The Graph-guided Group Lasso

Zi Wang
Imperial College London, United Kingdom
8th July 2013

Outline

1 Introduction

■ Bioinformatics motivation

- Penalized regression
- Incorporating prior knowledge

Outline

1 Introduction
■ Bioinformatics motivation

- Penalized regression
- Incorporating prior knowledge

2 The Graph-guided Group Lasso
■ GGGL-1

- GGGL-2
- Estimation algorithms

Outline

1 Introduction
■ Bioinformatics motivation

- Penalized regression
- Incorporating prior knowledge

2 The Graph-guided Group Lasso

- GGGL-1
- GGGL-2
- Estimation algorithms

3 Preliminary results

Outline

1 Introduction
■ Bioinformatics motivation

- Penalized regression
- Incorporating prior knowledge

2 The Graph-guided Group Lasso

- GGGL-1
- GGGL-2
- Estimation algorithms

3 Preliminary results
4 Future works

A 30s introduction to the biology

L Introduction

LBioinformatics motivation

Single-nucleotide polymorphisms (SNPs)

Genome-wide association study (GWAs)

TCTAAGTCCGTATAA
 Normal
 AGATTCAGGCATATT AGATTCAGGCATATT TCTAAGTCCGTATAA
 Green
 TCTAAGTCCGTATAA
 AGATTCAGGCATATT AGATTCAAGCATATT TCTAAGTTCGTATAA
 Yellow
 Carrier
 TCTAAGTTCGTATAA
 Disease
 AGATTCAAGCATATT AGATTCAAGCATATT TCTAAGTTCGTATAA

Objective: To identify important predictors (e.g. SNPs), that account for the variability of a quantitative trait.

Notation

■ X : $n \times p$ predictor matrix containing n observations on p covariates.

■ y : n observations on univariate continuous response.
■ β : $\boldsymbol{p} \times 1$ coefficient matrix.

- $\epsilon: n \times 1$ matrix. $\mathbb{E}\left(\epsilon_{i}\right)=0, \forall i$.

Use linear regression model:

$$
y=X \beta+\epsilon
$$

where X and y are columnwise centered, such that the intercept term can be dropped.

Sparse solution

Note:

$$
\hat{\beta}_{i}=0 \Leftrightarrow X_{i} \text { is excluded from the model }
$$

Thus, if there are only a handful of i such that: $\hat{\beta}_{i} \neq 0$, then the set:

$$
\left\{X_{i}: \hat{\beta}_{i} \neq 0\right\}
$$

corresponds to the set of "important" predictors (causal SNPs).

Penalized linear regression

An ordinary least square estimate minimizes:

$$
\|y-X \beta\|_{2}^{2}
$$

Penalized linear regression

An ordinary least square estimate minimizes:

$$
\|y-X \beta\|_{2}^{2}
$$

A penalized linear regression estimate minimizes:

$$
\|y-X \beta\|_{2}^{2}+P(\beta)
$$

where $P(\beta)$ is called "the penalty term".

Some notable penalties that impose sparsity

Lasso:

$$
P(\beta)=\lambda \cdot\|\beta\|_{1}
$$

Elastic-net:

$$
P(\beta)=\lambda_{1} \cdot\|\beta\|_{2}+\lambda_{2} \cdot\|\beta\|_{1}
$$

Incorporating prior biological knowledge - Variable grouping

■ Multiple SNPs from one gene often jointly carry out genetic functionalities.
${ }^{1}$ Association screening of common and rare genetic variants by penalized regression. (Bioinformatics 26(19): 2375-2382. 2010.)
${ }^{2}$ Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. (Bioinformatics 28(2): 229-237. 2012.)

Incorporating prior biological knowledge - Variable grouping

■ Multiple SNPs from one gene often jointly carry out genetic functionalities.
\Rightarrow SNPs grouped into genes
${ }^{1}$ Association screening of common and rare genetic variants by penalized regression. (Bioinformatics 26(19): 2375-2382. 2010.)
${ }^{2}$ Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. (Bioinformatics 28(2): 229-237. 2012.)

Incorporating prior biological knowledge - Variable grouping

■ Multiple SNPs from one gene often jointly carry out genetic functionalities.
\Rightarrow SNPs grouped into genes
■ Prior information: Partition of predictors into groups.

[^0]
Incorporating prior biological knowledge - Variable grouping

■ Multiple SNPs from one gene often jointly carry out genetic functionalities.
\Rightarrow SNPs grouped into genes
■ Prior information: Partition of predictors into groups.

- Desired sparsity pattern:

$$
\hat{\beta}=(\underbrace{[0.2,0,0]}_{\text {group } 1}, \underbrace{[0,0,0, \ldots, 0]}_{\text {group 2 }}, \underbrace{[0,0.5,0,0,0,0.1]}_{\text {group } 3}, \ldots)
$$

[^1]
Incorporating prior biological knowledge - Variable grouping

■ Multiple SNPs from one gene often jointly carry out genetic functionalities.
\Rightarrow SNPs grouped into genes
■ Prior information: Partition of predictors into groups.

- Desired sparsity pattern:

$$
\hat{\beta}=(\underbrace{[0.2,0,0]}_{\text {group } 1}, \underbrace{[0,0,0, \ldots, 0]}_{\text {group 2 }}, \underbrace{[0,0.5,0,0,0,0.1]}_{\text {group } 3}, \ldots)
$$

- e.g. Zhou et al. ${ }^{1}$, H. Wang et al. ${ }^{2}$

[^2]
Incorporating prior biological knowledge - Network

■ Genes belonging to the same pathway are often expressed similarly in response.
${ }^{3}$ Network-constrained regularization and variable selection for analysis of genomic data. (Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.)

Incorporating prior biological knowledge - Network

■ Genes belonging to the same pathway are often expressed similarly in response.
\Rightarrow Gene regulatory network
${ }^{3}$ Network-constrained regularization and variable selection for analysis of genomic data. (Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.)

Incorporating prior biological knowledge - Network

■ Genes belonging to the same pathway are often expressed similarly in response.
\Rightarrow Gene regulatory network
■ Prior information: Pairwise relations on predictors encoded in a network.

[^3]
Incorporating prior biological knowledge - Network

■ Genes belonging to the same pathway are often expressed similarly in response.
\Rightarrow Gene regulatory network
■ Prior information: Pairwise relations on predictors encoded in a network.

■ Desired sparsity pattern: connected variables are encouraged to be selected together.

[^4]
Incorporating prior biological knowledge - Network

■ Genes belonging to the same pathway are often expressed similarly in response.
\Rightarrow Gene regulatory network
■ Prior information: Pairwise relations on predictors encoded in a network.

■ Desired sparsity pattern: connected variables are encouraged to be selected together.

- e.g. Li and Li^{3}

[^5]L Incorporating prior knowledge

Incorporating prior knowledge at multiple levels

Figure: Sparsity pattern of the proposed "Graph-guided Group Lasso" (GGGL) 三

The between-group relations

Figure: The key part of GGGL: How to incorporate information at heterogeneous levels

Notation

■ X, y, β as defined before. Further require the columns of X to have Euclidean norm 1.
■ Let $\mathcal{R}=\left\{R_{1}, R_{2}, \ldots\right\}$ be a partition of the predictors. Denote the size of R_{l} by $\left|R_{l}\right|$, the the $n \times\left|R_{l}\right|$ sub-matrix of X by X_{l}, and the $i^{\text {th }}$ column of X by X_{i}
■ Let $\mathcal{G}=\mathcal{G}(V, E)$ be the given network whose vertex set V corresponds to the groups in \mathcal{R}. The weight of the edge $K-L$ is denoted by $w_{K L}$ (w.l.o.g. $w_{K L} \geq 0$), which can be either binary or continuous.

L The Graph-guided Group Lasso

LGGGL-1

GGGL-1: Illustration

Figure: GGGL-1: If $R_{I} \sim R_{J}$, then reformulate a complete bipartite graph with vertex sets R_{l} and R_{J}. Edge weights $w_{i j}=W_{I J} \forall i \in R_{I}, \forall j \in R_{J}$.

GGGL-1: The model

GGGL-1 minimizes the following objective function on β :

$$
\frac{1}{2}\|y-X \beta\|_{2}^{2}+P_{1}(\beta)+P_{2}(\beta)+P_{3}(\beta)
$$

where:

$$
\begin{gathered}
P_{1}(\beta)=\lambda_{1} \sum_{I: R_{l} \in \mathcal{R}} \sqrt{\left|R_{I}\right|} \cdot\left\|\beta_{I}\right\|_{2}, \quad P_{2}(\beta)=\lambda_{2} \cdot\|\beta\|_{1} \\
P_{3}(\beta)=\frac{1}{2} \mu \sum_{i \in R_{I}, j \in R_{J}, I \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}
\end{gathered}
$$

GGGL-1: Smoothing effect

Proposition (1)

For fixed μ, let $\hat{\beta}$ be the vector that minimizes:

$$
\|y-X \beta\|_{2}^{2}+\mu \sum_{k, l: x_{k} \in R_{K}, X_{l} \in R_{L}} w_{K L}\left(\beta_{k}-\beta_{l}\right)^{2}
$$

Define the following:

$$
\rho_{i j}=X_{i}^{\prime} X_{j}, \quad C_{I}=\sum_{K \sim I} w_{I K}\left|R_{K}\right|, \quad \Gamma_{I}=\frac{\sum_{k \in R_{K}, K \sim I} w_{I K} \hat{\beta}_{k}}{C_{I}}
$$

Then:

$$
\left|\left(\hat{\beta}_{i}-\hat{\beta}_{j}\right)-\left(\Gamma_{I}-\Gamma_{J}\right)\right| \leq \frac{\|y\|_{2}}{\mu}\left(\frac{\sqrt{2\left(1-\rho_{i j}\right)}}{C_{I}}+\left|\frac{1}{C_{I}}-\frac{1}{C_{J}}\right|\right)
$$

GGGL-1: A potential side effect

Figure: GGGL-1: Smoothing the coefficients of variables belonging to the same group may be undesirable.

L The Graph-guided Group Lasso

LGGGL-1

GGGL-2: Another interpretation

Figure: GGGL-2: encourage connected groups to be selected together \neq every pair of variables should be encouraged to be selected together

GGGL-2: The model

In the objective function of GGGL-1, $P_{3}(\beta)$ is taken as:

$$
P_{3}(\beta)=\frac{1}{2} \mu \sum_{i \in R_{I}, j \in R_{J}, l \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

For GGGL-2, replace it by:

$$
P_{3}(\beta)=\frac{1}{2} \mu \cdot \sum_{I \sim J} w_{I J}\left(\bar{\beta}_{I}-\bar{\beta}_{J}\right)^{2}
$$

where $\bar{\beta}_{I}=\frac{1}{\left|R_{I}\right|} \sum_{i: i \in R_{l}} \beta_{i}$

GGGL-2: The model

In the objective function of GGGL-1, $P_{3}(\beta)$ is taken as:

$$
P_{3}(\beta)=\frac{1}{2} \mu \sum_{i \in R_{I}, j \in R_{J}, l \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

For GGGL-2, replace it by:

$$
P_{3}(\beta)=\frac{1}{2} \mu \cdot \sum_{I \sim J} w_{I J}\left(\bar{\beta}_{I}-\bar{\beta}_{J}\right)^{2}
$$

where $\bar{\beta}_{I}=\frac{1}{\left|R_{I}\right|} \sum_{i: i \in R_{1}} \beta_{i}$
With constraint: $\beta_{i} \geq 0, \forall i$.

GGGL-2: Smoothing effect

Proposition (2)

For fixed μ, let $\hat{\beta}$ be the vector that minimises:

$$
\|y-X \beta\|_{2}^{2}+\mu \sum_{K \sim L} w_{K L}\left(\bar{\beta}_{K}-\bar{\beta}_{L}\right)^{2}
$$

Let d_{l} be the vertex degree of group R_{I} in \mathcal{G} and define:

$$
\Theta_{I}=\sum_{K \sim I} \frac{w_{I K}}{d_{l}} \overline{\hat{\beta}}_{K}, \quad D_{\mu}(I, J)=\left|\left(\overline{\hat{\beta}}_{I}-\overline{\hat{\beta}}_{J}\right)-\left(\Theta_{I}-\Theta_{J}\right)\right|
$$

Then:

$$
D_{\mu}(I, J) \leq \frac{\|y\|_{2}}{\mu}\left(\frac{2\left|R_{I}\right|}{d_{l}}+\left|\frac{\left|R_{I}\right|}{d_{l}}-\frac{\left|R_{J}\right|}{d_{J}}\right|\right)
$$

GGGL-2: Within-group effect

Corollary (3)

Assuming X_{i} and X_{j} belong to the same group and defining the partial residual $\hat{r}_{i j}=y-\sum_{k \neq i, j} X_{k} \hat{\beta}_{k}$, the estimated coefficients $\hat{\beta}$ satisfy:

$$
\left|\hat{\beta}_{i}-\hat{\beta}_{j}\right|=\frac{\left|\left(X_{i}^{\prime}-X_{j}^{\prime}\right) \hat{r}_{i j}\right|}{1-\rho_{i j}}
$$

Comparison: GGGL-1 and GGGL-2 smoothing effect

GGGL-1 penalty:

$$
P(\beta)=\lambda_{1} \sum_{I: R_{I} \in \mathcal{R}} \sqrt{\left|R_{I}\right|} \cdot\left\|\beta_{I}\right\|_{2}+\frac{1}{2} \mu \sum_{i \in R_{I, j \in R_{J}, I \sim J}} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

GGGL-2 penalty:

$$
P(\beta)=\lambda_{1} \sum_{I: R_{I} \in \mathcal{R}} \sqrt{\left|R_{I}\right|} \cdot\left\|\beta_{I}\right\|_{2}+\frac{1}{2} \mu \cdot \sum_{I \sim J} w_{I J}\left(\bar{\beta}_{I}-\bar{\beta}_{J}\right)^{2}
$$

Comparison: GGGL-1 and GGGL-2 smoothing effect

GGGL-1 penalty:

$$
P(\beta)=\lambda_{1} \sum_{I: R_{I} \in \mathcal{R}} \sqrt{\left|R_{I}\right|} \cdot\left\|\beta_{I}\right\|_{2}+\frac{1}{2} \mu \sum_{i \in R_{I}, j \in R_{J}, I \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

GGGL-2 penalty:

$$
P(\beta)=\lambda_{1} \sum_{I: R_{I} \in \mathcal{R}} \sqrt{\left|R_{I}\right|} \cdot\left\|\beta_{I}\right\|_{2}+\frac{1}{2} \mu \cdot \sum_{I \sim J} w_{I J}\left(\bar{\beta}_{I}-\bar{\beta}_{J}\right)^{2}
$$

Tune λ_{1} so that both models select the same number of groups. Tune μ such that $\sum_{I \sim J} w_{I J}\left(\bar{\beta}_{I}-\bar{\beta}_{J}\right)^{2}$ are about equal for both models.

- The Graph-guided Group Lasso
-GGGL-2

Data generation: key settings

$$
n=200, \quad p=60, \quad \text { partitioned into } 6 \text { equal groups }
$$

- The Graph-guided Group Lasso

Data generation: key settings

$n=200, \quad p=60$, partitioned into 6 equal groups

 Specified network:

Groups containing true predictors

Noise groups

- The Graph-guided Group Lasso

LGGGL-2

Comparison: small μ for GGGL-1

Estimated coefficients of GGGL-1: weak smoothing

Figure : Red dots represent true variables, blue dots represent noise variables.

- The Graph-guided Group Lasso

LGGGL-2

Comparison: large μ for GGGL-1

Estimated coefficients of GGGL-1: strong smoothing

Figure : Red dots represent true variables, blue dots represent noise variables.

- The Graph-guided Group Lasso

LGGGL-2

Comparison: small μ for GGGL-2

Estimated coefficients of GGGL-2: weak smoothing

Figure : Red dots represent true variables, blue dots represent noise variables.

- The Graph-guided Group Lasso

LGGGL-2

Comparison: large μ for GGGL-2

Estimated coefficients of GGGL-2: strong smoothing

Figure : Red dots represent true variables, blue dots represent noise variables.

Estimation algorithm: GGGL-1

Note:

$$
\sum_{i \in R_{I}, j \in R_{J}, I \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}=\sum_{i \leq j} w_{i j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

where $w_{i j}$ is defined as:

$$
w_{i j}=\left\{\begin{array}{rll}
0 & \text { if } & X_{i} \text { and } X_{j} \text { belongs to the same group } \\
w_{I J} & \text { if } & X_{i} \in R_{I}, X_{j} \in R_{J} \neq R_{I}
\end{array}\right.
$$

Estimation algorithm: GGGL-1

Note:

$$
\sum_{i \in R_{I}, j \in R_{J}, I \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}=\sum_{i \leq j} w_{i j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

where $w_{i j}$ is defined as:

$$
w_{i j}=\left\{\begin{array}{rll}
0 & \text { if } & X_{i} \text { and } X_{j} \text { belongs to the same group } \\
w_{I J} & \text { if } & X_{i} \in R_{I}, X_{j} \in R_{J} \neq R_{I}
\end{array}\right.
$$

Let L be a $p \times p$ matrix whose (i, j) th entry is:

$$
(L)_{i j}=\left\{\begin{array}{rll}
\sum_{j \neq i} w_{i j} & \text { if } & i=j \\
-w_{i j} & \text { if } & i \neq j
\end{array}\right.
$$

Estimation algorithm: GGGL-1

Note:

$$
\sum_{i \in R_{l}, j \in R_{J}, l \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}=\sum_{i \leq j} w_{i j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

where $w_{i j}$ is defined as:

$$
w_{i j}=\left\{\begin{array}{rll}
0 & \text { if } & X_{i} \text { and } X_{j} \text { belongs to the same group } \\
w_{I J} & \text { if } & X_{i} \in R_{I}, X_{j} \in R_{J} \neq R_{I}
\end{array}\right.
$$

Let L be a $p \times p$ matrix whose (i, j) th entry is:

$$
(L)_{i j}=\left\{\begin{array}{rll}
\sum_{j \neq i} w_{i j} & \text { if } & i=j \\
-w_{i j} & \text { if } & i \neq j
\end{array}\right.
$$

Using L, the right hand side can be re-formulated into:

$$
\sum_{i \leq j} w_{i j}\left(\beta_{i}-\beta_{j}\right)^{2}=\beta^{\prime} L \beta
$$

LEstimation algorithms

Estimation algorithm: GGGL-1

Up to this point, we have:

$$
\|y-X \beta\|_{2}^{2}+\mu \sum_{i \in R_{l}, j \in R_{J}, I \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}=\|y-X \beta\|_{2}^{2}+\mu \beta^{\prime} L \beta
$$

Estimation algorithm: GGGL-1

Up to this point, we have:

$$
\|y-X \beta\|_{2}^{2}+\mu \sum_{i \in R_{l}, j \in R_{J}, I \sim J} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}=\|y-X \beta\|_{2}^{2}+\mu \beta^{\prime} L \beta
$$

Note L is positive semi-definite, therefore we can find $p \times p$ matrix U such that: $L=U U^{\prime}$, using singular value decomposition. We then construct the $(n+p) \times 1$ matrix y^{*} and the $(n+p) \times p$ matrix $X *$ according to:

$$
y *=\binom{y_{n \times 1}}{0_{p \times 1}}, \quad X^{*}=\binom{X}{\sqrt{\mu} U^{\prime}}
$$

Estimation algorithm: GGGL-1

Up to this point, we have:

$$
\|y-X \beta\|_{2}^{2}+\mu \sum_{i \in R_{I}, j \in R_{J, l \sim J}} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}=\|y-X \beta\|_{2}^{2}+\mu \beta^{\prime} L \beta
$$

Note L is positive semi-definite, therefore we can find $p \times p$ matrix U such that: $L=U U^{\prime}$, using singular value decomposition. We then construct the $(n+p) \times 1$ matrix y^{*} and the $(n+p) \times p$ matrix $X *$ according to:

$$
y *=\binom{y_{n \times 1}}{0_{p \times 1}}, \quad X^{*}=\binom{X}{\sqrt{\mu} U^{\prime}}
$$

Therefore the optimization problem of GGGL-1 is equivalent to:

$$
\left\|y^{*}-X^{*} \beta\right\|_{2}^{2}+2 \lambda_{1} \sum_{I: R_{I} \in \mathcal{R}} \sqrt{\left|R_{I}\right|}\left\|\beta_{I}\right\|_{2}+2 \lambda_{2}\|\beta\|_{1}
$$

LEstimation algorithms

Estimation algorithm: GGGL-2

Note:

$$
\sum_{I \sim J} w_{I J}\left(\bar{\beta}_{I}-\bar{\beta}_{J}\right)^{2}=\beta^{\prime} \mathcal{L} \beta
$$

where \mathcal{L} is defined as:

$$
(\mathcal{L})_{i j}=\left\{\begin{array}{rll}
\sum_{\{K: K \sim /\}} \frac{w_{I K}}{\left.\left|R_{I}\right|\right|^{2}} & \text { if } & x_{i} \in R_{I}, X_{j} \in R_{I} \\
-\frac{w_{I}}{\left|R_{I}\right| \cdot\left|R_{J}\right|} & \text { if } & x_{i} \in R_{I}, X_{j} \in R_{J}
\end{array}\right.
$$

Estimation algorithm: GGGL-2

Note:

$$
\sum_{I \sim J} w_{I J}\left(\bar{\beta}_{I}-\bar{\beta}_{J}\right)^{2}=\beta^{\prime} \mathcal{L} \beta
$$

where \mathcal{L} is defined as:

$$
(\mathcal{L})_{i j}=\left\{\begin{array}{rll}
\sum_{\{K: K \sim /\}} \frac{w_{I K}}{\left.\left|R_{I}\right|\right|^{2}} & \text { if } & X_{i} \in R_{I}, X_{j} \in R_{I} \\
-\frac{w_{I}}{\left|R_{I}\right| \cdot\left|R_{J}\right|} & \text { if } & x_{i} \in R_{l}, X_{j} \in R_{J}
\end{array}\right.
$$

Both optimization problems can be solved using standard block coordinate descent algorithm.

Parallel computation: outline

■ For large scale data analysis it is necessary to parallelize.

- In each step, update a subset of the groups in parallel.
- An application of Richtarik and Takac ${ }^{4}$

■ Code written in CUDA, to run on graphics processing units (GPUs).
■ On a data set where $n=3000, p=2000$ partitioned into 200 groups, we observed a larger than $10 \times$ speed-up compared with the non-parallel algorithm written in C .

[^6]
Parallel computation: outline

Parallel Coordinate Descent Method

Input: Data, parameters, m groups to update in each step.
Output: column vector $\hat{\beta}$
1 Choose initial estimate $\hat{\beta}^{(0)}$.
$2 k \leftarrow 1$
3 Randomly pick a set of blocks from \mathcal{R} : $k_{1}, k_{2}, \ldots k_{m}$.
4 In parallel do: $\hat{\beta}_{R_{k_{m}}}^{(k+1)} \leftarrow \phi\left(\hat{\beta}^{(k)}, k_{m}\right)$, for $m=1,2, \ldots$.
5 Collect estimates from the processors to obtain $\hat{\beta}^{(k+1)}$.
б Set $k \leftarrow k+1$ and go back to 3 until convergence.
ϕ is defined so that at each step: $\mathbb{E}\left[F\left(\hat{\beta}^{(k+1)}\right) \mid \hat{\beta}^{(k)}\right] \leq \mathbb{E}\left[F\left(\hat{\beta}^{(k)}\right)\right]$, where F is the objective function.

Preliminary results

Data generation:
■ $n=200, p=800$, fixed grouping of X 's into 80 groups. $X \sim \mathcal{N}(0, \Sigma)$.
■ All predictors in R_{1}, \ldots, R_{40} are true variables, all predictors in the other groups are noise variables.
■ Compute $y=X \beta+\delta \cdot \epsilon$, where β_{i} 's are independently generated from uniform $(0.5,1)$ distribution for true variables. ϵ_{i} 's are i.i.d. standard normal $R V \mathrm{~s}, \delta$ controls signal-to-noise level to 1.
■ X is columnwise normalized and y is centered.

Networks for GGGL

We categorize the networks into 3 types, according to their relevance to the study:

- informative: true variables are connected (not necessarily in one component though) whereas there are very few links between true variables and noise variables.
- uninformative: all pairs of variables are connected with roughly equal probabilities.
- noisy: true variables and noise variables form an almost bipartite graph and the true variables are rarely linked.

Illustration of networks

Figure : Left: informative network; Right: noisy network.

Experiment design: GGGL-1 vs Group lasso

Repeat for 200 data sets:

- Generate random network with probabilities of connection: $p_{1}=0.7$ (between true groups), $p_{12}=0.01$ (between a true group and a noise group), $p_{2}=0.1$ (between noise groups).
- Fix $\mu=50$ and $\lambda_{2}=0$ in GGGL-1. So the GGGL-1 penalty becomes:

$$
P(\beta)=\lambda_{1} \sum_{I: R_{I} \in \mathcal{R}} \sqrt{\left|R_{I}\right|} \cdot\left\|\beta_{I}\right\|_{2}+\frac{1}{2} \mu \sum_{i \in R_{I}, j \in R_{J, l \sim J}} w_{I J}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

with $\mu=10$, and the group lasso penalty is simply when $\mu=0$.

- Tune λ_{1} so that both models select exactly 40 groups.

Rank the groups according to selection frequencies for each model, and compare using the receiver operating characteristic (ROC) curves.

GGGL-1 vs Group lasso

ROC curve for group selection: GGGL1 vs Group Lasso

Figure : Comparison of GGGL-1 and Group lasso on group selection using ROC curves, where GGGL-1 shows superior power.

Future works

- Complete simulation study on GGGL-2

■ Study the performance of GGGL models on the three types of networks.
■ Application to tumor data set.

Acknowledgement

■ Dr. Giovanni Montana, Imperial College London

- Dr. Ed Curry, Imperial College London

■ Peter Nash, Imperial College London

Reference

Tibshirani. Regression shrinkage and selection via the lasso. J.R.Statist. Soc.B, 58:267-288. 1996.
Zhou et al. Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26(19): 2375-2382. 2010.

Wang et al. Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics 28(2): 229-237. 2012.

Li and Li . Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.

Yuan and Lin. Model selection and estimation in regression with grouped variables. J.R.Statist. Soc.B, 68(1):49-67, 2006.

Friedman et al. A note on the group lasso and a sparse group lasso. arXiv:1001.0736. 2010.
Daye and Jeng. Shrinkage and model selection with correlated variables via weighted fusion. Computational Statistics and Data Analysis 53(4), 1284-1298. 2009.

Chung. Spectral graph theory. CBMS regional conference series 92. Amer. Math. Soc., Providence, RI. MR1421568. 1997.

Richtárik and Takáč Parallel coordinate descent methods for big data optimization. arXiv:1212.0873. 2012

Why science teachers should not be given playground duty.

[^0]: ${ }^{1}$ Association screening of common and rare genetic variants by penalized regression. (Bioinformatics 26(19): 2375-2382. 2010.)
 ${ }^{2}$ Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort.
 (Bioinformatics 28(2): 229-237. 2012.)

[^1]: ${ }^{1}$ Association screening of common and rare genetic variants by penalized regression. (Bioinformatics 26(19): 2375-2382. 2010.)
 ${ }^{2}$ Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort.
 (Bioinformatics 28(2): 229-237. 2012.)

[^2]: ${ }^{1}$ Association screening of common and rare genetic variants by penalized regression. (Bioinformatics 26(19): 2375-2382. 2010.)
 ${ }^{2}$ Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort.
 (Bioinformatics 28(2): 229-237. 2012.)

[^3]: ${ }^{3}$ Network-constrained regularization and variable selection for analysis of genomic data. (Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.)

[^4]: ${ }^{3}$ Network-constrained regularization and variable selection for analysis of genomic data. (Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.)

[^5]: ${ }^{3}$ Network-constrained regularization and variable selection for analysis of genomic data. (Bioinformatics. Vol. 24 no. 9, pages 1175-1182 2008.)

[^6]: ${ }^{4}$ Parallel coordinate descent methods for big data optimization. (arXiv:1212.0873, 2012.)

