Living on the Edge

Phase Transitions in Random Convex Programs

Joel A. Tropp Michael B. McCoy

Computing + Mathematical Sciences California Institute of Technology

Joint with Dennis Amelunxen and Martin Lotz (Manchester), including work of Samet Oymak and Babak Hassibi (Caltech)

Phase Transitions

What is a Phase Transition?

Definition. A *phase transition* is a sharp change in the behavior of a computational problem as its parameters vary.

Example: Sparse linear inverse problem with random data

- Suppose $x^{\natural} \in \mathbb{R}^d$ has s nonzero entries
- Acquire m random linear measurements of x^{\natural}

$$z_i = \left< oldsymbol{g}_i, \; oldsymbol{x}^{\natural}
ight> \;\;\; ext{ for } i = 1, \dots, m$$

 \checkmark Solve a convex optimization problem to reconstruct $x^{
atural}$ from the data

minimize $\|\boldsymbol{x}\|_1$ subject to $\langle \boldsymbol{g}_i, \boldsymbol{x} \rangle = z_i$ for $i = 1, \dots, m$

Example: Sparse Linear Inversion

Research Challenge...

Understand and predict phase transitions in random convex programs

Random Convex Programs

Examples...

- **Sensing.** Collect random measurements; reconstruct via optimization
- **Statistics.** Random data models; fit model via optimization
- **Coding.** Random channel models; decode via optimization

Motivations...

- Average-case analysis. Randomness describes "typical" behavior
- **Fundamental bounds.** Opportunities and limits for convex methods

Warmup: Regularized Denoising

Setup for Regularized Denoising

- 🍽 Let $x^{
 atural} \in \mathbb{R}^d$ be "structured" but unknown
- ▶ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function that measures "structure"
- Normallow Observe $oldsymbol{z} = oldsymbol{x}^{\natural} + \sigma oldsymbol{w}$ where $oldsymbol{w} \sim ext{NORMAL}(0, \mathbf{I})$
- Remove noise by solving the convex program*

minimize
$$\frac{1}{2} \| \boldsymbol{z} - \boldsymbol{x} \|_2^2$$
 subject to $f(\boldsymbol{x}) \leq f(\boldsymbol{x}^{\natural})$

a Hope: The minimizer \widehat{x} approximates x^{\natural}

*We assume the side information $f(x^{\natural})$ is available. This is equivalent** to knowing the optimal choice of Lagrange multiplier for the constraint.

Geometry of Denoising

The Risk of Regularized Denoising

Theorem 1. [Oymak & Hassibi 2013] Assume

- We observe $oldsymbol{z} = oldsymbol{x}^{
 angle} + \sigma oldsymbol{w}$ where $oldsymbol{w}$ is standard normal
- 🍋 The vector \widehat{x} solves

minimize
$$\frac{1}{2} \| \boldsymbol{z} - \boldsymbol{x} \|_2^2$$
 subject to $f(\boldsymbol{x}) \leq f(\boldsymbol{x}^{\natural})$

Then

$$\sup_{\sigma>0} \frac{\mathbb{E} \|\widehat{\boldsymbol{x}} - \boldsymbol{x}^{\natural}\|^2}{\sigma^2} = \delta \big(\mathscr{D}(f, \boldsymbol{x}^{\natural}) \big)$$

where $\delta(\mathscr{D}(f, \mathbf{x}^{\natural}))$ denotes the statistical dimension of the descent cone

Statistical Dimension

The Statistical Dimension

Definition. [Amelunxen, Lotz, McCoy, T 2013] The *statistical dimension* of a closed, convex cone K is

$$\delta(K) := \mathbb{E}\left[\left\| \mathbf{\Pi}_{K}(\boldsymbol{g}) \right\|_{2}^{2} \right]$$

where

Image: $\mathbf{\Pi}_K$ is the Euclidean projection onto KImage: \mathbf{g} is a standard normal vector

Intuition...

In stochastic geometry, a convex cone K with statistical dimension $\delta(K)$ behaves like a subspace with dimension $[\delta(K)]$

Basic Examples

Cone	Notation	Statistical Dimension
Subspace	L_{j}	j
Nonnegative orthant	\mathbb{R}^d_+	$\frac{1}{2}d$
Second-order cone	\mathbb{L}^{d+1}	$\frac{1}{2}(d+1)$
Real psd cone	\mathbb{S}^d_+	$\frac{1}{4}d(d-1)$
Complex psd cone	\mathbb{H}^d_+	$\frac{1}{2}d^2$

Circular Cones

Descent Cones

Definition. The descent cone of a function f at a point x is

$$\mathscr{D}(f, oldsymbol{x}) := \{oldsymbol{h}: f(oldsymbol{x} + arepsilon oldsymbol{h}) \leq f(oldsymbol{x}) \ \ ext{for some} \ arepsilon > 0\}$$

Descent Cone of ℓ_1 **Norm at Sparse Vector**

Descent Cone of S_1 **Norm at Low-Rank Matrix**

Statistical Dimension & Phase Transitions

- **Key Question:** When do two randomly oriented cones strike?
- Intuition: When do randomly oriented subspaces strike?

The Approximate Kinematic Formula

[Amelunxen, Lotz, McCoy, T 2013]

Let C and K be closed convex cones in \mathbb{R}^d

$$\begin{split} \delta(C) + \delta(K) &\lesssim d \implies \mathbb{P}\left\{C \cap \mathbf{Q}K = \{\mathbf{0}\}\right\} \approx 1\\ \delta(C) + \delta(K) &\gtrsim d \implies \mathbb{P}\left\{C \cap \mathbf{Q}K = \{\mathbf{0}\}\right\} \approx 0 \end{split}$$

where Q is a random orthogonal matrix

Regularized Linear Inverse Problems

Setup for Linear Inverse Problems

- \blacktriangleright Let $x^{
 ature} \in \mathbb{R}^d$ be a structured, unknown vector
- \blacktriangleright Let $A \in \mathbb{R}^{m \times d}$ be a measurement operator
- \blacktriangleright Observe $z = A x^{
 atural}$
- \blacktriangleright Find estimate \widehat{x} by solving convex program

minimize $f(\boldsymbol{x})$ subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{z}$

 \blacktriangleright Hope: $\widehat{x} = x^{\natural}$

Geometry of Linear Inverse Problems

Linear Inverse Problems with Random Data

Theorem 2. [Amelunxen, Lotz, McCoy, T 2013] Assume

- ***** The vector $x^{\natural} \in \mathbb{R}^d$ is unknown
- ***** The observation $m{z} = m{A} m{x}^{
 atural}$ where $m{A} \in \mathbb{R}^{m imes d}$ is standard normal
- \blacktriangleright The vector \widehat{x} solves

minimize f(x) subject to Ax = z

Then

$$egin{aligned} &m\gtrsim\deltaig(\mathscr{D}(f,oldsymbol{x}^{\natural})ig)&\Longrightarrow&\widehat{oldsymbol{x}}=oldsymbol{x}^{\natural}& ext{whp}\ &m\lesssim\deltaig(\mathscr{D}(f,oldsymbol{x}^{\natural})ig)&\Longrightarrow&\widehat{oldsymbol{x}}
eqoldsymbol{x}^{\natural}& ext{whp}. \end{aligned}$$

Sparse Reconstruction via ℓ_1 Minimization

Low-Rank Recovery via S_1 Minimization

Demixing Structured Signals

Setup for Demixing Problems

- \blacktriangleright Let $x^{
 ature} \in \mathbb{R}^d$ and $y^{
 ature} \in \mathbb{R}^d$ be structured, unknown vectors
- \blacktriangleright Let $\boldsymbol{U} \in \mathbb{R}^{d \times d}$ be a known orthogonal matrix
- 🍋 Observe $oldsymbol{z} = x^{
 atural} + U y^{
 atural}$
- Reconstruct via convex program

minimize
$$f(m{x})$$
 subject to $g(m{y}) \leq g(m{y}^{\natural})$ $m{x} + m{U}m{y} = m{z}$

a Hope:
$$(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}) = (\boldsymbol{x}^{\natural}, \boldsymbol{y}^{\natural})$$

Geometry of Demixing Problems

Demixing Problems with Random Incoherence

Theorem 3. [Amelunxen, Lotz, McCoy, T 2013] Assume

- **•** The vectors $oldsymbol{x}^{\natural} \in \mathbb{R}^d$ and $oldsymbol{y}^{\natural} \in \mathbb{R}^d$ are unknown
- lpha The observation $oldsymbol{z} = x^{
 atural} + oldsymbol{Q} y^{
 atural}$ where $oldsymbol{Q}$ is random orthogonal
- ***** The pair $(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}})$ solves

minimize
$$f(\boldsymbol{x})$$
 subject to $g(\boldsymbol{y}) \leq g(\boldsymbol{y}^{\natural})$
 $\boldsymbol{x} + \boldsymbol{Q} \boldsymbol{y} = \boldsymbol{z}$

Then

$$\begin{split} &\delta\big(\mathscr{D}(f,\boldsymbol{x}^{\natural})\big) + \delta\big(\mathscr{D}(g,\boldsymbol{y}^{\natural})\big) \lesssim d & \Longrightarrow \quad (\widehat{\boldsymbol{x}},\widehat{\boldsymbol{y}}) = (\boldsymbol{x}^{\natural},\boldsymbol{y}^{\natural}) \quad \textit{whp} \\ &\delta\big(\mathscr{D}(f,\boldsymbol{x}^{\natural})\big) + \delta\big(\mathscr{D}(g,\boldsymbol{y}^{\natural})\big) \gtrsim d \quad \Longrightarrow \quad (\widehat{\boldsymbol{x}},\widehat{\boldsymbol{y}}) \neq (\boldsymbol{x}^{\natural},\boldsymbol{y}^{\natural}) \quad \textit{whp} \end{split}$$

Sparse + Sparse via $\ell_1 + \ell_1$ **Minimization**

Low-Rank + Sparse via $S_1 + \ell_1$ Minimization

Cone Programs with Random Constraints

Cone Program with Random Constraints

Theorem 4. [Amelunxen, Lotz, McCoy, T 2013] Assume

- \sim The cone K is proper
- **•** The vectors $oldsymbol{u} \in \mathbb{R}^d$ and $oldsymbol{b} \in \mathbb{R}^m$ are standard normal
- ***** The matrix $\mathbf{A} \in \mathbb{R}^{m imes d}$ is standard normal

Consider the cone program

minimize $\langle \boldsymbol{u}, \, \boldsymbol{x}
angle$ subject to $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}$ and $\boldsymbol{x} \in K$

Then

$$m \lesssim \delta(K) \implies$$
 the cone program is unbounded whp
 $m \gtrsim \delta(K) \implies$ the cone program is infeasible whp

Example: Some Random SOCPs

Probability that a random SOCP is feasible

To learn more...

E-mail: mccoy@cms.caltech.edu

jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~mccoy http://users.cms.caltech.edu/~jtropp

Papers:

- MT, "Sharp recovery bounds for convex deconvolution, with applications." arXiv cs.IT 1205.1580
- ALMT, "Living on the edge: A geometric theory of phase transitions in convex optimization." arXiv cs.IT 1303.6672
- Oymak & Hassibi, "Asymptotically exact denoising in relation to compressed sensing," arXiv cs.IT 1305.2714
- More to come!