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Empirical risk minimization

• Learn model based on annotated data                                  by minimizing: D = {(xn, yn)}Nn=1

min
�

L(D;�) =
NX
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L(xn, yn;�)



Empirical risk minimization

• Learn model based on annotated data                                  by minimizing: 

• Herein, typical examples of the loss function include:

D = {(xn, yn)}Nn=1

min
�

L(D;�) =
NX

n=1

L(xn, yn;�)
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Regularization by priors

• Regularizers incorporate a term in the loss that penalizes complex models:

L̃(x, y;w) = L(x, y;w) + �R(w)

R(w) = kwk2 R(w) = |w|e.g., or

w2

w1
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Regularization by priors

• Getting the right regularizer is tricky!

• Most norm-based regularizers are rather arbitrary:

• L1 and L2-regularization are popular mainly for computational reasons

• Most practitioners have bad intuitions about model parameters...

• ... but they do understand their data!

Instead of restricting the 
model parameters, 
can’t we incorporate 

knowledge about the data 
instead?



• Are these reviews positive or negative?

Movie reviews

I tried to watch. I bought it because 
of the Micah quote. If you like to 
watch people get high and talk filthy 
this is for you.

This movie is awesome, if you have 
not seen Tarrantino movies on Blu Ray 
you are missing out. Blu Ray brings 
these movies to life, especially if you 
have a good surround sound system.

The movie is great, and in perfect 
condition. Came in time. I'd 
recommend the movie itself, and I 
would purchase movies from here 
again.

This is a boring movie with a lot of 
decadence and bad influence on 
people. I can't believe this movie won 
awards! I would not recommend this 
though it's so famous.



• Remove each word with probability q:

Regularization by corruption

I tried to watch. I bought it because 
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Regularization by corruption

• Define label-invariant corruptions that can be applied to the data

• Training on such corrupted data leads to robustness to the corruption

• Robustness is intimately related to regularization of the model

• We show that this can be done efficiently by marginalizing over corruptions



Regularization by corruption

• Instead of regularizer, define a label-invariant corrupting distribution:

• We will assume the corruption are independent across features (this assumption 
may be relaxed for Gaussian corruptions)

p(x̃|x)=
DY
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p(x̃d|xd; ⌘d), with E[x̃]p(x̃|x) = x
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• Instead of regularizer, define a label-invariant corrupting distribution:

• We will assume the corruption are independent across features (this assumption 
may be relaxed for Gaussian corruptions)
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Table 1. The probability density function (PDF), mean, and variance of corrupting distributions of interest. These
quantities can be plugged into Eq. (3) to obtain the expected value under the corrupting distribution of the quadratic
loss.

Implicit corruption. Although such an approach is
e↵ective, it lacks elegance and comes with high com-
putational costs, as the minimization of L(D̃;⇥) scales
linearly in the number of corrupted observations. It
is, however, of interest to consider the limiting case in
which M !1. In this case, we can apply the weak law

of large numbers and rewrite 1
M

P
M

m=1 L(x̃m

, y

m

;⇥)
as its expectation (Duda et al., 2001, §2.10.2):

L(D;⇥) =
NX

n=1

E[L(x̃
n

, y

n

;⇥)]
p(x̃n|xn). (2)

Minimizing the expected value of the loss under the
corruption model leads to a new approach for training
predictors that we refer to as learning with marginal-

ized corrupted features (MCF).

3.1. Specific loss functions

The tractability of (2) depends on the choice of loss
function and corrupting distribution P

E

. In this sec-
tion, we show that for linear predictors that employ
a quadratic or exponential loss function, the required
expectations under p(x̃|x) in (2) can be computed an-
alytically for all corrupting distributions in the natural
exponential family. For linear predictors with logistic
loss, we derive a practical upper bound on the expected
loss under p(x̃|x), which serves as surrogate loss.

Quadratic loss. Assuming2 a label variable
y2{�1,+1}, the expected value of the quadratic loss
under corrupting distribution p(x̃|x) is given by:
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2The same derivations are applicable to regression set-
tings in which y is a continuous variable.

where V [x] is a diagonal D⇥D matrix storing the vari-
ances of x, and all expectations are under p(x̃
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Eq. (3) is convex irrespective of what corruption model
is used; the optimal solution w
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To minimize the expected quadratic loss under the cor-
ruption model, we only need to compute the variance
of the corrupting distribution, which is practical for all
exponential-family distributions. The mean is always
x

nd

because our corrupting distributions are unbiased.
Table 1 gives an overview of the variances of corrupt-
ing distributions of interest. (In blankout corruption,
we scale the value of “preserved” features by 1

1�qd
to

ensure that the corrupting distribution is unbiased.)

An interesting setting of MCF with quadratic loss oc-
curs when the corrupting distribution p(x̃|x) is an
isotropic Gaussian distribution with mean x and vari-
ance �

2
I. For such a Gaussian corruption model, we

obtain as special case (Chapelle et al., 2000):
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which is the standard l2-regularized quadratic loss
with regularization parameter �2

N . Interestingly, us-
ing MCF with Laplace noise also leads to ridge regres-
sion (with regularization parameter 2�2

N).

Exponential loss. The expected value of the expo-
nential loss under corruption model p(x̃|x) is:
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Simple approach

• For each example, generate M corrupted examples and use these as data

• This amounts to minimizing the loss on an augmented, corrupted training set:

L(D̃;⇥) =
NX

n=1

1
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MX
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L(x̃nm, yn;⇥) with x̃nm ⇠ p(x̃n|xn)

This is a boring movie with a lot of 
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people. I can't believe this movie won 
awards! I would not recommend this 
though it's so famous.

This is a boring movie with a lot of 
decadence and bad influence on 
people. I can't believe this movie won 
awards! I would not recommend this 
though it's so famous.
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Simple approach

• For each example, generate M corrupted examples and use these as data*

• This amounts to minimizing the loss on an augmented, corrupted training set:

• This quickly gets computationally prohibitive, unless...
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Marginalized Corrupted Features

• For each example, generate M corrupted examples and use these as data

• This amounts to minimizing the loss on an augmented, corrupted training set:

• This quickly gets computationally prohibitive, unless                     

• Law of large numbers leads to the expected loss under the corruption model:

M ! 1

L(D̃;⇥) =
NX

n=1

1
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MX

m=1

L(x̃nm, yn;⇥) with x̃nm ⇠ p(x̃n|xn)

L(D;⇥) =
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n=1

E[L(x̃n, yn;⇥)]p(x̃n|xn)



Quadratic loss

• Working out the MCF expectation (for independent corruption) gives:

• Practical if we can compute the mean and variance of corrupting distribution
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Quadratic loss

• Working out the MCF expectation (for independent corruption) gives:

• Practical if we can compute the mean and variance of corrupting distribution

• The objective function remains convex; optimal solution given by:
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Quadratic loss

• Examples of corrupting distributions of interest:

• Using Gaussian corruptions leads to an interesting special case:

• Minimizing MCF-Gaussian quadratic loss leads to ridge regression!
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Table 1. The probability density function (PDF), mean, and variance of corrupting distributions of interest. These
quantities can be plugged into Eq. (3) to obtain the expected value under the corrupting distribution of the quadratic
loss.

Implicit corruption. Although such an approach is
e↵ective, it lacks elegance and comes with high com-
putational costs, as the minimization of L(D̃;⇥) scales
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is, however, of interest to consider the limiting case in
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predictors that we refer to as learning with marginal-
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To minimize the expected quadratic loss under the cor-
ruption model, we only need to compute the variance
of the corrupting distribution, which is practical for all
exponential-family distributions. The mean is always
x

nd

because our corrupting distributions are unbiased.
Table 1 gives an overview of the variances of corrupt-
ing distributions of interest. (In blankout corruption,
we scale the value of “preserved” features by 1

1�qd
to

ensure that the corrupting distribution is unbiased.)

An interesting setting of MCF with quadratic loss oc-
curs when the corrupting distribution p(x̃|x) is an
isotropic Gaussian distribution with mean x and vari-
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obtain as special case (Chapelle et al., 2000):
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Exponential loss

• Working out the MCF expectation (for independent corruption) gives:
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Exponential loss

• Working out the MCF expectation (for independent corruption) gives:

• This can be recognized as a product of moment-generating functions:

M
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Moment-generating functions
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• MCF with blankout has an interesting interpretation as an ensemble
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Blankout: Ensemble interpretation

• MCF with blankout has an interesting interpretation as an ensemble

• Example for model with two input features:

• Note: MCF exponential loss is convex for all corrupting distributions
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Loss on full 
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Logistic loss

• Working out the MCF expectation (for independent corruption) gives:

• The upper bound is obtained using Jensen’s inequality*

E[�(x)] � �(E[x]) for convex �(x)* Jensen’s inequality:
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Logistic loss

• Working out the MCF expectation (for independent corruption) gives:

• The upper bound is obtained using Jensen’s inequality*

• Upper bound is convex iff the moment-generating function is log-linear

E[�(x)] � �(E[x]) for convex �(x)* Jensen’s inequality:
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Using MCF in practice

Blankout noise Poisson noise Gaussian noise

MCF Loss

1)

2)

3)

Quadratic loss Exponential loss Logistic loss

L(D;w)



Experimental setup

• We performed three sets of experiments with MCF: 

• Document classification based on bag-of-word features

• Image classification based on bag-of-visual-word features

•  “Nightmare at test time” scenario where features are unobserved at test time

• All our predictors use L2-regularization, with lambda set by cross-validation



Experiment 1: Document classification

• We tested on three different document classification data sets

• All data sets have in the order of 20K features and 6K training examples



Experiment 1: Document classification

• We tested on three different document classification data sets

• All data sets have in the order of 20K features and 6K training examples

• We explore two different corrupting distributions:

• Blankout corruption:

• Poisson corruption: p(x̃nd|xnd) = Pois(x̃nd|xnd)

p(x̃nd = 0) = qd

p(x̃nd = 1
1�qd

xnd) = 1� qd



Experiment 1: Document classification
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Figure 1. Classification errors of MCF predictors using blankout and Poisson corruption – as a function of the blankout
corruption level q – on the Amazon data set for l2-regularized quadratic, exponential, and quadratic loss functions.
Classification errors are represented on the y-axis, whereas the blankout corruption level q is represented on the x-axis.
The case of MCF with blankout corruption and q = 0 corresponds to a standard l2-regularized classifier. Figure best
viewed in color.

tial, and logistic loss functions. In all experiments, the
amount of l2-regularization is determined via cross-
validation. The minimization of the (expected) ex-
ponential and logistic losses is performed by running
Mark Schmidt’s minFunc-implementation of L-BFGS
until convergence.

All our predictors included a bias term that is neither
regularized nor corrupted using MCF. In our exper-
iments with MCF using blankout corruption, we use
the same noise level for each feature, i.e. we assume
that 8d : q

d

= q (note that MCF with Poisson cor-
ruption has no additional hyperparameters). In the
experiments on the Dmoz and Reuters data sets, we
cross-validate over the blankout corruption parameter
q (where appropriate). By contrast, on the Amazon
data set, we investigate the performance of MCF as a
function of the corruption level q (but we still cross-
validate over the l2-regularizer).

Results. Figure 1 shows the generalization error of
our MCF predictors on the Amazon data set a a func-
tion of the blankout corruption level q. Herein, cor-
ruption level q=0 corresponds to the baseline predic-
tors, i.e. to the predictors that do not employ MCF
at all. The results show: (1) that MCF consistently

improves over standard predictors for both blankout
and Poisson corruption (for all corruption levels q)
on all four tasks, reducing the generalization errors
by up to 22% on the Amazon data if q is properly
set; (2) that MCF with Poisson corruption leads to
significant performance improvements over standard
classifiers whilst introducing no additional hyperpara-
maters; and (3) that the best performance tends to be
achieved by MCF with blankout corruption with rel-
atively high corruption levels are used, i.e. when q is
in the order of 0.8 or 0.9.

Figure 2 presents the results of our experiments on the
Dmoz (left) and Reuters (right) data sets. The results
show that classifiers trained with MCF (solid curves)
significantly outperform their counterparts without
MCF (dashed curves). The performance improvement
is consistent irrespective of the size of the training set:
by up to 25% on the Dmoz data set and 29% on the
Reuters data set. In many of the experiments with
MCF-trained losses (in particular, when blankout cor-
ruption is used), we observe that the optimal level of
l2-regularization is 0. Hence, MCF appears to decrease
the tendency of predictors to overfit, as a result of
which additional regularization becomes superfluous.
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Experiment 1: Document classification

• Comparing explicit and implicit blankout corruption (Amazon Books; quadratic loss):
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Experiment 2: Image classification

• The CIFAR-10 data set contains 50K images of size 32x32 with 10 classes

• We use a standard* bag-of-visual-words feature representation for the images
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Figure 2. The performance of standard and MCF classifiers with blankout
and Poisson corruption models as a function of the amount labeled training
data on the Dmoz and Reuters data sets. Both the standard and MCF
predictors employ l2-regularization. Figure best viewed in color.
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Figure 3. Comparison between MCF
and explicitly adding corrupted exam-
ples to the training set (for quadratic
loss) on the Amazon (books) data – us-
ing a blankout corruption model with
q=??.

Explicit vs. implicit feature corruption. Figure 3
shows the classification error on Amazon (books) when
a classifier without MCF is trained on the data set with
additional explicitly corrupted samples, as formulated
in (3). Specifically, we use the blankout corruption
model with q=??, and we trained the classifiers with
quadratic loss and l2-regularization. The graph shows
a clear trend that the error decreases when the training
set contains more corrupted versions of the original
training data, i.e. with higherM in eq. (3). The graph
illustrates that the best performance is obtained as M
approaches infinity, which is equivalent to MCF with
blankout corruption (big marker in the bottom right).

4.2. Image classification

We perform image-classification experiments with
MCF on the CIFAR-10 data set (Krizhevsky, 2009),
which is a subset of the 80 million tiny images (Tor-
ralba et al., 2008). The data set contains RGB images
with 10 classes of size 32⇥ 32, and contains 50, 000
training and 10, 000 test images.

Setup. We followed the experimental setup of Coates
et al. (2011): we whiten the images, extract a set of 7⇥7
image patches from the training images, and construct
a codebook by running k-means clustering on these im-
age patches (with k = 2, 048). Next, we slide a 7⇥7
pixel window over the image and identify the nearest
prototype in the codebook for each window location.
We construct a descriptor2 for each image by subdi-
viding it into four equally sized quadrants and count-

2This way of extracting the image features is referred to
by Coates et al. (2011) as k-means with hard assignment,
average pooling, patch size 7⇥7, and stride 1.

Quadr. Expon. Logist.

No MCF 32.6% 39.7% 38.0%
Poisson MCF 29.1% 39.5% 30.0%
Blankout MCF 32.3% 37.9% 29.4%

Table 3. Classification errors obtained on the CIFAR-10
data set with MCF classifiers trained on simple spatial-
pyramid bag-of-visual-words features (lower is better).

ing the number of times each prototype occurs in each
quadrant. This leads to a descriptor of dimensional-
ity D = 4⇥2, 048. Because all images have the same
size, we did not normalize the descriptors. We trained
MCF predictors with blankout and Poisson corruption
on the full set of training images, cross-validating over
a range of l2-regularization parameters. Subsequently,
we measure the classification error of the final predic-
tors on the test set.

Results. The results are reported in Table 3. The
baseline classifiers (without MCF) are on par with the
68.8% accuracy reported by Coates et al. (2011) with
exactly the same experimental setup. The results il-
lustrate the potential of MCF classifiers to improve
the prediction performance on bag-of-visual-words fea-
tures, in particular, when using quadratic loss and a
Poisson corruption model. (Again, note that Poisson
corruption introduces no additional hyperparameters
that need to be optimized.)

Although our focus in this section is to merely il-
lustrate the potential of MCF on image classification
tasks, it is worth noting that the best results in Table 3
match those of a highly non-linear mean-covariance
RBMs trained on the same data (Ranzato & Hinton,

* We followed the approach by Coates et al. (2011) to extract features.



Experiment 3: “Nightmare at test time”

• In some learning settings, features may be randomly unobserved at test time

• We experiment with this “nightmare at test time” scenario on MNIST digits:

• Train regular and MCF-blankout classifiers 
on the original training set



Experiment 3: “Nightmare at test time”

• In some learning settings, features may be randomly unobserved at test time

• We experiment with this “nightmare at test time” scenario on MNIST digits:

• Train regular and MCF-blankout classifiers 
on the original training set

• Randomly delete features from the test 
images, and measure classification error



• Classification error on test images with randomly deleted features:

Experiment 3: “Nightmare at test time”
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Conclusions

• Adding corrupted examples to training data can regularize predictors

• For a range of models and corrupting distributions, MCF makes this efficient

• MCF may lead to improved results in various learning settings:

• In particular, in settings where you somewhat understand how data is generated

• MCF may be very well suited for scenarios in which domain shift is present



Kilian Weinberger

Thanks to:

Minmin Chen Stephen Tyree

Thank you! Questions?


