: obtain the optimal solution $\mathbf{y}^* \equiv \arg \max_{\hat{\mathbf{y}} \in \mathcal{B}} \hat{\mathbf{y}}' \mathbf{H} \bar{\mathbf{y}}$ by sorting;
- 6: until G(α, y*) > min_{y∈C} G(α, y) − ε or the decrease of objective value is smaller than a threshold

Introdu 00000		WellSVM 00000000	SSL 00000000●0	MIL	MMC 000000	Conclusion	
Experiments							
		#instances	#features		#instances	#features	
	Echocardiogra	m 132	8	Clean1	476	166	
	House	232	16	Isolet	600	51	
	Heart	270	9	Australian	690	42	
	Heart-stalog	270	13	Diabetes	768	8	
	Haberman	306	14	German	1,000	59	
	LiveDiscorder	<i>s</i> 345	6	Krvskp	3,196	36	
	Spectf	349	44	Sick	3,772	31	
	Ionosphere	351	34	House-votes	435	16	

• 75% of the data for training, the rest for testing

- WELLSVM (LIBSVM for nonlinear kernels, LIBLINEAR for linear kernel) vs
 - standard SVM (using labeled data only);
 - Itransductive SVM (TSVM)
 - Laplacian SVM (LapSVM)
 - universum SVM (USVM)
- SDP-based S³VMs [Xu et al., NIPS-2005; De Bie et al., SSL book-2006]: cannot converge after 3 hours on the smallest data set

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
		0000000	000000000000000000000000000000000000000		
	(

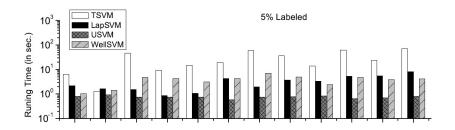
Accuracies (5% labeled examples)

	SVM	TSVM	LapSVM	USVM	WellSVM
Fahaaardiaaraa	0.80	0.74	0.64	0.81	
Echocardiogram					0.80
House	0.90	0.90	0.90	0.90	0.90
Heart	0.70	0.75	0.73	0.76	0.77
Heart-statlog	0.73	0.75	0.74	0.75	0.73
Haberman	0.65	0.61	0.57	0.75	0.75
LiverDisorders	0.56	0.55	0.55	0.59	0.53
Spectf	0.73	0.68	0.61	0.74	0.70
Ionosphere	0.67	0.82	0.65	0.77	0.70
House-votes	0.88	0.89	0.87	0.83	0.89
Clean1	0.58	0.60	0.54	0.65	0.63
Isolet	0.97	0.99	0.97	0.70	0.97
Australian	0.79	0.82	0.78	0.80	0.81
Diabetes	0.67	0.67	0.67	0.70	0.69
German	0.70	0.69	0.62	0.70	0.70
Krvskp	0.91	0.92	0.80	0.91	0.92
Sick	0.94	0.89	0.90	0.94	0.94
SVM: win/tie/	loss	5/7/4	8/7/1	2/9/5	3/6/7
avg accuracy	0.763	0.767	0.723	0.770	0.778

$\bullet~\mathrm{WELLSVM}$ highly competitive

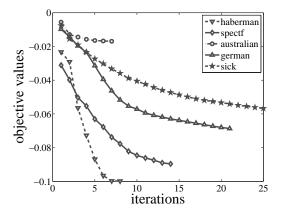
Introduction	WellSVM 00000000	SSL 00000000	MIL 000000000000000000000000000000000000	MMC 000000	Conclusion
CPU Time					

5% labeled samples (16 data sets)



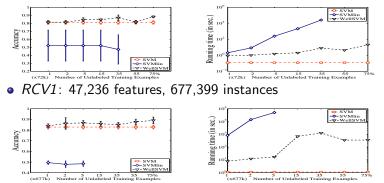
- slowest: TSVM; fastest: USVM
- $\bullet~{\rm WELLSVM}$ comparable to LapSVM

NI			•		
00000000	00000000	00000000	000000000000000000000000000000000000000		
Introduction	WellSVM	SSL	MIL	MMC	Conclusion



• typically, fewer than 25

• real-sim: 20,958 features, 72,309 instances



- linear kernel (comparison with SVMlin [Sindhwani and Keerthi, 2006])
- $\bullet~\mathrm{WELLSVM}$ is always more accurate and faster than SVMIin
- for RCV1, SVMlin cannot converge in 24 hours when > 5% examples are used for training

- benchmark data sets in [Chapelle, Schölkopf, Zien, SSL book-2006]
- test errors (%) (using 10 labeled examples)

	g241c	g241d	Digit1	USPS	COIL	BCI	Text
SVM	47.32	46.66	30.60	20.03	68.36	49.85	45.37
TSVM	24.71	50.08	17.77	25.20	67.50	49.15	40.37
WellSVM	37.37	43.33	16.94	22.74	70.73	48.50	33.70

 $\bullet \ \mathrm{WELLSVM}$ is highly competitive

- same setup in [Xu et al., 2005]
- test errors (%)

	HWD 1-7	HWD 2-3	Austr.	Flare	Vote	Diabetes
MMC	3.2	4.7	32.0	34.0	14.0	35.6
WellSVM	2.7	5.3	40.0	28.9	11.6	41.3

 $\bullet \ \mathrm{WELLSVM}$ is again highly competitive

NA DIAL	notonoo l ook	•			
		0000000	000000000000000000000000000000000000000		
Introduction	WellSVM	SSL	MIL	MMC	Conclusion

Multiple Instance Learning

- data set $\mathcal{D} = \{\mathbf{B}_i, y_i\}_{i=1}^m$
 - m: number of bags
 - bag $\mathbf{B}_i = \{\mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,m_i}\}$; output $y_i \in \{\pm 1\}$
 - only bag labels available, while the instance labels are only implicitly known
- a bag is labeled positive if it contains at least one positive instance (key instance), and negative otherwise
- label of a bag is determined by its key instance, i.e., $f(\mathbf{B}_i) = \max\{f(\mathbf{x}_{i,1}), \cdots, f(\mathbf{x}_{i,m_i})\}$

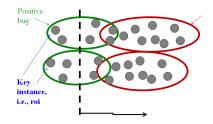
Multipla					
0000000	00000000	0000000	000000000000000000000000000000000000000	000000	00
Introduction	WellSVM	SSL	MIL	MMC	Conclusion

Multiple Instance Learning

- data set $\mathcal{D} = \{\mathbf{B}_i, y_i\}_{i=1}^m$
 - m: number of bags
 - bag $\mathbf{B}_i = \{\mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,m_i}\}$; output $y_i \in \{\pm 1\}$
 - only bag labels available, while the instance labels are only implicitly known
- a bag is labeled positive if it contains at least one positive instance (key instance), and negative otherwise
- label of a bag is determined by its key instance, i.e., $f(\mathbf{B}_i) = \max\{f(\mathbf{x}_{i,1}), \cdots, f(\mathbf{x}_{i,m_i})\}$

		000000000000000000000000000000000000000		
Introduction	WellSVM	SSL MIL	MMC	Conclusion

Multiple Instance SVM



$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{+\text{ve bag } i} \xi_i + C_2 \sum_{-\text{ve bag } i} \xi_i$$

s.t. $y_i \max_{1 \le j \le m_i} \mathbf{w}' \phi(\mathbf{x}_{i,j}) \ge 1 - \xi_i$

positive bag **B**_i

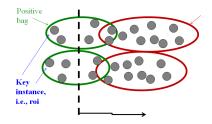
• $\mathbf{d}_i \in \{0,1\}^{m_i}$: indicates which instance is key instance

• each +ve bag has only one key instance $(\sum_{j=1}^{m_i} d_{i,j} = 1)$ negative bag **B** $_i$

• all its instances are negative

		000000000000000000000000000000000000000		
Introduction	WellSVM	SSL MIL	MMC	Conclusion

Multiple Instance SVM



$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{+\text{ve bag } i} \xi_i + C_2 \sum_{-\text{ve bag } i} \xi_i$$

s.t. $y_i \max_{1 \le j \le m_i} \mathbf{w}' \phi(\mathbf{x}_{i,j}) \ge 1 - \xi_i$

positive bag **B**_i

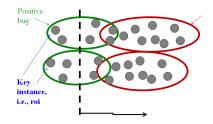
• $\mathbf{d}_i \in \{0,1\}^{m_i}$: indicates which instance is key instance

• each +ve bag has only one key instance $(\sum_{j=1}^{m_i} d_{i,j} = 1)$ egative bag \mathbf{B}_i

• all its instances are negative

Introduction	WellSVM	SSL MIL	MMC 000000	Conclusion
A. 4. 1. 1. 1				

Multiple Instance SVM



$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{+\text{ve bag } i} \xi_i + C_2 \sum_{-\text{ve bag } i} \xi_i$$

s.t. $y_i \max_{1 \le j \le m_i} \mathbf{w}' \phi(\mathbf{x}_{i,j}) \ge 1 - \xi_i$

positive bag **B**_i

• $\mathbf{d}_i \in \{0,1\}^{m_i}$: indicates which instance is key instance

• each +ve bag has only one key instance $(\sum_{j=1}^{m_i} d_{i,j} = 1)$ negative bag \mathbf{B}_i

all its instances are negative

Introduction	WellSVM 00000000	SSL 00000000000000000000000000000000000	MIL	MMC 000000	Conclusion
Optimizatio	n Problem				

$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{+\text{ve bag } i} \xi_i + C_2 \sum_{-\text{ve bag } i} \xi_i$$
s.t.
$$y_i \max_{1 \le j \le m_i} \mathbf{w}' \phi(\mathbf{x}_{i,j}) \ge 1 - \xi_i$$

becomes

$$\begin{split} \min_{\mathbf{d} = [\mathbf{d}'_1, \dots, \mathbf{d}'_{\rho}]'} \min_{\mathbf{w}, \xi} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{+\text{ve bag } i} \xi_i + C_2 \sum_{-\text{ve bag } i} \sum_{j=1}^{m_i} \xi_{i,j} \\ \text{s.t.} \qquad \sum_{j=1}^{m_i} \mathbf{w}' \mathbf{d}_{i,j} \phi(\mathbf{x}_{i,j}) \geq 1 - \xi_i \ (+\text{ve bag } i) \\ -\mathbf{w}' \phi(\mathbf{x}_{i,j}) \geq 1 - \xi_{i,j} \ (\text{each instance } j \text{ in -ve bag } i) \end{split}$$

Introduction	WellSVM 00000000	SSL 00000000000000000000000000000000000	MIL	MMC 000000	Conclusion
Optimizatio	n Problem				

$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{+\text{ve bag } i} \xi_i + C_2 \sum_{-\text{ve bag } i} \xi_i$$
s.t.
$$y_i \max_{1 \le j \le m_i} \mathbf{w}' \phi(\mathbf{x}_{i,j}) \ge 1 - \xi_i$$

becomes

$$\begin{split} \min_{\mathbf{d} = [\mathbf{d}'_1, \dots, \mathbf{d}'_p]'} \min_{\mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C_1 \sum_{+\text{ve bag } i} \xi_i + C_2 \sum_{-\text{ve bag } i} \sum_{j=1}^{m_i} \xi_{i,j} \\ \text{s.t.} \quad \sum_{j=1}^{m_i} \mathbf{w}' \mathbf{d}_{i,j} \phi(\mathbf{x}_{i,j}) \geq 1 - \xi_i \quad (+\text{ve bag } i) \\ -\mathbf{w}' \phi(\mathbf{x}_{i,j}) \geq 1 - \xi_{i,j} \quad (\text{each instance } j \text{ in -ve bag } i) \end{split}$$

 Introduction
 WellSVM
 SSL
 MIL
 MMC
 Conclusion

 Convex Relaxation
 Convex Relaxation
 Conclusion
 Conclusion
 Conclusion

dual of the inner minimization problem:

$$\max_{oldsymbol{lpha}\in\mathcal{A}}\ \mathbf{1}'oldsymbol{lpha}-rac{1}{2}(oldsymbol{lpha}\odot\hat{oldsymbol{y}})'\mathsf{K}^{\mathsf{d}}(oldsymbol{lpha}\odot\hat{oldsymbol{y}})$$

•
$$\mathcal{A} = \begin{cases} \alpha \mid C_1 \geq \alpha_i \geq 0 & \text{for each +ve bag } i \\ C_2 \geq \alpha_j \geq 0 & \text{for each instance } j \text{ in a -ve bag} \end{cases}$$

• $y_i = 1 \text{ for +ve bag; } -1 \text{ for instances in -ve bags}$
• $\mathbf{K}_{ij}^{\mathbf{d}} = (\psi_i^{\mathbf{d}})'(\psi_j^{\mathbf{d}}), \text{ where}$
 $\psi_i^{\mathbf{d}} = \begin{cases} \sum_{j=1}^{m_i} d_{i,j} \phi(\mathbf{x}_{i,j}) & \text{+ve bag } i \\ \phi(\mathbf{x}_{i,j}) & \text{instance } j \text{ in -ve bag } i \end{cases}$

 $\min_{\mathsf{d}\in\Delta}\max_{lpha\in\mathcal{A}} \ \mathbf{1}'lpha - rac{1}{2}(lpha\odot\hat{\mathbf{y}})'\mathsf{K}^\mathsf{d}(lpha\odot\hat{\mathbf{y}})$

$$\min_{\mu \in \mathcal{M}} \max_{\boldsymbol{lpha} \in \mathcal{A}} \mathbf{1}' \boldsymbol{lpha} - \frac{1}{2} (\boldsymbol{lpha} \odot \hat{\mathbf{y}})' \Big(\sum_{t: \mathbf{d}_t \in \Delta} \mu_t \mathbf{K}^{\mathbf{d}_t} \Big) (\boldsymbol{\alpha} \odot \hat{\mathbf{y}})$$

 Introduction
 WellSVM
 SSL
 MIL
 MMC
 Conclusion

 Convex Relaxation
 Convex Relaxation
 Conclusion
 Conclusion
 Conclusion

dual of the inner minimization problem:

$$\max_{\pmb{lpha}\in\mathcal{A}}\; \pmb{1}'\pmb{lpha} - rac{1}{2}(\pmb{lpha}\odot\hat{\pmb{\mathsf{y}}})' \mathsf{K}^{\mathsf{d}}(\pmb{lpha}\odot\hat{\pmb{\mathsf{y}}})$$

•
$$\mathcal{A} = \begin{cases} \alpha \mid C_1 \ge \alpha_i \ge 0 & \text{for each +ve bag } i \\ C_2 \ge \alpha_j \ge 0 & \text{for each instance } j \text{ in a -ve bag} \end{cases}$$

• $y_i = 1 \text{ for +ve bag; } -1 \text{ for instances in -ve bags}$
• $\mathbf{K}_{ij}^{\mathbf{d}} = (\psi_i^{\mathbf{d}})'(\psi_j^{\mathbf{d}}), \text{ where}$
 $\psi_i^{\mathbf{d}} = \begin{cases} \sum_{j=1}^{m_i} d_{i,j}\phi(\mathbf{x}_{i,j}) & +\text{ve bag } i \\ \phi(\mathbf{x}_{i,j}) & \text{instance } j \text{ in -ve bag } i \end{cases}$

 $\mathsf{min}_{\mathsf{d}\in\Delta}\,\mathsf{max}_{\pmb{\alpha}\in\mathcal{A}}\,\,\mathbf{1}'\pmb{\alpha}-\tfrac{1}{2}(\pmb{\alpha}\odot\hat{\mathbf{y}})'\mathsf{K}^{\mathsf{d}}(\pmb{\alpha}\odot\hat{\mathbf{y}})$

$$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \mathbf{1}' \alpha - \frac{1}{2} (\alpha \odot \hat{\mathbf{y}})' \Big(\sum_{t: \mathbf{d}_t \in \Delta} \mu_t \mathbf{K}^{\mathbf{d}_t} \Big) (\alpha \odot \hat{\mathbf{y}})$$

 Introduction
 WellSVM
 SSL
 MIL
 MMC
 Conclusion

 Convex Relaxation
 Convex Relaxation
 Conclusion
 Conclusion
 Conclusion

dual of the inner minimization problem:

$$\max_{\pmb{lpha}\in\mathcal{A}}\; \pmb{1}'\pmb{lpha} - rac{1}{2}(\pmb{lpha}\odot\hat{\pmb{\mathsf{y}}})'\mathsf{K}^{\mathsf{d}}(\pmb{lpha}\odot\hat{\pmb{\mathsf{y}}})$$

•
$$\mathcal{A} = \begin{cases} \alpha \mid C_1 \ge \alpha_i \ge 0 & \text{for each +ve bag } i \\ C_2 \ge \alpha_j \ge 0 & \text{for each instance } j \text{ in a -ve bag} \end{cases}$$

• $y_i = 1 \text{ for +ve bag; } -1 \text{ for instances in -ve bags}$
• $\mathbf{K}_{ij}^{\mathbf{d}} = (\psi_i^{\mathbf{d}})'(\psi_j^{\mathbf{d}}), \text{ where}$
 $\psi_i^{\mathbf{d}} = \begin{cases} \sum_{j=1}^{m_i} d_{i,j}\phi(\mathbf{x}_{i,j}) & +\text{ve bag } i \\ \phi(\mathbf{x}_{i,j}) & \text{instance } j \text{ in -ve bag } i \end{cases}$

$$\mathsf{min}_{\mathsf{d}\in\Delta}\,\mathsf{max}_{\pmb{\alpha}\in\mathcal{A}}\,\,\mathbf{1}'\pmb{\alpha}-\tfrac{1}{2}(\pmb{\alpha}\odot\hat{\mathbf{y}})'\mathsf{K}^{\mathsf{d}}(\pmb{\alpha}\odot\hat{\mathbf{y}})$$

$$\min_{\pmb{\mu}\in\mathcal{M}}\max_{\pmb{lpha}\in\mathcal{A}} \, \mathbf{1}'\pmb{lpha} - rac{1}{2}(\pmb{lpha}\odot\hat{\pmb{\mathsf{y}}})' \Big(\sum_{t:\pmb{\mathsf{d}}_t\in\Delta}\mu_t \pmb{\mathsf{K}}^{\pmb{\mathsf{d}}_t}\Big)(\pmb{lpha}\odot\hat{\pmb{\mathsf{y}}})$$

Introduction	WellSVM 00000000	SSL 000000000	MIL	MMC 000000	Conclusion
Cutting Plai	ne: Step 1				

Multiple label-kernel learning problem

$$\begin{split} \min_{\boldsymbol{\mu}\in\mathcal{M}, \mathbf{W}=[\mathbf{w}_{1};\ldots;\mathbf{w}_{T}], \boldsymbol{\xi}} \quad & \frac{1}{2}\sum_{t=1}^{T}\frac{1}{\mu_{t}}||\mathbf{w}_{t}||^{2} + C_{1}\sum_{+\text{ve bag }i}\xi_{i} + C_{2}\sum_{-\text{ve bag }i}\sum_{j=1}^{m_{i}}\xi_{i,j} \\ \text{s.t.} \quad & \sum_{t=1}^{T}\left(\sum_{j=1}^{m_{i}}\mathbf{w}_{t}'d_{i,j}^{t}\phi(\mathbf{x}_{i,j})\right) \geq 1 - \xi_{i} \text{ (+ve bag }i) \\ & -\sum_{t=1}^{T}\mathbf{w}_{t}'\phi(\mathbf{x}_{i,j}) \geq 1 - \xi_{i,j} \text{ (instance }j \text{ in -ve bag }i) \end{split}$$

• apply MKL algorithm

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
		0000000	000000000000000000000000000000000000000		

Cutting Plane: Step 2

find the most violated label assignment

$$\arg\min_{\mathbf{d}\in\Delta} \ \mathbf{1}'\boldsymbol{\alpha} - \frac{1}{2}(\boldsymbol{\alpha}\odot\hat{\mathbf{y}})'\mathsf{K}^{\mathbf{d}}(\boldsymbol{\alpha}\odot\hat{\mathbf{y}}) \ = \ \arg\max_{\mathbf{d}\in\Delta} \ \mathbf{d}'\mathsf{H}\mathbf{d} + \boldsymbol{\tau}'\mathbf{d}$$

ullet for some $oldsymbol{\mathsf{H}}$ and au

find a violated label assignment

2 compute
$$\overline{\mathbf{d}} = \arg \max_{\mathbf{d} \in \mathcal{C}} \mathbf{d}' \mathbf{H} \mathbf{d} + \tau' \mathbf{d}$$
 and
$$\mathbf{d}^* = \arg \max_{\mathbf{d} \in \Delta} \mathbf{d}' \mathbf{H} \overline{\mathbf{d}} + \frac{\tau' \mathbf{d}}{2}$$

2 d* is a violated label assignment if $d^{*'}H\bar{d} + \frac{\tau'\bar{d}^{*}}{2} > \bar{d}'H\bar{d} + \frac{\tau'\bar{d}}{2}$

find **d**^{*} via sorting (let $\mathbf{r} = \mathbf{H}\mathbf{\bar{d}} + \frac{\tau}{2}$)

- $\max_{\mathbf{d}} \mathbf{r'd} : \mathbf{1'd}_i = 1, \mathbf{d}_i \in \{0, 1\}^{m_i}$
- (recall that $\mathbf{d} = [\mathbf{d}'_1, \dots, \mathbf{d}'_p]'$) solve the subproblems for each +ve bag individually
- set the the largest element in each \mathbf{d}_i to 1, others to zero

Cutting Plane: Step 2

find the most violated label assignment

$$\arg\min_{\mathbf{d}\in\Delta} \ \mathbf{1}'\boldsymbol{\alpha} - \frac{1}{2}(\boldsymbol{\alpha}\odot\hat{\mathbf{y}})'\mathsf{K}^{\mathbf{d}}(\boldsymbol{\alpha}\odot\hat{\mathbf{y}}) \ = \ \arg\max_{\mathbf{d}\in\Delta} \ \mathbf{d}'\mathsf{H}\mathbf{d} + \boldsymbol{\tau}'\mathbf{d}$$

ullet for some $oldsymbol{\mathsf{H}}$ and $oldsymbol{ au}$

find a violated label assignment

1 compute
$$\bar{\mathbf{d}} = \arg \max_{\mathbf{d} \in \mathcal{C}} \mathbf{d}' \mathbf{H} \mathbf{d} + \tau' \mathbf{d}$$
 and
$$\mathbf{d}^* = \arg \max_{\mathbf{d} \in \Delta} \mathbf{d}' \mathbf{H} \bar{\mathbf{d}} + \frac{\tau' \mathbf{d}}{2}$$

2 d* is a violated label assignment if $d^{*'}H\bar{d} + \frac{\tau'd^{*}}{2} > \bar{d}'H\bar{d} + \frac{\tau'd}{2}$

find **d**^{*} via sorting (let $\mathbf{r} = \mathbf{H}\mathbf{\bar{d}} + \frac{\tau}{2}$)

- max $\mathbf{r'd}$: $\mathbf{1'd}_i = 1, \mathbf{d}_i \in \{0, 1\}^{m_i}$
- (recall that $\mathbf{d} = [\mathbf{d}'_1, \dots, \mathbf{d}'_p]'$) solve the subproblems for each +ve bag individually
- set the the largest element in each **d**_i to 1, others to zero

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
			000000000000000000000000000000000000000		

Cutting Plane: Step 2

find the most violated label assignment

$$\arg\min_{\mathbf{d}\in\Delta} \ \mathbf{1}'\boldsymbol{\alpha} - \frac{1}{2}(\boldsymbol{\alpha}\odot\hat{\mathbf{y}})'\mathsf{K}^{\mathbf{d}}(\boldsymbol{\alpha}\odot\hat{\mathbf{y}}) \ = \ \arg\max_{\mathbf{d}\in\Delta} \ \mathbf{d}'\mathsf{H}\mathbf{d} + \boldsymbol{\tau}'\mathbf{d}$$

ullet for some $oldsymbol{\mathsf{H}}$ and $oldsymbol{ au}$

find a violated label assignment

1 compute
$$\overline{\mathbf{d}} = \arg \max_{\mathbf{d} \in \mathcal{C}} \mathbf{d}' \mathbf{H} \mathbf{d} + \tau' \mathbf{d}$$
 and
$$\mathbf{d}^* = \arg \max_{\mathbf{d} \in \Delta} \mathbf{d}' \mathbf{H} \overline{\mathbf{d}} + \frac{\tau' \mathbf{d}}{2}$$

2 d* is a violated label assignment if $d^{*'}H\bar{d} + \frac{\tau'd^{*}}{2} > \bar{d}'H\bar{d} + \frac{\tau'd}{2}$

find \mathbf{d}^* via sorting (let $\mathbf{r} = \mathbf{H}\mathbf{\bar{d}} + \frac{\tau}{2}$)

- $\max_{\mathbf{d}} \mathbf{r}'\mathbf{d}$: $\mathbf{1}'\mathbf{d}_i = 1, \mathbf{d}_i \in \{0, 1\}^{m_i}$
- (recall that $\mathbf{d} = [\mathbf{d}'_1, \dots, \mathbf{d}'_p]'$) solve the subproblems for each +ve bag individually
- set the the largest element in each \mathbf{d}_i to 1, others to zero

Introduction	WellSVM 00000000	SSL 0000000000000	MIL ○ ∞∞ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	MMC 000000	Conclusion
Experiment:	CBIR				

Content-based image retrieval (CBIR)

• task: classify/retrieve images based on content

- each image (bag) is composed of several segments (instances)
- an image is labeled positive when at least one of its segments is positive
- 500 COREL images from five image categories

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
		0000000	000000000000000000000000000000000000000		

Multiple Instance Learning for Locating ROIs

compare with

- MI-SVM, mi-SVM [Andrews et al., NIPS-2003];
- SVM with MI-Kernel [Gärtner et al., ICML-2002]
- Inon-SVM methods: Diverse Density; EM-DD; CkNN-ROI

(the higher the better)

	method	castle	firework	mountain	sunset	waterfall
	WellSVM	0.57	0.68	0.59	0.32	0.39
SVM	mi-SVM	0.51	0.56	0.18	0.32	0.37
methods	MI-SVM	0.52	0.63	0.18	0.29	0.06
	MI-Kernel	0.56	0.57	0.23	0.24	0.20
	DD	0.24	0.15	0.56	0.30	0.26
non-SVM	EM-DD	0.69	0.65	0.54	0.36	0.30
methods	CkNN-ROI	0.48	0.65	0.47	0.31	0.20

- WELLSVM achieves the best performance among all the SVM-based methods
- WELLSVM is still always better than DD and CkNN-ROI, and is highly comparable to EM-DD

Location the Region of Interest (ROI)

- usually user is only interested in some image regions (regions of interest)
- determining whether a region is a $\text{ROI}\equiv\text{finding}$ the key instance
- left to right: DD, EM-DD, CkNN-ROI, MI-SVM, mi-SVM, MI-Kernel, and WELLSVM

James Kwok Learning from Weakly Labeled Data

Introduction	WellSVM 00000000	SSL 00000000	MIL	MMC ●00000	Conclusion
Maximum	Margin Clu	stering			

• all the class labels are unknown

$$\min_{\hat{\mathbf{y}} \in \mathcal{B}} \min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i : \hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i$$

• balance constraint: $\mathcal{B} = \{ \hat{\mathbf{y}} \mid \hat{y}_i \in \{+1, -1\}; -\beta \leq \mathbf{1}' \hat{\mathbf{y}} \leq \beta \}$ for some $\beta \geq 0$

Use dual in inner minimization problem

$$\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\,\mathsf{max}_{oldsymbollpha\in\mathcal{A}}\,\,\mathbf{1}'oldsymbollpha-rac{1}{2}oldsymbollpha'\Big(\mathsf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}'\Big)oldsymbollpha$$

•
$$\mathcal{A} = \{ \boldsymbol{\alpha} \mid C\mathbf{1} \geq \boldsymbol{\alpha} \geq \mathbf{0} \}$$

$$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \mathbf{1}' \alpha - \frac{1}{2} \alpha' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \alpha$$

Introduction	WellSVM 00000000	SSL 00000000	MIL	MMC ●00000	Conclusion
Maximum	Margin Clu	stering			

• all the class labels are unknown

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{\mathbf{w},\boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i : \hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i$$

• balance constraint: $\mathcal{B} = \{ \hat{\mathbf{y}} \mid \hat{y}_i \in \{+1, -1\}; -\beta \leq \mathbf{1}' \hat{\mathbf{y}} \leq \beta \}$ for some $\beta \geq 0$

Use dual in inner minimization problem

$$\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\,\mathsf{max}_{oldsymbol{lpha}\in\mathcal{A}}\,\,\mathbf{1}'oldsymbol{lpha}-rac{1}{2}oldsymbol{lpha}'\Big(\mathbf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}'\Big)oldsymbol{lpha}$$

•
$$\mathcal{A} = \{ \boldsymbol{\alpha} \mid C\mathbf{1} \geq \boldsymbol{\alpha} \geq \mathbf{0} \}$$

$$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \mathbf{1}' \alpha - \frac{1}{2} \alpha' \Big(\sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathbf{K} \odot \hat{\mathbf{y}}_t \hat{\mathbf{y}}_t' \Big) \alpha$$

Introduction	WellSVM 00000000	SSL 00000000	MIL	MMC ●00000	Conclusion
Maximum	Margin Clus	stering			

• all the class labels are unknown

$$\min_{\hat{\mathbf{y}}\in\mathcal{B}}\min_{\mathbf{w},\boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i : \hat{y}_i \mathbf{w}' \phi(\mathbf{x}_i) \ge 1 - \xi_i$$

• balance constraint: $\mathcal{B} = \{ \hat{\mathbf{y}} \mid \hat{y}_i \in \{+1, -1\}; -\beta \leq \mathbf{1}' \hat{\mathbf{y}} \leq \beta \}$ for some $\beta \geq 0$

Use dual in inner minimization problem

$$\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\,\mathsf{max}_{oldsymbollpha\in\mathcal{A}}\,\,\mathbf{1}'oldsymbollpha-rac{1}{2}oldsymbollpha'\Big(\mathsf{K}\odot\hat{\mathbf{y}}\hat{\mathbf{y}}'\Big)oldsymbollpha$$

•
$$\mathcal{A} = \{ \boldsymbol{\alpha} \mid C\mathbf{1} \geq \boldsymbol{\alpha} \geq \mathbf{0} \}$$

$$\min_{oldsymbol{\mu}\in\mathcal{M}}\max_{oldsymbol{lpha}\in\mathcal{A}} \ \mathbf{1}'oldsymbol{lpha} - rac{1}{2}oldsymbol{lpha}' \Big(\sum_{t: \hat{oldsymbol{y}}_t\in\mathcal{B}} \mu_t \mathbf{K}\odot \hat{oldsymbol{y}}_t \hat{oldsymbol{y}}_t'\Big)oldsymbol{lpha}$$

Introduction	WellSVM 00000000	SSL 00000000	MIL	MMC ○●○○○○	Conclusion
Cutting Pla	ne				

Step 1 (MKL problem)

 $\begin{array}{l} \min \ \frac{1}{2} \sum_{t=1}^{T} \frac{1}{\mu_t} || \mathbf{w}_t ||^2 + C \sum_{i=1}^{N} \xi_i \ : \ \sum_{t=1}^{T} \hat{y}_{ti} \mathbf{w}_t' \phi(\mathbf{x}_i) \geq 1 - \xi_i \\ \\ \text{Step 2} \ (\text{let } \mathbf{H} = \mathbf{K} \odot (\alpha \alpha')) \end{array}$

 $\textbf{0} \text{ compute } \bar{\textbf{y}} = \arg\max_{\hat{\textbf{y}} \in \mathcal{C}} \hat{\textbf{y}}' \textbf{H} \hat{\textbf{y}} \text{ and } \textbf{y}^* = \arg\max_{\hat{\textbf{y}} \in \mathcal{B}} \hat{\textbf{y}}' \textbf{H} \bar{\textbf{y}}$

 ${\bf @}~{\bf y}^*$ is a violated label assignment if ${\bf \bar y}'H{\bf y}^*\geq {\bf \bar y}'H{\bf \bar y}$

find \mathbf{y}^* via sorting (let $\mathbf{r} = \mathbf{H}\mathbf{\bar{y}}$)

• $\max_{\hat{\mathbf{y}}} \mathbf{r}' \hat{\mathbf{y}} : -\beta \leq \hat{\mathbf{y}}' \mathbf{1} \leq \beta, \hat{\mathbf{y}} \in \{-1, +1\}^N$

• \hat{y}_i 's align with the sorted values of r_i 's

Introduction	WellSVM 00000000	SSL 00000000	MIL 000000000000000000000000000000000000	MMC ○●○○○○	Conclusion
Cutting Pla	ne				

Step 1 (MKL problem)

min $\frac{1}{2} \sum_{t=1}^{T} \frac{1}{\mu_t} ||\mathbf{w}_t||^2 + C \sum_{i=1}^{N} \xi_i : \sum_{t=1}^{T} \hat{y}_{ti} \mathbf{w}_t' \phi(\mathbf{x}_i) \ge 1 - \xi_i$

Step 2 (let $\mathbf{H} = \mathbf{K} \odot (lpha lpha'))$

 $\textbf{0} \text{ compute } \bar{\textbf{y}} = \arg\max_{\hat{\textbf{y}} \in \mathcal{C}} \hat{\textbf{y}}' \textbf{H} \hat{\textbf{y}} \text{ and } \textbf{y}^* = \arg\max_{\hat{\textbf{y}} \in \mathcal{B}} \hat{\textbf{y}}' \textbf{H} \bar{\textbf{y}}$

 ${\bf 2} \ {\bf y}^*$ is a violated label assignment if ${\bf \bar y}' {\bf H} {\bf y}^* \geq {\bf \bar y}' {\bf H} {\bf \bar y}$

find \mathbf{y}^* via sorting (let $\mathbf{r} = \mathbf{H}\bar{\mathbf{y}}$)

• $\max_{\hat{\mathbf{y}}} \mathbf{r}' \hat{\mathbf{y}} : -\beta \leq \hat{\mathbf{y}}' \mathbf{1} \leq \beta, \hat{\mathbf{y}} \in \{-1, +1\}^N$

• \hat{y}_i 's align with the sorted values of r_i 's

Introduction	WellSVM 00000000	SSL 00000000	MIL 000000000000000000000000000000000000	MMC ○●○○○○	Conclusion
Cutting Pla	ne				

Step 1 (MKL problem)

min $\frac{1}{2} \sum_{t=1}^{T} \frac{1}{\mu_t} ||\mathbf{w}_t||^2 + C \sum_{i=1}^{N} \xi_i : \sum_{t=1}^{T} \hat{y}_{ti} \mathbf{w}_t' \phi(\mathbf{x}_i) \ge 1 - \xi_i$

Step 2 (let $\mathbf{H} = \mathbf{K} \odot (lpha lpha'))$

 $\textbf{0} \text{ compute } \bar{\textbf{y}} = \arg \max_{\hat{\textbf{y}} \in \mathcal{C}} \hat{\textbf{y}}' \textbf{H} \hat{\textbf{y}} \text{ and } \textbf{y}^* = \arg \max_{\hat{\textbf{y}} \in \mathcal{B}} \hat{\textbf{y}}' \textbf{H} \bar{\textbf{y}}$

 ${\bf @}~{\bf y}^*$ is a violated label assignment if ${\bf \bar y}' {\bf H} {\bf y}^* \geq {\bf \bar y}' {\bf H} {\bf \bar y}$

find \boldsymbol{y}^* via sorting (let $\boldsymbol{r}=\boldsymbol{H}\boldsymbol{\bar{y}})$

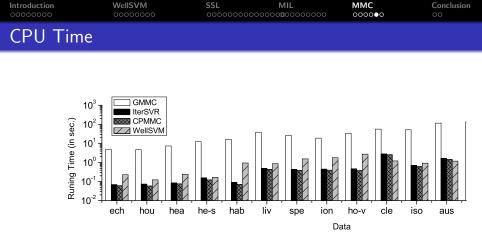
- $\max_{\hat{\mathbf{y}}} \mathbf{r}' \hat{\mathbf{y}} : -\beta \leq \hat{\mathbf{y}}' \mathbf{1} \leq \beta, \hat{\mathbf{y}} \in \{-1, +1\}^N$
- \hat{y}_i 's align with the sorted values of r_i 's

Introduction	WellSVM 00000000	SSL 00000000	MIL	MMC 00●000	Conclusion
Experiments					

- *k*-means clustering (KM)
- kernel k-means clustering (KKM)
- Inormalized cut (NC)
- GMMC [Valizadegan and Jin, NIPS-2007]
- JterSVR [Zhang et al., ICML-2007]
- O CPMMC [Zhao et al., ICDM-2008]
 - Gaussian kernel
 - initialization:
 - 20 random label assignments are generated
 - the one with the maximum kernel alignment is selected

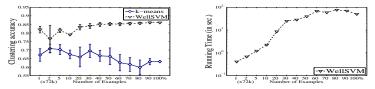
Introduction	WellSVM 00000000	SS		MIL		MMC 000●00	Conclusion
Clustering A							
	KM	KKM	NC	MMC	IterSVR	GMMC	WellSVM
Echocardio	gram 0.76	0.77	0.76	0.7	0.78	0.82	0.83
House	0.89	0.88	0.89	0.78	0.87	0.53	0.93
Heart	0.59	0.59	0.57	0.7	0.59	0.56	0.74
Heart-stat	<i>tlog</i> 0.79	0.79	0.79	0.77	0.76	0.56	0.81
Haberma	an 0.59	0.64	0.7	0.6	0.57	0.74	0.74
LiverDisor	ders 0.54	0.56	0.57	0.55	0.51	0.58	0.58
Spectf	0.57	0.77	0.63	0.64	0.53	0.73	0.73
Ionosphe	ere 0.71	0.74	0.7	0.73	0.65	0.64	0.77
House-vo	otes 0.87	0.87	0.86	0.6	0.82	0.61	0.88
Clean1	0.54	0.62	0.52	0.66	0.53	0.56	0.56
Isolet	0.96	0.95	0.98	0.56	1.00	0.5	1.00
Australia	an 0.55	0.57	0.56	0.6	0.51	0.56	0.82
Diabete	es 0.67	0.69	0.66	0.69	0.66	0.65	0.68
Germai	n 0.56	0.62	0.66	0.56	0.64	0.7	0.7
Krvskp	0.51	0.55	0.56	-	0.51	0.52	0.57
Sick	0.63	0.77	0.84	-	0.59	0.94	0.94

 $\bullet \ \mathrm{WELLSVM}$ outperforms existing clustering approaches on most data sets



- local optimization methods (IterSVR and CPMMC): often efficient
- \bullet global optimization method: $\rm WELLSVM$ scales much better than GMMC
 - $\bullet\,$ on average, $\rm WELLSVM$ is about 10 times faster (scales much better than GMMC)

• real-sim: 20,958 features, 72,309 instances



• RCV1: 47,236 features, 677,399 instances

- WELLSVM outperforms *k*-means
- can be used on large data sets (takes fewer than 1,000 seconds on RCV1)

Introduction	WellSVM	SSL	MIL	MMC	Conclusion
0000000	00000000	0000000	000000000000000000000000000000000000000	000000	•0
Conclusion					

- Learning from weakly labeled data, where the training labels are incomplete
- $\bullet~\mathrm{WELLSVM}$: convex; based on "label generation"
 - tight relaxation
 - $\bullet\,$ reduces to a sequence of standard SVM training $\Rightarrow\,$ much more scalable
- promising experimental results on
 - semi-supervised learning (labels are partially known)
 - 2 multiple instance learning (labels are implicitly known)
 - Instering (labels are totally unknown)

$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t \mathcal{G}(\alpha, \hat{\mathbf{y}}_t) + \text{cutting plane}$

Introduction	WellSVM 00000000	SSL 00000000	MIL	MMC 000000	Conclusion ●○
Conclusion					

- Learning from weakly labeled data, where the training labels are incomplete
- $\bullet \ \mathrm{WELLSVM}$: convex; based on "label generation"
 - tight relaxation
 - reduces to a sequence of standard SVM training \Rightarrow much more scalable
- promising experimental results on
 - semi-supervised learning (labels are partially known)
 - 2 multiple instance learning (labels are implicitly known)
 - I clustering (labels are totally unknown)

 $\mathsf{min}_{\hat{\mathbf{y}}\in\mathcal{B}}\,\mathsf{max}_{oldsymbol{lpha}\in\mathcal{A}}\;\; \mathcal{G}(oldsymbol{lpha},\hat{\mathbf{y}})$

$\min_{\mu \in \mathcal{M}} \max_{\alpha \in \mathcal{A}} \sum_{t: \hat{\mathbf{y}}_t \in \mathcal{B}} \mu_t G(\alpha, \hat{\mathbf{y}}_t) + \mathsf{cutting plane}$

Introduction	WellSVM 00000000	SSL 00000000	MIL	MMC 000000	Conclusion ●○
Conclusion					

- Learning from weakly labeled data, where the training labels are incomplete
- $\bullet~\mathrm{WELLSVM}$: convex; based on "label generation"
 - tight relaxation
 - reduces to a sequence of standard SVM training \Rightarrow much more scalable
- promising experimental results on
 - semi-supervised learning (labels are partially known)
 - 2 multiple instance learning (labels are implicitly known)
 - I clustering (labels are totally unknown)

$$\min_{\hat{\mathbf{y}} \in \mathcal{B}} \max_{\boldsymbol{lpha} \in \mathcal{A}} \ \mathcal{G}(\boldsymbol{lpha}, \hat{\mathbf{y}})$$

try

$$\min_{oldsymbol{\mu}\in\mathcal{M}}\max_{oldsymbol{lpha}\in\mathcal{A}}\ \sum_{t:\hat{oldsymbol{y}}_t\in\mathcal{B}}\mu_t {\sf G}(oldsymbol{lpha},\hat{oldsymbol{y}}_t)+{\sf cutting}\ {\sf plane}$$

Introduction	WellSVM 00000000	SSL 00000000000000000000000000000000000	MIL	MMC 000000	Conclusion ○●
References					

- Y.-F. Li, I.W. Tsang, J.T. Kwok, Z.-H. Zhou. Convex and Scalable Weakly Labeled SVMs. To appear in Journal of Machine Learning Research, 2013 (also as arXiv:1303.1271).
- Y.-F. Li, J.T. Kwok, I.W. Tsang, Z.-H. Zhou. A convex method for locating regions of interest with multi-instance learning. **ECML-2009**.
- Y.-F. Li, I.W. Tsang, J.T. Kwok, Z.-H. Zhou. Tighter and convex maximum margin clustering. **AISTATS-2009**.