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What is a Phase Transition?

Definition. A phase transition is a sharp change in the

behavior of a computational problem as its parameters vary.

Example: Sparse linear inverse problem with random data

§ Suppose x\ ∈ Rd has s nonzero entries

§ Acquire m random linear measurements of x\

zi =
〈
gi, x

\
〉

for i = 1, . . . ,m

§ Solve a convex optimization problem to reconstruct x\ from the data

minimize ‖x‖1 subject to 〈gi, x〉 = zi for i = 1, . . . ,m
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Example: Sparse Linear Inversion
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Research Challenge...

Understand and predict
phase transitions

in random convex programs
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Random Convex Programs

Examples...

§ Sensing. Collect random measurements; reconstruct via optimization

§ Statistics. Random data models; fit model via optimization

§ Coding. Random channel models; decode via optimization

Motivations...

§ Average-case analysis. Randomness describes “typical” behavior

§ Fundamental bounds. Opportunities and limits for convex methods
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Warmup:.
Regularized Denoising
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Setup for Regularized Denoising

§ Let x\ ∈ Rd be “structured” but unknown

§ Let f : Rd → R be a convex function that measures “structure”

§ Observe z = x\ + σw where w ∼ normal(0, I)

§ Remove noise by solving the convex program*

minimize
1

2
‖z − x‖22 subject to f(x) ≤ f(x\)

§ Hope: The minimizer x̂ approximates x\

*We assume the side information f(x\) is available. This is equivalent** to knowing the

optimal choice of Lagrange multiplier for the constraint.
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Geometry of Denoising

{x : f(x) ≤ f(x\)}

x\ + D(f,x\)

z − x\σw

x̂

error

x\
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The Risk of Regularized Denoising

Theorem 1. [Oymak & Hassibi 2013] Assume

§ We observe z = x\ + σw where w is standard normal

§ The vector x̂ solves

minimize
1

2
‖z − x‖22 subject to f(x) ≤ f(x\)

Then

sup
σ>0

E ‖x̂− x\‖2

σ2
= δ

(
D(f,x\)

)
where δ(D(f,x\)) denotes the statistical dimension of the descent cone
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The Statistical Dimension

Definition. [Amelunxen, Lotz, McCoy, T 2013]

The statistical dimension of a closed, convex cone K is

δ(K) := E
[
‖ΠK(g)‖22

]
where

§ ΠK is the Euclidean projection onto K

§ g is a standard normal vector

Intuition...

In stochastic geometry, a convex cone K with statistical dimension δ(K)

behaves like a subspace with dimension [δ(K)]
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Basic Examples

Cone Notation Statistical Dimension

Subspace Lj j

Nonnegative orthant Rd+ 1
2d

Second-order cone Ld+1 1
2(d+ 1)

Real psd cone Sd+ 1
4d(d− 1)

Complex psd cone Hd+ 1
2d

2
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Circular Cones
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Descent Cones

Definition. The descent cone of a function f at a point x is

D(f,x) := {h : f(x+ εh) ≤ f(x) for some ε > 0}
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Descent Cone of `1 Norm at Sparse Vector
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Descent Cone of S1 Norm at Low-Rank Matrix
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Statistical Dimension & Phase Transitions

§ Key Question: When do two randomly oriented cones strike?

§ Intuition: When do randomly oriented subspaces strike?

The Approximate Kinematic Formula

[Amelunxen, Lotz, McCoy, T 2013]

Let C and K be closed convex cones in Rd

δ(C) + δ(K) . d =⇒ P {C ∩QK = {0}} ≈ 1

δ(C) + δ(K) & d =⇒ P {C ∩QK = {0}} ≈ 0

where Q is a random orthogonal matrix
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Regularized Linear
Inverse Problems
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Setup for Linear Inverse Problems

§ Let x\ ∈ Rd be a structured, unknown vector

§ Let A ∈ Rm×d be a measurement operator

§ Observe z = Ax\

§ Find estimate x̂ by solving convex program

minimize f(x) subject to Ax = z

§ Hope: x̂ = x\
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Geometry of Linear Inverse Problems

x\ + null(A)

{x : f(x) ≤ f(x\)}

x\

x\ + D(f,x\)
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Linear Inverse Problems with Random Data

Theorem 2. [Amelunxen, Lotz, McCoy, T 2013] Assume

§ The vector x\ ∈ Rd is unknown

§ The observation z = Ax\ where A ∈ Rm×d is standard normal

§ The vector x̂ solves

minimize f(x) subject to Ax = z

Then

m & δ
(
D(f,x\)

)
=⇒ x̂ = x\ whp

m . δ
(
D(f,x\)

)
=⇒ x̂ 6= x\ whp.
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Sparse Reconstruction via `1 Minimization
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Low-Rank Recovery via S1 Minimization
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Demixing
Structured Signals
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Setup for Demixing Problems

§ Let x\ ∈ Rd and y\ ∈ Rd be structured, unknown vectors

§ Let U ∈ Rd×d be a known orthogonal matrix

§ Observe z = x\ +Uy\

§ Reconstruct via convex program

minimize f(x) subject to g(y) ≤ g(y\)

x+Uy = z

§ Hope: (x̂, ŷ) = (x\,y\)
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Geometry of Demixing Problems

x\

{x : g
(
U∗(z − x)

)
≤ g(y\)}

{x : f(x) ≤ f(x\)}

x\ + D(f,x\)

x\ −UD(g,y\)
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Demixing Problems with Random Incoherence

Theorem 3. [Amelunxen, Lotz, McCoy, T 2013] Assume

§ The vectors x\ ∈ Rd and y\ ∈ Rd are unknown

§ The observation z = x\ +Qy\ where Q is random orthogonal

§ The pair (x̂, ŷ) solves

minimize f(x) subject to g(y) ≤ g(y\)

x+Qy = z

Then

δ
(
D(f,x\)

)
+ δ
(
D(g,y\)

)
. d =⇒ (x̂, ŷ) = (x\,y\) whp

δ
(
D(f,x\)

)
+ δ
(
D(g,y\)

)
& d =⇒ (x̂, ŷ) 6= (x\,y\) whp
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Sparse + Sparse via `1 + `1 Minimization
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Low-Rank + Sparse via S1 + `1 Minimization
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Cone Programs with
Random Constraints
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Cone Program with Random Constraints

Theorem 4. [Amelunxen, Lotz, McCoy, T 2013] Assume

§ The cone K is proper

§ The vectors u ∈ Rd and b ∈ Rm are standard normal

§ The matrix A ∈ Rm×d is standard normal

Consider the cone program

minimize 〈u, x〉 subject to Ax = b and x ∈ K

Then

m . δ(K) =⇒ the cone program is unbounded whp

m & δ(K) =⇒ the cone program is infeasible whp
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Example: Some Random SOCPs
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To learn more...

E-mail: mccoy@cms.caltech.edu

jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~mccoy

http://users.cms.caltech.edu/~jtropp

Papers:

§ MT, “Sharp recovery bounds for convex deconvolution, with applications.” arXiv cs.IT

1205.1580

§ ALMT, “Living on the edge: A geometric theory of phase transitions in convex

optimization.” arXiv cs.IT 1303.6672

§ Oymak & Hassibi, “Asymptotically exact denoising in relation to compressed sensing,”

arXiv cs.IT 1305.2714

§ More to come!
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