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L Bioinformatics motivation

Genome-wide association study (GWAs)

N | AGATTCAGGCATATT
orma AGATTCAGGCATATT
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TCTAAGTTCGTATAA
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Disease

Objective: To identify important predictors (e.g. SNPs), that
account for the variability of a quantitative trait.
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LPenalized regression

Notation

m X: n x p predictor matrix containing n observations on p
covariates.

® y: n observations on univariate continuous response.
m 3: p x 1 coefficient matrix.
m e nx 1 matrix. E(¢;) =0, Vi.

Use linear regression model:
y=XB+e¢

where X and y are columnwise centered, such that the intercept
term can be dropped.
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LPenalized regression

Sparse solution

Note:

Bi = 0 < X; is excluded from the model

Thus, if there are only a handful of i such that: 3; # 0, then the
set:

{X;: B; # 0}

corresponds to the set of “important” predictors (causal SNPs).
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An ordinary least square estimate minimizes:

ly = XBl13
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LPenalized regression

Penalized linear regression

An ordinary least square estimate minimizes:

ly = XBl13

A penalized linear regression estimate minimizes:

ly — XBII3 + P(8)

where P(3) is called “the penalty term”.
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LPenalized regression

Some notable penalties that impose sparsity

Lasso:

P(B) =X-1IAlh

Elastic-net:

P(B) = A1 - ||Bll2 + X2 - || B2
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Incorporating prior biological knowledge - Variable grouping

m Multiple SNPs from one gene often jointly carry out genetic
functionalities.

! Association screening of common and rare genetic variants by penalized
regression. (Bioinformatics 26(19): 2375-2382. 2010.)

2|dentifying quantitative trait loci via group-sparse multitask regression and
feature selection: an imaging genetics study of the ADNI cohort.
(Bioinformatics 28(2): 229-237. 2012.)
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Incorporating prior biological knowledge - Variable grouping

m Multiple SNPs from one gene often jointly carry out genetic
functionalities.
= SNPs grouped into genes

m Prior information: Partition of predictors into groups.

m Desired sparsity pattern:

A = ([0.2,0,0],[0,0,0, ...,0],[0,0.5,0,0,0,0.1], ...)
N——

group 1 group 2 group 3

m e.g. Zhou et al. 1, H. Wang et al. 2

! Association screening of common and rare genetic variants by penalized
regression. (Bioinformatics 26(19): 2375-2382. 2010.)

2|dentifying quantitative trait loci via group-sparse multitask regression and
feature selection: an imaging genetics study of the ADNI cohort.
(Bioinformatics 28(2): 229-237. 2012.)
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Incorporating prior biological knowledge - Network

m Genes belonging to the same pathway are often expressed
similarly in response.

3Network-constrained regularization and variable selection for analysis of
genomic data. (Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.)
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L Incorporating prior knowledge

Incorporating prior biological knowledge - Network

m Genes belonging to the same pathway are often expressed
similarly in response.
= Gene regulatory network

m Prior information: Pairwise relations on predictors encoded in
a network.

m Desired sparsity pattern: connected variables are encouraged
to be selected together.

meg LiandLi3

3Network-constrained regularization and variable selection for analysis of
genomic data. (Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.)
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Incorporating prior knowledge at multiple levels
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Figure : Sparsity pattern of the proposed “Graph-guided Group Lasso” (GGGL)
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The between-group relations

Figure : The key part of GGGL: How to incorporate information at heterogeneous

levels
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Notation

m X, y, B as defined before. Further require the columns of X
to have Euclidean norm 1.

m Let R = {Ry1, Rz, ...} be a partition of the predictors. Denote
the size of Ry by |Ry|, the the n x |R;| sub-matrix of X by X,
and the it" column of X by X;

m Let G = G(V, E) be the given network whose vertex set V
corresponds to the groups in R. The weight of the edge
K — L is denoted by wk; (w.l.o.g. wk > 0), which can be
either binary or continuous.
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GGGL-1: Hlustration

A AA

Figure : GGGL-1: If R; ~ Ry, then reformulate a complete bipartite graph with
vertex sets R; and R;. Edge weights w;j = W), Vi € R;,Vj € Ry.
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GGGL-1: The model

GGGL-1 minimizes the following objective function on S:

1
Slly = XBI3 + P1(8) + Pa(B) + P3(8)
where:

PuB) =X > VIR 1Bl Pa(B) =Xa-[IBlh

I:RIER

P3(8) = % oo wy (Bi—B)

i€R JER; I~J
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GGGL-1: Smoothing effect

Proposition (1)

For fixed 1, let 3 be the vector that minimizes:

ly — XBII5 + p > wie (Bk — B1)°

k,I: Xx€Rk,X1€ERL

Define the following:

D keRi Kl wik Bk
pii = X{Xj;, G =) wil|Rg|, ;==

Kl G
Then:
A Iyl (v2(1—ps) |1 1
=B = (=T < — = =
’(/8 /BJ) ( l J)‘ e H CI + CI C_j
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GGGL-1: A potential side effect

Group I

Group J .

Figure : GGGL-1: Smoothing the coefficients of variables belonging to the same
group may be undesirable.
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GGGL-2: Another interpretation

Figure : GGGL-2: encourage connected groups to be selected together # every pair
of variables should be encouraged to be selected together
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GGGL-2: The model

In the objective function of GGGL-1, P3([3) is taken as:

1
P3(B) = oK Z wiy (Bi — Bj)?
i€R) jERI~J
For GGGL-2, replace it by:
1 o
Ps(B) =5 n- > wiu(Br - B)

I~J

3 1
where ) = R 2ii icr, Bi
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GGGL-2: The model

In the objective function of GGGL-1, P3([3) is taken as:
1
P3(B) = oK Z wiy (Bi — Bj)?
i€R| JER,I~J
For GGGL-2, replace it by:

Ps(B) = % pey wiy(Br =B,

I~J

3 1
where ) = R 2ii icr, Bi
With constraint: 3; > 0, Vi.
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GGGL-2: Smoothing effect

Proposition (2)

For fixed 1, let 3 be the vector that minimises:

ly = XBI5 + 1Y wki(Bk — BL)?

Kn~L

Let d; be the vertex degree of group Ry in G and define:

0= Kbk, Dul,d)= (5~ 51) - (@ - ©))

Pl

Then:

Du(1,J) <

lyll2 <2IR/| N |Ril R4l
i d d dy
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GGGL-2: Within-group effect

Corollary (3)

Assuming X; and X; belong to the same group and defining the
partial residual Py =y — >, ; ijBAk, the estimated coefficients /3
satisfy:

(X7 = X))

- A =
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Comparison: GGGL-1 and GGGL-2 smoothing effect

GGGL-1 penalty:

1
PB =2 Y VIRI-IBla+50 > wy(Bi-8)
I'RiER i€ERJER,I~J
GGGL-2 penalty:

PIS) =2 S VIR Bl + 5 - S wislr — o)’

I'RIER I~J
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Comparison: GGGL-1 and GGGL-2 smoothing effect

GGGL-1 penalty:
1
PB =2 Y VIRI-IBla+50 > wy(Bi-8)
I:RiER i€R; JERy,I~J
GGGL-2 penalty:
1 _
P(B) =X Y VIRI-lBill2+ 5 M > wiy(Br - B)?
I:RIER InJ

Tune A1 so that both models select the same number of groups.
Tune p such that Y, wiy (8 — f35)? are about equal for both
models.
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Data generation: key settings

n =200, p =060, partitioned into 6 equal groups
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Data generation: key settings

n =200, p =060, partitioned into 6 equal groups
Specified network:

O ®

® O, ®

Groups containing true predictors Noise groups
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Comparison: small i for GGGL-1

Estimated coefficients of GGGL-1: weak smoothing
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Figure . Red dots represent true variables, blue dots represent noise variables.
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Comparison: large p for GGGL-1

Estimated coefficients of GGGL-1: strong smoothing
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Figure . Red dots represent true variables, blue dots represent noise variables.
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Comparison: small p for GGGL-2

Estimated coefficients of GGGL-2: weak smoothing
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Figure . Red dots represent true variables, blue dots represent noise variables.
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Comparison: large u for GGGL-2

Estimated coefficients of GGGL-2: strong smoothing
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Figure . Red dots represent true variables, blue dots represent noise variables.
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Estimation algorithm

Note:
S w8 =D wy(Bi - B)
i€R jERI~J i<j
where w;; is defined as:

W — 0 if X;and Xj belongs to the same group
b wyy if XiER[,)(jGRJ?éR[
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Estimation algorithm: GGGL-1

Note:
S w8 =D wy(Bi - B)
i€R,jER,I~J i<j

where w;; is defined as:

W — 0 if X;and Xj belongs to the same group
b wyy if XiER[,)(jGRJ?éR[

Let L be a p x p matrix whose (/,j)th entry is:
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Estimation algorithm

Note:
S w8 =D wy(Bi - B)
i€R,jER,I~J i<j

where w;; is defined as:

W — 0 if X;and Xj belongs to the same group
b wyy if XiER[,)(jGRJ?éR[

Let L be a p x p matrix whose (/,j)th entry is:
O A
—w; it i#
Using L, the right hand side can be re-formulated into:

> wii(Bi— Bj)? = B'LB

i<



The Graph-guided Group Lasso
L The Graph-guided Group Lasso
LEstimation algorithms

Estimation algorithm: GGGL-1

Up to this point, we have:

ly =XBI5+u > wu(Bi—B8) =y —XBlI3+ub'LB

i€R jER,,I~J
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Estimation algorithm: GGGL-1

Up to this point, we have:
ly =XBI5+u > wu(Bi—B8) =y —XBlI3+ub'LB
IE€RJER I~

Note L is positive semi-definite, therefore we can find p x p matrix
U such that: L = UU’, using singular value decomposition. We
then construct the (n+ p) x 1 matrix y* and the (n+ p) x p
matrix X% according to:

Ynx1 . X
= s X =
r=(3) ()



The Graph-guided Group Lasso
L The Graph-guided Group Lasso
LEstimation algorithms

Estimation algorithm: GGGL-1

Up to this point, we have:
ly =XBI5+u > wu(Bi—B8) =y —XBlI3+ub'LB
IE€RJER I~

Note L is positive semi-definite, therefore we can find p x p matrix
U such that: L = UU’, using singular value decomposition. We
then construct the (n+ p) x 1 matrix y* and the (n+ p) x p
matrix X% according to:

Ynx1 . X
= s X =
r=(3) ()

Therefore the optimization problem of GGGL-1 is equivalent to:

ly* = X*Bl5+2x D> VIRIIBIl2 + 22X 8l

I: RIER
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Estimation algorithm: GGGL-2

Note:
> wiy(Br— Bs)? = BLB
In~J

where L is defined as:

Y —% if X,ER[,XIER_]
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Estimation algorithm: GGGL-2

Note:
> wiy(Br— Bs)? = BLB
In~J

where L is defined as:

Y —% if X,ER[,XIER_]

Both optimization problems can be solved using standard block
coordinate descent algorithm.
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Parallel computation: outline

For large scale data analysis it is necessary to parallelize.
In each step, update a subset of the groups in parallel.
An application of Richtarik and Takac #

Code written in CUDA, to run on graphics processing units
(GPUs).

On a data set where n = 3000, p = 2000 partitioned into 200
groups, we observed a larger than 10x speed-up compared
with the non-parallel algorithm written in C.

*Parallel coordinate descent methods for big data optimization.
(arXiv:1212.0873, 2012.)
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Parallel computation: outline

Parallel Coordinate Descent Method

Input: Data, parameters, m groups to update in each step.
Output: column vector

Choose initial estimate B(O)
k+1
Randomly pick a set of blocks from R: ki, ko, ...km.

In parallel do: Bgzﬂ) +— (b(ﬁ (), k), for m=1,2, ...
Collect estimates from the processors to obtain A(k+1).

[@ Set k < k+ 1 and go back to 3 until convergence.

¢ is defined so that at each step: E[F(5T1)|3(K] < E[F (5],
where F is the objective function.
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Preliminary results

Data generation:

m n = 200, p = 800, fixed grouping of X's into 80 groups.
X ~ N(0,%).

m All predictors in Ry, ..., R4 are true variables, all predictors in
the other groups are noise variables.

m Compute y = X3+ 4 - €, where §3;'s are independently
generated from uniform(0.5, 1) distribution for true variables.
€;'s are i.i.d. standard normal RVs, § controls signal-to-noise
level to 1.

m X is columnwise normalized and y is centered.
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Networks for GGGL

We categorize the networks into 3 types, according to their
relevance to the study:

m informative: true variables are connected (not necessarily in
one component though) whereas there are very few links
between true variables and noise variables.

m uninformative: all pairs of variables are connected with
roughly equal probabilities.

m noisy: true variables and noise variables form an almost
bipartite graph and the true variables are rarely linked.
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[llustration of networks

cluster of noise
groups

cluster of noise
grouops

cluster of true

groups cluster of true groups

cluster of true groups

Figure : Left: informative network; Right: noisy network.
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Experiment design: GGGL-1 vs Group lasso

Repeat for 200 data sets:

m Generate random network with probabilities of connection:
p1 = 0.7 (between true groups), p12 = 0.01 (between a true
group and a noise group), p2 = 0.1 (between noise groups).

m Fix © =50 and A2 =0 in GGGL-1. So the GGGL-1 penalty
becomes:

1 2
P(B) =M > \/‘RI"HBIHZ‘FEM' Z wi (Bi — Bj)
I:RIER i€R;jER,I~J
with = 10, and the group lasso penalty is simply when
u=0.
m Tune \; so that both models select exactly 40 groups.

Rank the groups according to selection frequencies for each model,
and compare using the receiver operating characteristic (ROC)
curves.
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GGGL-1 vs Group lasso

ROC curve for group selection: GGGL1 vs Group Lasso
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Figure : Comparison of GGGL-1 and Group lasso on group selection using ROC

curves, where GGGL-1 shows superior power.
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Future works

m Complete simulation study on GGGL-2

m Study the performance of GGGL models on the three types of
networks.

m Application to tumor data set.
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Why science teachers
should not be given
playground duty.
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