The First-Order View of Boosting Methods: Computational Complexity and Connections to Regularization

Robert M. Freund Paul Grigas Rahul Mazumder pgrigas@mit.edu

Massachusetts Institute of Technology

July 2013

1

Boosting methods are learning methods for combining weak models into accurate and predictive models

- Add one new weak model per iteration
- The weight on each weak model is typically small

We consider boosting methods in two modeling contexts:

- Binary (confidence-rated) classification
- (Regularized/sparse) Linear regression

Boosting methods are typically tuned to perform <u>implicit</u> regularization

To properly balance the bias-variance tradeoff, a direct approach is to use models that solve $\underline{explicitly}$ defined regularized optimization problems

We therefore ask:

- Are boosting methods solving any optimization problem(s)?
- If so, what computational guarantees can we derive?
- Or an we adapt boosting methods to solve regularized problems?

Overview/Results

Our Results:

- AdaBoost for binary classification is Mirror Descent to minimize the edge and, through dual iterates, maximize the margin
- Incremental Forward Stagewise Regression (FS $_{\varepsilon}$) is subgradient descent to minimize the correlation between the residuals and the predictors
- Computational complexity guarantees through both of these interpretations
- Conditional Gradient/Frank-Wolfe to minimize log-exponential loss/LASSO directly solves a regularized loss function minimization problem and is a very slight modification of AdaBoost/FS_{ε}

Our problem of interest is:

(P):
$$\min_{x \in P} f(x)$$

- $P \subseteq \mathbb{R}^n$ is convex and closed
- f(·): P → ℝ is a (non-smooth) Lipschitz continuous convex function with Lipschitz value L_f

We assume that $f(\cdot)$ arises from minmax structure:

$$f(x) := \max_{\lambda \in Q} \phi(x, \lambda)$$

- $Q \subseteq \mathbb{R}^m$ is convex and compact
- $\phi(\cdot, \cdot): P imes Q o \mathbb{R}$ is convex-concave

Danskin's Theorem says that computing subgradients of $f(\cdot)$ depends on solving the maximization problem that defines $f(\cdot)$:

$$\partial f(x) = \operatorname{conv}\left(\left\{
abla_x \phi(x, \tilde{\lambda}) : \tilde{\lambda} \in rg\max_{\lambda \in Q} \phi(x, \lambda)
ight\}
ight)$$

When P is bounded, define $p(\lambda) := \min_{x \in P} \phi(x, \lambda)$. Then a dual problem is:

$$(\mathsf{D}): \max_{\lambda \in \mathcal{Q}} p(\lambda)$$

MD uses a 1-strongly convex prox function $d(\cdot): P
ightarrow \mathbb{R}$

- d(·) needs to be chosen such that solving min_{x∈P} {c^Tx + d(x)} is easy for any c ∈ ℝⁿ
- The Bregman distance associated with $d(\cdot)$ is:

$$D(x,y) := d(x) - d(y) - \nabla d(y)^T (x-y) \ge \frac{1}{2} ||x-y||^2$$

Mirror Descent Method

Initialize at
$$x^0 \in P$$
, $\lambda^0 = 0, k = 0$

At iteration $k \ge 0$:

• Compute:

$$egin{array}{l} ilde{\lambda}^k \leftarrow rg\max_{\lambda \in Q} \phi(x^k,\lambda) \ g^k \leftarrow
abla_x \phi(x^k, ilde{\lambda}^k) \end{array}$$

• Choose $\alpha_k \geq 0$ and set:

$$\begin{aligned} x^{k+1} &\leftarrow \arg\min_{x \in P} \left\{ \alpha_k (g^k)^T x + D(x, x^k) \right\} \\ \lambda^{k+1} &\leftarrow \frac{\sum_{i=0}^k \alpha_i \tilde{\lambda}^i}{\sum_{i=0}^k \alpha_i} \end{aligned}$$

(Note: the assignment of λ^{k+1} plays no role in the dynamics of the method)

Example: Subgradient Descent

- Take $P = \mathbb{R}^n$ and $d(x) = \frac{1}{2} ||x||_2^2$
- Step (2.) of MD becomes

$$x^{k+1} \leftarrow x^k - \alpha_k g^k$$

Example: Multiplicative Weight Updates

- Take $P = \Delta_n := \{x : e^T x = 1, x \ge 0\}$ and let $d(x) = e(x) := \sum_{i=1}^n x_i \ln(x_i) + \ln(n)$
- Step (2.) of MD becomes

$$x_i^{k+1} \propto x_i^k \cdot \exp(-lpha_k g_i^k)$$
 for all $i = 1, \dots, n$

Computational Guarantees for MD [Beck and Teboulle, Nesterov, Polyak, etc.]

For each $k \ge 0$ and for any $x \in P$, the following inequality holds:

$$\min_{i \in \{0,...,k\}} f(x^{i}) - f(x) \le \frac{D(x, x^{0}) + \frac{1}{2}L_{f}^{2} \sum_{i=0}^{k} \alpha_{i}^{2}}{\sum_{i=0}^{k} \alpha_{i}}$$

Furthermore, if *P* is compact and $\overline{D} \ge \max_{x \in P} D(x, x^0)$, then for each $k \ge 0$ the following inequality holds:

$$\min_{i \in \{0,...,k\}} f(x^{i}) - p(\lambda^{k+1}) \le \frac{\bar{D} + \frac{1}{2}L_{f}^{2} \sum_{i=0}^{k} \alpha_{i}^{2}}{\sum_{i=0}^{k} \alpha_{i}}$$

The set-up of the general boosting problem consists of:

- Data/training examples $(x_1, y_1), \ldots, (x_m, y_m)$ where each $x_i \in \mathcal{X}$ and each $y_i \in [-1, +1]$
- A set of base classifiers $\mathcal{H} = \{h_1, \dots, h_n\}$ where each $h_j : \mathcal{X} \to [-1, +1]$
- Assume that \mathcal{H} is closed under negation $(h_j \in \mathcal{H} \Rightarrow -h_j \in \mathcal{H})$

We would like to construct a nonnegative combination of weak classifiers

$$H_{\lambda} = \lambda_1 h_1 + \dots + \lambda_n h_n$$

that performs significantly better than any individual classifier in $\ensuremath{\mathcal{H}}.$

Recall

$$H_{\lambda} = \lambda_1 h_1 + \dots + \lambda_n h_n$$

In the high-dimensional regime with $n \gg m \gg 0$, we desire:

- Good performance on the training data (y_iH_λ(x_i) > 0 for "most" i = 1,..., m)
- Good predictive performance
- Shrinkage in the coefficients ($\|\lambda\|_1$ is small)
- Sparsity in the coefficients ($\|\lambda\|_0$ is small)

Define the feature matrix $A \in \mathbb{R}^{m \times n}$ by $A_{ij} = y_i h_j(x_i)$

Two loss functions are often considered in this context:

- The margin $p(\lambda) := \min_{i \in \{1,...,m\}} y_i H_{\lambda}(x_i) = \min_{i \in \{1,...,m\}} (A\lambda)_i = \min_{w \in \Delta_m} w^T A\lambda$ • The exponential large I_{i} (λ) is $\sum_{i=1}^{m} \sum_{j=1}^{m} e_{ij} (A\lambda)_{j}$
- The exponential loss $L_{\exp}(\lambda) := \frac{1}{m} \sum_{i=1}^{m} \exp(-(A\lambda)_i)$
- (\equiv the log-exponential loss $L(\lambda) := \log(L_{exp}(\lambda))$)

It is known that a high margin implies good generalization properties [Schapire 97]. On the other hand, the exponential loss upper bounds the empirical probability of misclassification. The problem of maximizing the margin over all normalized classifiers is:

(D):
$$\rho^* = \max_{\lambda \in \Delta_n} p(\lambda)$$

And its dual is the problem of minimizing the edge:

$$(\mathsf{P}): \min_{w \in \Delta_m} f(w) := \max_{\lambda \in \Delta_n} w^T A \lambda$$

Suppose that we have access to a weak learner $\mathcal{W}(\cdot)$ that, for any distribution w on the examples ($w \in \Delta_m$), returns the base classifier h_{j^*} in \mathcal{H} that does best on the weighted example determined by w:

$$j^* \in \underset{j=1,...,n}{\operatorname{arg\,max}} w^T A_j = \underset{\lambda \in \Delta_n}{\operatorname{arg\,max}} w^T A \lambda$$

AdaBoost Algorithm

Initialize at $w^0 = (1/m, ..., 1/m), H_0 = 0, k = 0$

At iteration $k \ge 0$:

• Compute $j_k \in \mathcal{W}(w^k)$

• Choose
$$\alpha_k \ge 0$$
 and set:
 $H_{k+1} \leftarrow H_k + \alpha_k h_{j_k}$
 $w_i^{k+1} \leftarrow w_i^k \exp(-\alpha_k y_i h_{j_k}(x_i))$ $i = 1, \dots, m$, and
re-normalize w^{k+1} so that $e^T w^{k+1} = 1$

AdaBoost has the following sparsity/regularization properties:

$$\|\lambda^k\|_1 \leq \sum_{i=0}^{k-1} \alpha_i \text{ and } \|\lambda^k\|_0 \leq k .$$

What has been known about AdaBoost in the context of optimization:

- AdaBoost has been interpreted as a coordinate descent method to minimize the exponential loss [Mason et al., Mukherjee et al., etc.]
- A related method, the Hedge Algorithm, has been interpreted as dual averaging [Baes and Bürgisser]
- Rudin et al. in fact show that AdaBoost can fail to maximize the margin, but this is under the particular step-size $\alpha_k := \frac{1}{2} \ln \left(\frac{1+r_k}{1-r_k} \right)$
- Lots of other work as well...

AdaBoost is Mirror Descent

Define a sequence of normalized classifiers from AdaBoost by:

$$\bar{H}_0 := 0$$
 , $\bar{H}_k := \frac{H_k}{\sum_{i=0}^{k-1} \alpha_i}$, $k \ge 1$.

Equivalence Theorem

The sequence of weight vectors $\{w^k\}$ in AdaBoost arise as primal variables in MD applied to the minimum edge problem

(P):
$$\min_{w \in \Delta_m} f(w)$$

using the entropy prox function. Moreover, the sequence of dual variables $\{\lambda^k\}$ in MD define the normalized classifiers in AdaBoost, i.e.,

$$ar{H}_k = \sum_{j=1}^n \lambda_i^k h_j \; .$$

Note that $p(\lambda^k)$ is the margin of the normalized classifier \bar{H}_k

Let $\hat{\lambda}^k$ be the coefficient vector of the un-normalized classifier H_k

Lemma

For every iteration $k \ge 0$ of AdaBoost, the edge $f(w^k)$ and the un-normalized classifier H_k with coefficient vector $\hat{\lambda}^k$ satisfy:

$$f(w^k) = \|\nabla L(\hat{\lambda}^k)\|_{\infty}$$
.

Complexity of AdaBoost

For all $k \ge 1$, the sequence of normalized and un-normalized classifiers produced by AdaBoost satisfy:

$$\min_{i \in \{0,...,k-1\}} \|\nabla L(\hat{\lambda}^{i})\|_{\infty} - p(\lambda^{k}) \le \frac{\ln(m) + \frac{1}{2} \sum_{i=0}^{k-1} \alpha_{i}^{2}}{\sum_{i=0}^{k-1} \alpha_{i}}$$

If we decide a priori to run AdaBoost for $k \ge 1$ iterations and use a constant step-size $\alpha_i := \sqrt{\frac{2\ln(m)}{k}}$ for all i = 0, ..., k - 1, then we have:

$$\min_{i\in\{0,\dots,k-1\}} \|\nabla L(\hat{\lambda}^i)\|_{\infty} - p(\lambda^k) \leq \sqrt{\frac{2\ln(m)}{k}}$$

Recall that $ho^* = \max_{\lambda \in \Delta_n} \
ho(\lambda)$ is the maximum margin and $ho^* \geq 0$

If $\rho^{\ast}>$ 0, then the data is separable and the margin is informative

Complexity of AdaBoost: Separable Case

For all $k \ge 1$, the sequence of normalized classifiers produced by AdaBoost satisfy:

$$\rho^* - p(\lambda^k) \le \frac{\ln(m) + \frac{1}{2} \sum_{i=0}^{k-1} \alpha_i^2}{\sum_{i=0}^{k-1} \alpha_i}$$

If we decide a priori to run AdaBoost for $k \ge 1$ iterations and use a constant step-size $\alpha_i := \sqrt{\frac{2 \ln(m)}{k}}$ for all i = 0, ..., k - 1, then we have:

$$p^* - p(\lambda^k) \le \sqrt{\frac{2\ln(m)}{k}}$$

Complexity of AdaBoost: Non-separable Case

If $\rho^{\ast}=$ 0, then the data is not separable and the margin is no longer informative

Complexity of AdaBoost: Non-separable Case

If $\rho^* = 0$, then for all $k \ge 1$, the sequence of normalized classifiers produced by AdaBoost satisfy:

$$\min_{i \in \{0,...,k-1\}} \|\nabla L(\hat{\lambda}^{i})\|_{\infty} \leq \frac{\ln(m) + \frac{1}{2} \sum_{i=0}^{k-1} \alpha_{i}^{2}}{\sum_{i=0}^{k-1} \alpha_{i}}$$

If we decide a priori to run AdaBoost for $k \ge 1$ iterations and use a constant step-size $\alpha_i := \sqrt{\frac{2\ln(m)}{k}}$ for all i = 0, ..., k - 1, then we have:

$$\min_{i\in\{0,\dots,k-1\}} \|\nabla L(\hat{\lambda}^i)\|_{\infty} \leq \sqrt{\frac{2\ln(m)}{k}}$$

Conditional Gradient Method for Regularized Log-Exponential Loss Minimization

In the non-separable case, AdaBoost has guarantees for $\|\nabla L(\lambda)\|_{\infty}$

What about guarantees for
$$L(\lambda) := \log \left(\frac{1}{m} \sum_{i=1}^{m} \exp \left(-(A\lambda)_i \right) \right)$$
?

Let us consider applying the conditional gradient method to solve:

$$L_{\delta}^{*} = \min_{\lambda} L(\lambda)$$

s.t. $\|\lambda\|_{1} \le \delta$
 $\lambda \ge 0$

Structure of Conditional Gradient Method Updates

At iteration k, the conditional gradient method needs to:

- Compute $\nabla L(\lambda^k)$
- Solve $\min_{\lambda: \|\lambda\|_1 \leq \delta, \lambda \geq 0} \nabla L(\lambda^k)^T \lambda$
- Update λ^{k+1}

We could compute $\nabla L(\lambda^k)$ directly...

Instead, we note that $L(\lambda) = \max_{w \in \Delta_m} \{-w^T A \lambda - e(w)\}$ and define a weight vector w^k to be the optimal solution to the above problem:

$$w_i^k = \frac{\exp(-(A\lambda^k)_i)}{\sum_{l=1}^m \exp(-(A\lambda^k)_l)} \quad i = 1, \dots, m$$

Then, $\nabla L(\lambda^k) = -A^T w^k$

Structure of Conditional Gradient Method Updates, continued

Solving the subproblem $\min_{\lambda:\|\lambda\|_1 \leq \delta, \lambda \geq 0} \nabla L(\lambda^k)^T \lambda \text{ is equivalent to calling the weak learner, that is:}$

$$j_k \in \mathcal{W}(w^k) \Longleftrightarrow \delta e_{j_k} \in \min_{\lambda: \|\lambda\|_1 \le \delta, \lambda \ge 0} - (w^k)^T A \lambda$$

The update for λ^{k+1} is standard

Also easy to show a simple update rule for w^{k+1}

CG-Boost Algorithm

Initialize at
$$\lambda^0=$$
 0, $w^0=(1/n,\ldots,1/n)$, $k=0$

At iteration $k \ge 0$:

• Compute:

$$j_k \in \mathcal{W}(w^k)$$

• Choose $\bar{\alpha}_k \in [0, 1]$ and set: $\lambda_{j_k}^{k+1} \leftarrow (1 - \bar{\alpha}_k)\lambda_{j_k}^k + \bar{\alpha}_k \delta$ $\lambda_j^{k+1} \leftarrow (1 - \bar{\alpha}_k)\lambda_{j_k}^k, j \neq j_k$ $w_i^{k+1} \leftarrow (w_i^k)^{1 - \bar{\alpha}_k} \exp(-\bar{\alpha}_k \delta y_i h_{j_k}(x_i))$ $i = 1, \dots, m$, and re-normalize w^{k+1} so that $e^T w^{k+1} = 1$

Note that CG-Boost has the sparsity property that $\|\lambda^k\|_0 \leq k$

Complexity of CG-Boost

w

With either the fixed step-size rule $\bar{\alpha}_k := \frac{2}{k+2}$ or a line-search to determine $\bar{\alpha}_k$, then then for all $k \ge 1$ we have the following inequalities:

$$\begin{split} L(\lambda^k) - L^*_{\delta} &\leq \frac{8\delta^2}{k+3}\\ \rho^* - p(\bar{\lambda}^k) &\leq \frac{8\delta}{k+3} + \frac{\ln(m)}{\delta}\\ \end{split}$$
here $\bar{\lambda}^k$ is the normalization of λ^k , i.e., $\bar{\lambda}^k := \frac{\lambda^k}{\delta}$

Bounds can also be obtained for the constant step-size $\bar{\alpha}_k := \bar{\alpha}$

Incremental Forward Stagewise Regression

Consider the linear regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$

- $\mathbf{y} \in \mathbb{R}^n$ is given response data
- $\mathbf{X} \in \mathbb{R}^{n \times p}$ is the given model matrix
- $\beta \in \mathbb{R}^p$ are the coefficents
- $\mathbf{e} \in \mathbb{R}^n$ is noise

In the high-dimensional regime with $p \gg n \gg 0$, we desire:

- Good performance on the training data (residuals $r := \mathbf{y} \mathbf{X}\beta$ are small)
- Good out of sample predictive performance
- Shrinkage in the coefficients ($\|\beta\|_1$ is small)
- Sparsity in the coefficients ($\|\beta\|_0$ is small)

In the high-dimensional regime, the LASSO solution often performs very well:

$$\min_{\boldsymbol{\beta}} \quad L(\boldsymbol{\beta}) := \frac{1}{2} \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_{2}^{2}$$

s.t. $\| \boldsymbol{\beta} \|_{1} \leq \delta$

Another loss function measures the correlation between the residuals and the predictors:

$$\min_{r\in P_{\rm res}} f(r) := \|\mathbf{X}^T r\|_{\infty}$$

where $P_{\rm res}$ is the set of residuals.

We also have $f(\mathbf{y} - \mathbf{X}\beta) = \|\nabla L(\beta)\|_{\infty}$

In the setting of boosting:

- Each independent variable x_j represents the j^{th} weak model
- β is the vector of weak model coefficients

The boosting method FS_{ε} adds, at iteration k, the predictor x_{j_k} most correlated with the current residuals r^k

$$j_k \in rg\max_{j \in \{1,...,p\}} |(r^k)^T \mathbf{X}_j|$$

$\mathsf{FS}_{\varepsilon}$ Algorithm

Initialize at
$$r^0 = \mathbf{y}$$
, $\beta^0 = 0$, $k = 0$

At iteration $k \ge 0$:

• Compute:

$$j_k \in rg\max_{j \in \{1,...,p\}} |(r^k)^T \mathbf{X}_j|$$

• Set:

$$\begin{aligned} r^{k+1} &\leftarrow r^k - \varepsilon \operatorname{sgn}((r^k)^T \mathbf{X}_{j_k}) \mathbf{X}_{j_k} \\ \beta_{j_k}^{k+1} &\leftarrow \beta_{j_k}^k + \varepsilon \operatorname{sgn}((r^k)^T \mathbf{X}_{j_k}) \\ \beta_j^{k+1} &\leftarrow \beta_j^k \ , j \neq j_k \end{aligned}$$

 FS_{ε} is known to have the following regularization/sparsity properties:

$$\|\beta^k\|_1 \le k\varepsilon$$
 and $\|\beta^k\|_0 \le k$.

What loss function criterion might FS_{ε} optimize?

FS_{ε} Equivalence Theorem

The FS_ε algorithm is an instance of the subgradient descent method to solve

$$\min_{\in P_{\text{res}}} f(r) := \|\mathbf{X}^T r\|_{\infty}$$

initialized at $r^0 = \mathbf{y}$ and with a constant step-size of ε at each iteration.

Complexity of FS_ε

With the constant shrinkage factor ε , for any $k \ge 0$ it holds that:

where β_{LS} is the least-squares solution so that $\|\mathbf{X}\beta_{LS}\|_2 \leq \|\mathbf{y}\|_2$.

The number of iterations k and the shrinkage factor ε should be chosen to balance:

- Guarantees for $\|\mathbf{X}^T r\|_{\infty}$ through the previous theorem
- Sparsity/regularization guarantees: $\|\beta\|_1 \le k\varepsilon$ and $\|\beta\|_0 \le k$

What about guarantees for the least-squares loss $\frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$?

Recall the LASSO:

$$L_{\delta}^{*} = \min_{\beta} \quad L(\beta) := \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2}$$

s.t. $\|\beta\|_{1} \le \delta$

 FS_{ε} guarantees that $\|\beta^k\|_0 \le k$. A method with similar sparsity properties is Frank-Wolfe on the LASSO

At iteration k, Frank-Wolfe needs to:

- Compute $\nabla L(\beta^k) = -\mathbf{X}^T (\mathbf{y} \mathbf{X}\beta^k) = -(r^k)^T \mathbf{X}$
- Solve $\min_{\beta: \|\beta\|_1 \le \delta} \nabla L(\beta^k)^T \beta$
- Update β^{k+1}

Extreme points of $\{\beta : \|\beta\|_1 \le \delta\}$ are $\{\pm \delta e_j : j = 1, \dots, p\}$ so $-\delta \operatorname{sgn}(-(r^k)^T \mathbf{X}_{j^*}) e_{j^*} \in \underset{\beta:\|\beta\|_1 \le \delta}{\operatorname{arg min}} \nabla L(\beta^k)^T \beta \iff j^* \in \underset{j \in \{1,\dots,p\}}{\operatorname{arg max}} |(r^k)^T \mathbf{X}_j|$

This is the same subproblem that FS_{ε} solves (find the predictor that maximizes correlation with the residuals)

FW-LASSO Algorithm

Initialize at $\beta^0 = 0$, k = 0

At iteration $k \ge 0$:

• Compute:

$$egin{aligned} & r^k \leftarrow \mathbf{y} - \mathbf{X}eta^k \ & j_k \in rg\max_{j \in \{1, \dots, p\}} |(r^k)^T \mathbf{X}_j| \end{aligned}$$

• Choose
$$\bar{\alpha}_k \in [0, 1]$$
 and set:
 $\beta_{j_k}^{k+1} \leftarrow (1 - \bar{\alpha}_k)\beta_{j_k}^k + \bar{\alpha}_k \delta \operatorname{sgn}((r^k)^T \mathbf{X}_{j_k})$
 $\beta_j^{k+1} \leftarrow (1 - \bar{\alpha}_k)\beta_j^k , j \neq j_k$

FW-LASSO is structurally very similar to FS_{ε}

Note that FW-LASSO shares similar sparsity/regularization properties as FS_{ε} :

- $\|\beta^k\|_0 \leq k$
- $\|\beta^k\|_1 \le \delta$

For a fixed step-size $\bar{\alpha}_k := \frac{\varepsilon}{\delta + \varepsilon}$, observe the update for β^{k+1} can be rearranged to:

$$\beta^{k+1} \leftarrow \frac{\delta}{\varepsilon + \delta} \big[\beta^k + \varepsilon \operatorname{sgn}((r^k)^T \mathbf{X}_{j_k}) e_{j_k} \big]$$

which is equivalent to the FS_{ε} update modulo a multiplicative factor which keeps the coefficient profile within { $\beta : \|\beta\|_1 \le \delta$ }

Complexity of FW-LASSO

With either the fixed step-size rule $\bar{\alpha}_k := \frac{2}{k+2}$ or a line-search to determine $\bar{\alpha}_k$, then after k iterations there exists an $i \in \{1, \ldots, k\}$ such that the following two inequalities both hold:

$$\begin{split} \mathcal{L}(\beta^{i}) - \mathcal{L}_{\delta}^{*} &\leq \frac{17.4 \|\mathbf{X}\|_{1,2}^{2} \delta^{2}}{k} \\ \|\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\beta^{i})\|_{\infty} &\leq \frac{1}{2\delta} \|\mathbf{X}\beta_{LS}\|_{2}^{2} + \frac{17.4 \|\mathbf{X}\|_{1,2}^{2} \delta}{k} \;. \end{split}$$

Bounds can also be obtained for the constant step-size $\bar{\alpha}_k := \frac{\varepsilon}{\delta + \varepsilon}$

Conclusions

We have shown that:

- AdaBoost is equivalent to Mirror Descent with an entropy prox function \Rightarrow complexity guarantees for the margin $p(\lambda)$ in the case of separable data and for $\|\nabla L(\lambda)\|_{\infty}$ in the case of non-separable data.
- FS_{ε} is equivalent to subgradient descent \Rightarrow complexity guarantees for $\|\mathbf{X}^{T}(\mathbf{y} \mathbf{X}\beta)\|_{\infty}$

The above two results also extend to the functional boosting setting, as long as the loss function is convex and globally smooth