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Introduction

Obtaining labeled data is expensive and difficult

may involve hazardous experiments

may involve expensive expertise (e.g., drug prediction)

Weakly labeled data: labels are incomplete / partially known

semi-supervised learning (SSL)

multiple instance learning (MIL)

maximum margin clustering (MMC)
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Semi-Supervised Learning (SSL)

few labeled data, lots of unlabeled data

Applications

text categorization, medical image segmentation, word sense
disambiguation, object detection

labels are partially known
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Multiple Instance Learning (MIL)

Example (drug activity prediction [Dietterich et al., AIJ-1997)

given a drug molecule, predict whether it can bind to the
targets (standard supervised learning?)

each drug molecule can have multiple low-energy shapes or
conformations

a molecule can bind to a target if at least one of its
conformations can bind

biochemists can only tell the binding capability of a molecule,
but not a particular conformation
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Weak Label Information

each shape ⇒ instance; each molecule ⇒ bag

a bag is labeled positive when it contains at least one positive
instance (key instance), and is labeled negative otherwise

only the bags (but not individual instances) have known labels

labels only implicitly known
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Clustering

Supervised learning

Maximum margin clustering [Xu et al, NIPS-2005]

labels are totally unknown
James Kwok Learning from Weakly Labeled Data
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Weak-Label Learning

Besides learning the parameters, needs to infer the integer-valued
labels of the samples

difficult mixed-integer programming

James Kwok Learning from Weakly Labeled Data
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Existing Algorithms

global optimization

branch and bound [Chapelle et al., JMLR-2008], deterministic
annealing [Sindhwani et al., ICML-2006]
not quite scalable

semidefinite (SDP) relaxations [Xu et al., NIPS-2005]

convex
used on small data sets (thousands of examples)

non-convex optimization

alternating minimization [Andrews et al., NIPS-2003],
convex-concave procedure [Collobert et al., JMLR-2006]
often efficient, but can get stuck in local minima

Goal: A scalable yet convex optimization procedure
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WellSVM (WEakly LabeLed SVM)

A variant of the (convex) SVM with label generation

1 generate the label vectors

2 combine them via multiple kernel learning

Advantages

a tight convex relaxation of the original mixed integer
programming problem

at least as tight as existing convex relaxations

can make use of state-of-the-art SVM softwares

scalable and efficient
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Large-Margin Weak-Label Learning

data set D = {xi , yi}Ni=1 (xi ∈ X : input; yi ∈ {±1}: output)

find f : X → {±1} to minimize the structural risk functional

minf Ω(f ) + C `f (D)

Ω: regularizer; `f (D): empirical loss on D
Ω and `f are convex

Labels ŷ = [ŷ1, · · · , ŷN ]′ ∈ {±1}N not available on all N examples
⇒ need to be learned

minimize w.r.t. f and (unknown labels in) ŷ

minŷ∈B minf Ω(f ) + C `f ({xi , ŷi}Ni=1)

B: set of candidate label assignments

Example

+ve and -ve examples are known to be approximately balanced

B = {ŷ : −β ≤
∑N

i=1 ŷi ≤ β} for some constant β
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Large Margin Classifiers

Primal: min
w,ξ

1
2‖w‖

2 + C
∑N

i=1 ξi : ŷiw
′φ(xi ) ≥ 1− ξi , ξi ≥ 0

Dual: max
α

α′1− 1
2α

′(K� ŷŷ′
)
α : C1 ≥ α ≥ 0

α: dual variable; K: kernel matrix

minŷ∈B max
α

α′1− 1
2α

′(K� ŷŷ′
)
α : C1 ≥ α ≥ 0

More generally,

minŷ∈B maxα∈A G (α, ŷ)

convex set A: e.g., {α | C1 ≥ α ≥ 0}
G (α, ŷ): concave in α for any fixed ŷ

G (α, ŷ) can be rewritten as Ḡ (α,M), where M is a psd
matrix, and Ḡ is concave in α and linear in M

e.g., α′1− 1
2α

′(K�Mŷ

)
α, where Mŷ = ŷŷ′
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′φ(xi ) ≥ 1− ξi , ξi ≥ 0

Dual: max
α

α′1− 1
2α

′(K� ŷŷ′
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Relax

minŷ∈B maxα∈A G (α, ŷ)

interchange the order of maxα∈A and minŷ∈B

(upper-bound) max
α∈A

min
ŷ∈B

G (α, ŷ)

= max
α∈A

{
max

θ
θ s.t. G (α, ŷt) ≥ θ, ∀ŷt ∈ B

}
µt ≥ 0: dual variable for each constraint

max
α∈A

min
µ∈M

∑
t:ŷt∈B

µtG (α, ŷt)

M = {µ |
∑

t µt = 1, µt ≥ 0} (simplex)

convex in µ and concave in α ⇒ interchange order of max
and min

minµ∈Mmaxα∈A
∑

t:ŷt∈B µtG (α, ŷt)
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interchange the order of maxα∈A and minŷ∈B
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t:ŷt∈B µtG (α, ŷt)
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Tightest Convex Relaxation

Original problem

minŷ∈B maxα∈A G (α, ŷ) = minM∈Y0 maxα∈A Ḡ (α,M)

Y0 =
{
M |M = Mŷ (= ŷŷ′), ŷ ∈ B

}
Our relaxation

min
µ∈M

max
α∈A

∑
t:ŷt∈B

µtG (α, ŷt) = min
µ∈M

max
α∈A

∑
t:ŷt∈B

µtḠ (α,Mŷt )

= min
µ∈M

max
α∈A

Ḡ

α,
∑

t:ŷt∈B
µtMŷt


= min

M∈Y1

max
α∈A

Ḡ (α,M)

Y1 =
{
M |M =

∑
t:ŷt∈B µtMŷt , µ ∈M

}
convex hull of Y0 ⇒ tightest convex relaxation
at least as tight as existing SDP relaxations
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Y0 =
{
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t:ŷt∈B
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t:ŷt∈B
µtMŷt
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t:ŷt∈B µtMŷt , µ ∈M

}
convex hull of Y0 ⇒ tightest convex relaxation
at least as tight as existing SDP relaxations

James Kwok Learning from Weakly Labeled Data



Introduction WellSVM SSL MIL MMC Conclusion

Tightest Convex Relaxation

Original problem
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µtG (α, ŷt) = min
µ∈M

max
α∈A

∑
t:ŷt∈B
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= min

M∈Y1

max
α∈A
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t:ŷt∈B
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µtG (α, ŷt) = min
µ∈M

max
α∈A

∑
t:ŷt∈B
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How to Solve?

minµ∈Mmaxα∈A
∑

t:ŷt∈B µtG (α, ŷt)

max
α∈A

{
max

θ
θ s.t. G (α, ŷt) ≥ θ, ∀ŷt ∈ B

}
exponential number of constraints in B
direct optimization computationally intractable

Typically not all these constraints are active at optimality

including only a subset of them: a very good approximation
⇒ cutting plane method

minµ∈Mmaxα∈A
∑

t:ŷt∈C µtG (α, ŷt)

C: working set (often much smaller than B)
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C: working set (often much smaller than B)

James Kwok Learning from Weakly Labeled Data



Introduction WellSVM SSL MIL MMC Conclusion

How to Solve?

minµ∈Mmaxα∈A
∑
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Cutting Plane Algorithm by Label Generation

minµ∈Mmaxα∈A
∑

t:ŷt∈C µtG (α, ŷt)

1: Initialize ŷ, C = ∅;
2: repeat
3: update C ← {ŷ}

⋃
C;

4: obtain α from minµ∈Mmaxα∈A
∑

t:ŷt∈C µtG (α, ŷt);
5: generate a violated ŷ;
6: until G (α, ŷ) > miny∈C G (α, y)− ε (where ε is a small

constant) or the decrease of objective value is smaller than a
threshold.

Issues

1 Given C, how to efficiently solve the above optimization
problem?

2 How to efficiently find a violated ŷ and update C ← {ŷ}
⋃
C?
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Properties

assume that −G (α, ŷ) is λ-strongly convex and M-Lipschitz

p(t): optimal objective value at the tth iteration

p(t+1) ≤ p(t) − η (where η =
(
−c+

√
c2+4ε

2

)2
, c = M

√
2/λ)

The algorithm converges in no more than p(1)−p∗

η iterations

magnitude of violation in the rth iteration: εr

The algorithm converges in no more than R iterations where∑R
r=1 ηr ≥ p(1) − p∗, where ηr =

(
−c+
√

c2+4εr

2

)2

the more effort spent on finding a violated label, the faster the
convergence
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Semi-Supervised Learning

not all the training labels are known
DL = {xi , yi}li=1: labeled data; DU = {xj}Nj=l+1: unlabeled
data
index sets: L = {1, . . . , l}; U = {l + 1, . . . ,N}

hinge loss + `2-regularizer on w

minŷ∈B min
w,ξ

1

2
‖w‖2 + C1

l∑
i=1

ξi + C2

N∑
j=l+1

ξi

s.t. ŷiw
′φ(xi ) ≥ 1− ξi

Example

B = {ŷ | ŷL = yL, ŷU ∈ {±1}N−l ; 1′ŷU
N−l = 1′yL

l }
yL = [y1, . . . , yl ]

′, ŷU = [ŷl+1, . . . , ŷN ]′

James Kwok Learning from Weakly Labeled Data
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Semi-Supervised Learning...

minŷ∈B min
w,ξ

1

2
‖w‖2 + C1

l∑
i=1

ξi + C2

N∑
j=l+1

ξi : ŷiw
′φ(xi ) ≥ 1− ξi

inner minimization ⇒ dual

minŷ∈B maxα∈A G (α, ŷ) ≡ 1′α− 1
2α

′
(
K� ŷŷ′

)
α

A = {α
∣∣ C1 ≥ αi ≥ 0,C2 ≥ αj ≥ 0, i ∈ L, j ∈ U}

⇒

minµ∈Mmaxα∈A 1′α− 1
2α

′
( ∑

t:ŷt∈B µtK� ŷt ŷ′t

)
α

⇒

minµ∈Mmaxα∈A 1′α− 1
2α

′
( ∑

t:ŷt∈C µtK� ŷt ŷ′t

)
α
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Cutting Plane Algorithm

minµ∈Mmaxα∈A 1′α− 1
2α

′
( ∑

t:ŷt∈C µtK� ŷt ŷ′t

)
α

Two important issues

Issue 1

Given C, how to efficiently solve the above optimization problem?

Issue 2

How to efficiently find a violated ŷ?
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Issue 1: How to obtain α?

minµ∈Mmax
α∈A

1′α− 1

2
α′

( ∑
t:ŷt∈C

µtK� ŷt ŷ
′
t

)
α

︸ ︷︷ ︸
cf. standard SVM (with kernel matrix K� ŷŷ′)

target kernel matrix is a convex combination of the base
kernel matrices {K� ŷt ŷ′t}

multiple kernel learning (MKL)
given labels y, find the optimal kernel

∑
t µtKt � yy′

multiple label-kernel learning
only one kernel K, a lot of ŷ’s (

∑
t µtK� ŷt ŷ′t)

James Kwok Learning from Weakly Labeled Data



Introduction WellSVM SSL MIL MMC Conclusion

Issue 1: How to obtain α?

minµ∈Mmax
α∈A

1′α− 1

2
α′

( ∑
t:ŷt∈C

µtK� ŷt ŷ
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Multiple Label-Kernel Learning

MKL

use the MKL-group-lasso (MKLGL) algorithm in [Xu et al.,
ICML-2010]

formulate as minimization problem ⇒ alternating minimization

(current working set: C = {ŷ1, . . . , ŷT})

min
µ∈M

min
W=[w1,...,wT ],ξ

1
2

∑T
t=1

1
µt
||wt ||2 + C1

∑l
i=1 ξi + C2

∑N
j=l+1 ξj

s.t.
∑T

t=1 ŷtiw
′
tφ(xi ) ≥ 1− ξi

iterate until convergence

1 fix µ, solve for wt ’s and ξ

min 1
2 ||w̃||

2 + C1
∑l

i=1 ξi + C2
∑N

j=l+1 ξj : ỹi w̃
′x̃i ≥ 1− ξi

efficiently handled by standard SVM solvers

2 fix wt ’s and ξ, update µ as µt = ‖wt‖PT
t′=1 ‖wt′‖
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Issue 2: Finding a Violated Label Assignment

Recall that min
µ∈M

max
α∈A

∑
t:ŷt∈B

µtG (α, ŷt)

= max
α∈A

{
max

θ
θ s.t. G (α, ŷt) ≥ θ, ∀ŷt ∈ B

}
To find the most violated label assignment

arg min
ŷ∈B

G (α, ŷ) = arg min
ŷ∈B

1′α− 1

2
α′

(
K� ŷŷ′

)
α

= arg max
ŷ∈B

1

2
α′

(
K� ŷŷ′

)
α

= arg max
ŷ∈B

ŷ′Hŷ (H ≡ K� (αα′))

difficult

Cutting plane algorithm only requires the addition of a violated
constraint at each iteration

James Kwok Learning from Weakly Labeled Data



Introduction WellSVM SSL MIL MMC Conclusion

Issue 2: Finding a Violated Label Assignment

Recall that min
µ∈M

max
α∈A

∑
t:ŷt∈B
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= max
α∈A

{
max

θ
θ s.t. G (α, ŷt) ≥ θ, ∀ŷt ∈ B
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ŷ∈B
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Simple Method to Find a Violated Label Assignment

find a y s.t. y′Hy > maxŷ∈C ŷ′Hŷ

1 compute ȳ = arg maxŷ∈C ŷ′Hŷ and y∗ = arg maxŷ∈B ŷ′Hȳ

2 y∗ is a violated label assignment if ȳ′Hy∗ 6= ȳ′Hȳ

arg max
ŷ∈B

ŷ′Hȳ = arg max
ŷ∈B

r′ŷ (where r = Hȳ)

= arg max
ŷ

r′U ŷU : ŷU ∈ {±1}N−l ,
1′ŷU
N − l

=
1′yL

l

at optimality, ŷi ≥ ŷj if ri > rj , i , j ∈ U (ŷi ’s aligned with the
sorted ri ’s)

1 sort ri ’s (i ∈ U) in ascending order

2 to satisfy the balance constraint 1′ŷU
N−l = 1′yL

l : the small ŷi ’s
are assigned −1, while the large ones are assigned 1
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arg max
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ŷ∈B
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WellSVM for Semi-Supervised Learning

1: initialize ŷ, C = ∅;
2: repeat
3: update C ← {y∗}

⋃
C.

4: obtain the optimal {µ,W} or α from MKL solver;
5: obtain the optimal solution y∗ ≡ arg maxŷ∈B ŷ′Hȳ by sorting;
6: until G (α, y∗) > miny∈C G (α, y)− ε or the decrease of

objective value is smaller than a threshold
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Experiments
#instances #features #instances #features

Echocardiogram 132 8 Clean1 476 166
House 232 16 Isolet 600 51
Heart 270 9 Australian 690 42

Heart-stalog 270 13 Diabetes 768 8
Haberman 306 14 German 1,000 59

LiveDiscorders 345 6 Krvskp 3,196 36
Spectf 349 44 Sick 3,772 31

Ionosphere 351 34 House-votes 435 16

75% of the data for training, the rest for testing
WellSVM (LIBSVM for nonlinear kernels, LIBLINEAR for
linear kernel) vs

1 standard SVM (using labeled data only);
2 transductive SVM (TSVM)
3 Laplacian SVM (LapSVM)
4 universum SVM (USVM)

SDP-based S3VMs [Xu et al., NIPS-2005; De Bie et al., SSL
book-2006]: cannot converge after 3 hours on the smallest
data set
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Accuracies (5% labeled examples)

SVM TSVM LapSVM USVM WellSVM
Echocardiogram 0.80 0.74 0.64 0.81 0.80

House 0.90 0.90 0.90 0.90 0.90
Heart 0.70 0.75 0.73 0.76 0.77

Heart-statlog 0.73 0.75 0.74 0.75 0.73
Haberman 0.65 0.61 0.57 0.75 0.75

LiverDisorders 0.56 0.55 0.55 0.59 0.53
Spectf 0.73 0.68 0.61 0.74 0.70

Ionosphere 0.67 0.82 0.65 0.77 0.70
House-votes 0.88 0.89 0.87 0.83 0.89

Clean1 0.58 0.60 0.54 0.65 0.63
Isolet 0.97 0.99 0.97 0.70 0.97

Australian 0.79 0.82 0.78 0.80 0.81
Diabetes 0.67 0.67 0.67 0.70 0.69
German 0.70 0.69 0.62 0.70 0.70
Krvskp 0.91 0.92 0.80 0.91 0.92
Sick 0.94 0.89 0.90 0.94 0.94

SVM: win/tie/loss 5/7/4 8/7/1 2/9/5 3/6/7
avg accuracy 0.763 0.767 0.723 0.770 0.778

WellSVM highly competitive
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CPU Time

5% labeled samples (16 data sets)

slowest: TSVM; fastest: USVM

WellSVM comparable to LapSVM
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Number of WellSVM Iterations
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Larger Data Sets

real-sim: 20,958 features, 72,309 instances
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RCV1 : 47,236 features, 677,399 instances
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linear kernel (comparison with SVMlin [Sindhwani and
Keerthi, 2006])
WellSVM is always more accurate and faster than SVMlin
for RCV1, SVMlin cannot converge in 24 hours when > 5%
examples are used for training
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Comparison with Other SSL Benchmarks in the Literature

benchmark data sets in [Chapelle, Schölkopf, Zien, SSL
book-2006]

test errors (%) (using 10 labeled examples)

g241c g241d Digit1 USPS COIL BCI Text

SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37
TSVM 24.71 50.08 17.77 25.20 67.50 49.15 40.37

WellSVM 37.37 43.33 16.94 22.74 70.73 48.50 33.70

WellSVM is highly competitive
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Comparison with SDP-based Benchmarks

same setup in [Xu et al., 2005]

test errors (%)

HWD 1-7 HWD 2-3 Austr. Flare Vote Diabetes
MMC 3.2 4.7 32.0 34.0 14.0 35.6

WellSVM 2.7 5.3 40.0 28.9 11.6 41.3

WellSVM is again highly competitive
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Multiple Instance Learning

data set D = {Bi , yi}mi=1

m: number of bags
bag Bi = {xi,1, . . . , xi,mi}; output yi ∈ {±1}
only bag labels available, while the instance labels are only
implicitly known

a bag is labeled positive if it contains at least one positive
instance (key instance), and negative otherwise

label of a bag is determined by its key instance, i.e.,
f (Bi ) = max{f (xi ,1), · · · , f (xi ,mi

)}

James Kwok Learning from Weakly Labeled Data
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Multiple Instance SVM

min
w,ξ

1
2‖w‖

2 + C1
∑

+ve bag i ξi + C2
∑

-ve bag i ξi

s.t. yimax1≤j≤mi
w′φ(xi ,j) ≥ 1− ξi

positive bag Bi

di ∈ {0, 1}mi : indicates which instance is key instance

each +ve bag has only one key instance (
∑mi

j=1 di ,j = 1)

negative bag Bi

all its instances are negative
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Optimization Problem...

min
w,ξ

1
2‖w‖

2 + C1
∑

+ve bag i ξi + C2
∑

-ve bag i ξi

s.t. yi max1≤j≤mi
w′φ(xi ,j) ≥ 1− ξi

becomes

min
d=[d′1,...,d

′
p]
′
min
w,ξ

1

2
‖w‖2 + C1

∑
+ve bag i

ξi + C2

∑
-ve bag i

mi∑
j=1

ξi ,j

s.t.

mi∑
j=1

w′di ,jφ(xi ,j) ≥ 1− ξi (+ve bag i)

−w′φ(xi ,j) ≥ 1− ξi ,j (each instance j in -ve bag i)
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Convex Relaxation

dual of the inner minimization problem:

maxα∈A 1′α− 1
2(α� ŷ)′Kd(α� ŷ)

A =

{
α | C1 ≥ αi ≥ 0 for each +ve bag i

C2 ≥ αj ≥ 0 for each instance j in a -ve bag

}
yi = 1 for +ve bag; −1 for instances in -ve bags

Kd
ij = (ψd

i )
′(ψd

j ), where

ψd
i =

{ ∑mi
j=1 di ,jφ(xi ,j) +ve bag i

φ(xi ,j) instance j in -ve bag i

mind∈∆ maxα∈A 1′α− 1
2(α� ŷ)′Kd(α� ŷ)

Convex relaxation

minµ∈Mmaxα∈A 1′α− 1
2(α� ŷ)′

( ∑
t:dt∈∆ µtKdt

)
(α� ŷ)
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( ∑
t:dt∈∆ µtKdt

)
(α� ŷ)
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Cutting Plane: Step 1

Multiple label-kernel learning problem

min
µ∈M,W=[w1;...;wT ],ξ

1

2

T∑
t=1

1

µt
||wt ||2 + C1

∑
+ve bag i

ξi + C2

∑
-ve bag i

mi∑
j=1

ξi,j

s.t.
T∑

t=1

 mi∑
j=1

w′td
t
i,jφ(xi,j)

 ≥ 1− ξi (+ve bag i)

−
T∑

t=1

w′tφ(xi,j) ≥ 1− ξi,j (instance j in -ve bag i)

apply MKL algorithm
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Cutting Plane: Step 2
find the most violated label assignment

arg min
d∈∆

1′α− 1

2
(α� ŷ)′Kd(α� ŷ) = arg max

d∈∆
d′Hd + τ ′d

for some H and τ

find a violated label assignment

1 compute d̄ = arg maxd∈C d′Hd + τ ′d and

d∗ = arg maxd∈∆ d′Hd̄ + τ ′d
2

2 d∗ is a violated label assignment if d∗′Hd̄+ τ ′d∗

2 > d̄′Hd̄+ τ ′d̄
2

find d∗ via sorting (let r = Hd̄ + τ
2 )

max
d

r′d : 1′di = 1,di ∈ {0, 1}mi

(recall that d = [d′1, . . . ,d
′
p]
′) solve the subproblems for each

+ve bag individually
set the the largest element in each di to 1, others to zero
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Experiment: CBIR

Content-based image retrieval (CBIR)

task: classify/retrieve images based on content

each image (bag) is composed of several segments (instances)

an image is labeled positive when at least one of its segments
is positive

500 COREL images from five image categories
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Multiple Instance Learning for Locating ROIs

compare with
1 MI-SVM, mi-SVM [Andrews et al., NIPS-2003];
2 SVM with MI-Kernel [Gärtner et al., ICML-2002]
3 non-SVM methods: Diverse Density; EM-DD; CkNN-ROI

(the higher the better)

method castle firework mountain sunset waterfall
WellSVM 0.57 0.68 0.59 0.32 0.39

SVM mi-SVM 0.51 0.56 0.18 0.32 0.37
methods MI-SVM 0.52 0.63 0.18 0.29 0.06

MI-Kernel 0.56 0.57 0.23 0.24 0.20

DD 0.24 0.15 0.56 0.30 0.26
non-SVM EM-DD 0.69 0.65 0.54 0.36 0.30
methods CkNN-ROI 0.48 0.65 0.47 0.31 0.20

WellSVM achieves the best performance among all the
SVM-based methods

WellSVM is still always better than DD and CkNN-ROI,
and is highly comparable to EM-DD
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Location the Region of Interest (ROI)

usually user is only interested in some image regions (regions
of interest)
determining whether a region is a ROI ≡ finding the key
instance
left to right: DD, EM-DD, CkNN-ROI, MI-SVM, mi-SVM,
MI-Kernel, and WellSVM
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Maximum Margin Clustering

all the class labels are unknown

minŷ∈B min
w,ξ

1
2‖w‖

2 + C
∑N

i=1 ξi : ŷiw
′φ(xi ) ≥ 1− ξi

balance constraint: B = {ŷ | ŷi ∈ {+1,−1};−β ≤ 1′ŷ ≤ β}
for some β ≥ 0

Use dual in inner minimization problem

minŷ∈B maxα∈A 1′α− 1
2α

′
(
K� ŷŷ′

)
α

A = {α
∣∣ C1 ≥ α ≥ 0}

Convex relaxation

minµ∈Mmaxα∈A 1′α− 1
2α

′
( ∑

t:ŷt∈B µtK� ŷt ŷ′t

)
α
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for some β ≥ 0

Use dual in inner minimization problem
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Cutting Plane

Step 1 (MKL problem)

min 1
2

∑T
t=1

1
µt
||wt ||2 + C

∑N
i=1 ξi :

∑T
t=1 ŷtiw

′
tφ(xi ) ≥ 1− ξi

Step 2 (let H = K� (αα′))

1 compute ȳ = arg maxŷ∈C ŷ′Hŷ and y∗ = arg max
ŷ∈B

ŷ′Hȳ

2 y∗ is a violated label assignment if ȳ′Hy∗ ≥ ȳ′Hȳ

find y∗ via sorting (let r = Hȳ)

max
ŷ

r′ŷ : −β ≤ ŷ′1 ≤ β, ŷ ∈ {−1,+1}N

ŷi ’s align with the sorted values of ri ’s
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max
ŷ
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Experiments

1 k-means clustering (KM)

2 kernel k-means clustering (KKM)

3 normalized cut (NC)

4 GMMC [Valizadegan and Jin, NIPS-2007]

5 IterSVR [Zhang et al., ICML-2007]

6 CPMMC [Zhao et al., ICDM-2008]

Gaussian kernel

initialization:

20 random label assignments are generated
the one with the maximum kernel alignment is selected
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Clustering Accuracies
KM KKM NC MMC IterSVR GMMC WellSVM

Echocardiogram 0.76 0.77 0.76 0.7 0.78 0.82 0.83
House 0.89 0.88 0.89 0.78 0.87 0.53 0.93
Heart 0.59 0.59 0.57 0.7 0.59 0.56 0.74

Heart-statlog 0.79 0.79 0.79 0.77 0.76 0.56 0.81
Haberman 0.59 0.64 0.7 0.6 0.57 0.74 0.74

LiverDisorders 0.54 0.56 0.57 0.55 0.51 0.58 0.58
Spectf 0.57 0.77 0.63 0.64 0.53 0.73 0.73

Ionosphere 0.71 0.74 0.7 0.73 0.65 0.64 0.77
House-votes 0.87 0.87 0.86 0.6 0.82 0.61 0.88

Clean1 0.54 0.62 0.52 0.66 0.53 0.56 0.56
Isolet 0.96 0.95 0.98 0.56 1.00 0.5 1.00

Australian 0.55 0.57 0.56 0.6 0.51 0.56 0.82
Diabetes 0.67 0.69 0.66 0.69 0.66 0.65 0.68
German 0.56 0.62 0.66 0.56 0.64 0.7 0.7
Krvskp 0.51 0.55 0.56 - 0.51 0.52 0.57
Sick 0.63 0.77 0.84 - 0.59 0.94 0.94

WellSVM outperforms existing clustering approaches on
most data sets
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 GMMC
 IterSVR
 CPMMC
 WellSVM

local optimization methods (IterSVR and CPMMC): often
efficient
global optimization method: WellSVM scales much better
than GMMC

on average, WellSVM is about 10 times faster (scales much
better than GMMC)
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Large-Scale Experiments (Linear Kernel)

real-sim: 20,958 features, 72,309 instances
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RCV1 : 47,236 features, 677,399 instances
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WellSVM

WellSVM outperforms k-means

can be used on large data sets (takes fewer than 1,000
seconds on RCV1)

James Kwok Learning from Weakly Labeled Data



Introduction WellSVM SSL MIL MMC Conclusion

Conclusion

Learning from weakly labeled data, where the training labels
are incomplete
WellSVM : convex; based on “label generation”

tight relaxation
reduces to a sequence of standard SVM training ⇒ much more
scalable

promising experimental results on
1 semi-supervised learning (labels are partially known)
2 multiple instance learning (labels are implicitly known)
3 clustering (labels are totally unknown)

minŷ∈B maxα∈A G (α, ŷ)

try

minµ∈Mmaxα∈A
∑

t:ŷt∈B µtG (α, ŷt) + cutting plane
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