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Introduction

Bioinformatics motivation

A 30s introduction to the biology
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Bioinformatics motivation

Single-nucleotide polymorphisms (SNPs)
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Introduction

Bioinformatics motivation

Genome-wide association study (GWAs)

Objective: To identify important predictors (e.g. SNPs), that
account for the variability of a quantitative trait.
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Introduction

Penalized regression

Notation

X : n × p predictor matrix containing n observations on p
covariates.

y : n observations on univariate continuous response.

β: p × 1 coefficient matrix.

ε: n × 1 matrix. E(εi ) = 0, ∀i .

Use linear regression model:

y = Xβ + ε

where X and y are columnwise centered, such that the intercept
term can be dropped.
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Introduction

Penalized regression

Sparse solution

Note:

β̂i = 0⇔ Xi is excluded from the model

Thus, if there are only a handful of i such that: β̂i 6= 0, then the
set:

{Xi : β̂i 6= 0}

corresponds to the set of “important” predictors (causal SNPs).



The Graph-guided Group Lasso

Introduction

Penalized regression

Penalized linear regression

An ordinary least square estimate minimizes:

‖y − Xβ‖2
2

A penalized linear regression estimate minimizes:

‖y − Xβ‖2
2 + P(β)

where P(β) is called “the penalty term”.
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Penalized regression

Some notable penalties that impose sparsity

Lasso:

P(β) = λ · ‖β‖1

Elastic-net:

P(β) = λ1 · ‖β‖2 + λ2 · ‖β‖1
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Incorporating prior knowledge

Incorporating prior biological knowledge - Variable grouping

Multiple SNPs from one gene often jointly carry out genetic
functionalities.

⇒ SNPs grouped into genes

Prior information: Partition of predictors into groups.

Desired sparsity pattern:

β̂ = ([0.2, 0, 0]︸ ︷︷ ︸
group 1

, [0, 0, 0, ..., 0]︸ ︷︷ ︸
group 2

, [0, 0.5, 0, 0, 0, 0.1]︸ ︷︷ ︸
group 3

, ...)

e.g. Zhou et al. 1, H. Wang et al. 2

1Association screening of common and rare genetic variants by penalized
regression. (Bioinformatics 26(19): 2375-2382. 2010.)

2Identifying quantitative trait loci via group-sparse multitask regression and
feature selection: an imaging genetics study of the ADNI cohort.
(Bioinformatics 28(2): 229-237. 2012.)
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Incorporating prior biological knowledge - Network

Genes belonging to the same pathway are often expressed
similarly in response.

⇒ Gene regulatory network

Prior information: Pairwise relations on predictors encoded in
a network.

Desired sparsity pattern: connected variables are encouraged
to be selected together.

e.g. Li and Li 3

3Network-constrained regularization and variable selection for analysis of
genomic data. (Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.)
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Incorporating prior knowledge

Incorporating prior knowledge at multiple levels

Figure : Sparsity pattern of the proposed “Graph-guided Group Lasso” (GGGL)
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The Graph-guided Group Lasso

The between-group relations

Figure : The key part of GGGL: How to incorporate information at heterogeneous

levels
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The Graph-guided Group Lasso

Notation

X , y , β as defined before. Further require the columns of X
to have Euclidean norm 1.

Let R = {R1,R2, ...} be a partition of the predictors. Denote
the size of RI by |RI |, the the n × |RI | sub-matrix of X by XI ,
and the i th column of X by Xi

Let G = G(V ,E ) be the given network whose vertex set V
corresponds to the groups in R. The weight of the edge
K − L is denoted by wKL (w.l.o.g. wKL ≥ 0), which can be
either binary or continuous.
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GGGL-1

GGGL-1: Illustration

Figure : GGGL-1: If RI ∼ RJ , then reformulate a complete bipartite graph with

vertex sets RI and RJ . Edge weights wij = WIJ ∀i ∈ RI , ∀j ∈ RJ .
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GGGL-1

GGGL-1: The model

GGGL-1 minimizes the following objective function on β:

1

2
‖y − Xβ‖2

2 + P1(β) + P2(β) + P3(β)

where:

P1(β) = λ1

∑
I :RI∈R

√
|RI | · ‖βI‖2, P2(β) = λ2 · ‖β‖1

P3(β) =
1

2
µ

∑
i∈RI ,j∈RJ ,I∼J

wIJ (βi − βj)2
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GGGL-1

GGGL-1: Smoothing effect

Proposition (1)

For fixed µ, let β̂ be the vector that minimizes:

‖y − Xβ‖2
2 + µ

∑
k,l :Xk∈RK ,Xl∈RL

wKL (βk − βl)2

Define the following:

ρij = X ′i Xj , CI =
∑
K∼I

wIK |RK |, ΓI =

∑
k∈RK ,K∼I wIK β̂k

CI

Then:

|(β̂i − β̂j)− (ΓI − ΓJ)| ≤ ‖y‖2

µ

(√
2(1− ρij)

CI
+

∣∣∣∣ 1

CI
− 1

CJ

∣∣∣∣)
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GGGL-1

GGGL-1: A potential side effect

Figure : GGGL-1: Smoothing the coefficients of variables belonging to the same

group may be undesirable.
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GGGL-1

GGGL-2: Another interpretation

Figure : GGGL-2: encourage connected groups to be selected together 6= every pair

of variables should be encouraged to be selected together
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GGGL-2

GGGL-2: The model

In the objective function of GGGL-1, P3(β) is taken as:

P3(β) =
1

2
µ

∑
i∈RI ,j∈RJ ,I∼J

wIJ (βi − βj)2

For GGGL-2, replace it by:

P3(β) =
1

2
µ ·
∑
l∼J

wIJ(β̄I − β̄J)2

where β̄I = 1
|RI |
∑

i : i∈RI
βi

With constraint: βi ≥ 0, ∀i .
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GGGL-2

GGGL-2: Smoothing effect

Proposition (2)

For fixed µ, let β̂ be the vector that minimises:

‖y − Xβ‖2
2 + µ

∑
K∼L

wKL(β̄K − β̄L)2

Let dI be the vertex degree of group RI in G and define:

ΘI =
∑
K∼I

wIK

dI

¯̂βK , Dµ(I , J) = |( ¯̂βI − ¯̂βJ)− (ΘI −ΘJ)|

Then:

Dµ(I , J) ≤ ‖y‖2

µ

(
2|RI |

dI
+

∣∣∣∣ |RI |
dI
− |RJ |

dJ

∣∣∣∣)
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GGGL-2

GGGL-2: Within-group effect

Corollary (3)

Assuming Xi and Xj belong to the same group and defining the

partial residual r̂ij = y −
∑

k 6=i , j Xk β̂k , the estimated coefficients β̂
satisfy:

|β̂i − β̂j | =
|(X ′i − X ′j )r̂ij |

1− ρij
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GGGL-2

Comparison: GGGL-1 and GGGL-2 smoothing effect

GGGL-1 penalty:

P(β) = λ1

∑
I :RI∈R

√
|RI | · ‖βI‖2 +

1

2
µ

∑
i∈RI ,j∈RJ ,I∼J

wIJ (βi − βj)2

GGGL-2 penalty:

P(β) = λ1

∑
I :RI∈R

√
|RI | · ‖βI‖2 +

1

2
µ ·
∑
l∼J

wIJ(β̄I − β̄J)2

Tune λ1 so that both models select the same number of groups.
Tune µ such that

∑
l∼J wIJ(β̄I − β̄J)2 are about equal for both

models.
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The Graph-guided Group Lasso

GGGL-2

Data generation: key settings

n = 200, p = 60, partitioned into 6 equal groups

Specified network:
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GGGL-2

Comparison: small µ for GGGL-1

Figure : Red dots represent true variables, blue dots represent noise variables.
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GGGL-2

Comparison: large µ for GGGL-1

Figure : Red dots represent true variables, blue dots represent noise variables.
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GGGL-2

Comparison: small µ for GGGL-2

Figure : Red dots represent true variables, blue dots represent noise variables.
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GGGL-2

Comparison: large µ for GGGL-2

Figure : Red dots represent true variables, blue dots represent noise variables.
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Estimation algorithms

Estimation algorithm: GGGL-1

Note: ∑
i∈RI ,j∈RJ ,I∼J

wIJ(βi − βj)2 =
∑
i≤j

wij(βi − βj)2

where wij is defined as:

wij =

{
0 if Xi and Xj belongs to the same group

wIJ if Xi ∈ RI , Xj ∈ RJ 6= RI

Let L be a p × p matrix whose (i , j)th entry is:

(L)ij =

{ ∑
j 6=i wij if i = j

−wij if i 6= j

Using L, the right hand side can be re-formulated into:∑
i≤j

wij(βi − βj)2 = β′Lβ
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Estimation algorithms

Estimation algorithm: GGGL-1

Up to this point, we have:

‖y − Xβ‖2
2 + µ

∑
i∈RI ,j∈RJ ,I∼J

wIJ(βi − βj)2 = ‖y − Xβ‖2
2 + µβ′Lβ

Note L is positive semi-definite, therefore we can find p × p matrix
U such that: L = UU ′, using singular value decomposition. We
then construct the (n + p)× 1 matrix y∗ and the (n + p)× p
matrix X∗ according to:

y∗ =

(
yn×1

0p×1

)
, X ∗ =

(
X√
µU ′

)
Therefore the optimization problem of GGGL-1 is equivalent to:

‖y∗ − X ∗β‖2
2 + 2λ1

∑
I : RI∈R

√
|RI |‖βI‖2 + 2λ2‖β‖1
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Estimation algorithms

Estimation algorithm: GGGL-2

Note: ∑
I∼J

wIJ(β̄I − β̄J)2 = β′Lβ

where L is defined as:

(L)ij =

{ ∑
{K :K∼I}

wIK
|RI |2

if Xi ∈ RI ,Xj ∈ RI

− wIJ
|RI |·|RJ | if Xi ∈ RI ,Xj ∈ RJ

Both optimization problems can be solved using standard block
coordinate descent algorithm.
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Estimation algorithm: GGGL-2
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I∼J

wIJ(β̄I − β̄J)2 = β′Lβ

where L is defined as:

(L)ij =

{ ∑
{K :K∼I}

wIK
|RI |2

if Xi ∈ RI ,Xj ∈ RI

− wIJ
|RI |·|RJ | if Xi ∈ RI ,Xj ∈ RJ

Both optimization problems can be solved using standard block
coordinate descent algorithm.



The Graph-guided Group Lasso

The Graph-guided Group Lasso

Estimation algorithms

Parallel computation: outline

For large scale data analysis it is necessary to parallelize.

In each step, update a subset of the groups in parallel.

An application of Richtarik and Takac 4

Code written in CUDA, to run on graphics processing units
(GPUs).

On a data set where n = 3000, p = 2000 partitioned into 200
groups, we observed a larger than 10× speed-up compared
with the non-parallel algorithm written in C.

4Parallel coordinate descent methods for big data optimization.
(arXiv:1212.0873, 2012.)
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Estimation algorithms

Parallel computation: outline

Parallel Coordinate Descent Method

Input: Data, parameters, m groups to update in each step.
Output: column vector β̂

1 Choose initial estimate β̂(0).

2 k ← 1

3 Randomly pick a set of blocks from R: k1, k2, ...km.

4 In parallel do: β̂
(k+1)
Rkm

← φ(β̂(k), km), for m = 1, 2, ....

5 Collect estimates from the processors to obtain β̂(k+1).

6 Set k ← k + 1 and go back to 3 until convergence.

φ is defined so that at each step: E[F (β̂(k+1))|β̂(k)] ≤ E[F (β̂(k))],
where F is the objective function.
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Preliminary results

Data generation:

n = 200, p = 800, fixed grouping of X ’s into 80 groups.
X ∼ N (0,Σ).

All predictors in R1, ..., R40 are true variables, all predictors in
the other groups are noise variables.

Compute y = Xβ + δ · ε, where βi ’s are independently
generated from uniform(0.5, 1) distribution for true variables.
εi ’s are i .i .d . standard normal RV s, δ controls signal-to-noise
level to 1.

X is columnwise normalized and y is centered.
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Preliminary results

Networks for GGGL

We categorize the networks into 3 types, according to their
relevance to the study:

informative: true variables are connected (not necessarily in
one component though) whereas there are very few links
between true variables and noise variables.

uninformative: all pairs of variables are connected with
roughly equal probabilities.

noisy: true variables and noise variables form an almost
bipartite graph and the true variables are rarely linked.
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Illustration of networks

Figure : Left: informative network; Right: noisy network.
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Experiment design: GGGL-1 vs Group lasso

Repeat for 200 data sets:

Generate random network with probabilities of connection:
p1 = 0.7 (between true groups), p12 = 0.01 (between a true
group and a noise group), p2 = 0.1 (between noise groups).

Fix µ = 50 and λ2 = 0 in GGGL-1. So the GGGL-1 penalty
becomes:

P(β) = λ1

∑
I :RI∈R

√
|RI | · ‖βI‖2 +

1

2
µ

∑
i∈RI ,j∈RJ ,I∼J

wIJ (βi − βj)2

with µ = 10, and the group lasso penalty is simply when
µ = 0.

Tune λ1 so that both models select exactly 40 groups.

Rank the groups according to selection frequencies for each model,
and compare using the receiver operating characteristic (ROC)
curves.
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GGGL-1 vs Group lasso

Figure : Comparison of GGGL-1 and Group lasso on group selection using ROC

curves, where GGGL-1 shows superior power.
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Future works

Complete simulation study on GGGL-2

Study the performance of GGGL models on the three types of
networks.

Application to tumor data set.
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