
1

The First-Order View of Boosting Methods:
Computational Complexity and Connections to

Regularization

Robert M. Freund Paul Grigas Rahul Mazumder
pgrigas@mit.edu

Massachusetts Institute of Technology

July 2013

2

Motivation

Boosting methods are learning methods for combining weak
models into accurate and predictive models

Add one new weak model per iteration

The weight on each weak model is typically small

We consider boosting methods in two modeling contexts:

Binary (confidence-rated) classification

(Regularized/sparse) Linear regression

Boosting methods are typically tuned to perform implicit
regularization

3

Motivation, continued

To properly balance the bias-variance tradeoff, a direct approach is
to use models that solve explicitly defined regularized optimization
problems

We therefore ask:

1 Are boosting methods solving any optimization problem(s)?

2 If so, what computational guarantees can we derive?

3 Can we adapt boosting methods to solve regularized
problems?

4

Overview/Results

Our Results:

AdaBoost for binary classification is Mirror Descent to
minimize the edge and, through dual iterates, maximize the
margin

Incremental Forward Stagewise Regression (FSε) is
subgradient descent to minimize the correlation between the
residuals and the predictors

Computational complexity guarantees through both of these
interpretations

Conditional Gradient/Frank-Wolfe to minimize log-exponential
loss/LASSO directly solves a regularized loss function
minimization problem and is a very slight modification of
AdaBoost/FSε

5

Mirror Descent for Minmax Optimization

Our problem of interest is:

(P): min
x∈P

f (x)

P ⊆ Rn is convex and closed

f (·) : P → R is a (non-smooth) Lipschitz continuous convex
function with Lipschitz value Lf

6

Mirror Descent for Minmax Optimization, continued

We assume that f (·) arises from minmax structure:

f (x) := max
λ∈Q

φ(x , λ)

Q ⊆ Rm is convex and compact

φ(·, ·) : P × Q → R is convex-concave

Danskin’s Theorem says that computing subgradients of f (·)
depends on solving the maximization problem that defines f (·):

∂f (x) = conv

({
∇xφ(x , λ̃) : λ̃ ∈ arg max

λ∈Q
φ(x , λ)

})

7

Mirror Descent for Minmax Optimization, continued

When P is bounded, define p(λ) := min
x∈P

φ(x , λ) . Then a dual

problem is:
(D): max

λ∈Q
p(λ)

MD uses a 1-strongly convex prox function d(·) : P → R

d(·) needs to be chosen such that solving min
x∈P
{cT x + d(x)} is

easy for any c ∈ Rn

The Bregman distance associated with d(·) is:

D(x , y) := d(x)− d(y)−∇d(y)T (x − y) ≥ 1

2
‖x − y‖2

8

Mirror Descent for Minmax Optimization, continued

Mirror Descent Method

Initialize at x0 ∈ P, λ0 = 0, k = 0

At iteration k ≥ 0:

Compute:

λ̃k ← arg max
λ∈Q

φ(xk , λ)

gk ← ∇xφ(xk , λ̃k)

Choose αk ≥ 0 and set:

xk+1 ← arg min
x∈P

{
αk(gk)T x + D(x , xk)

}
λk+1 ←

∑k
i=0 αi λ̃

i∑k
i=0 αi

(Note: the assignment of λk+1 plays no role in the dynamics of the
method)

9

Mirror Descent for Minmax Optimization, continued

Example: Subgradient Descent

Take P = Rn and d(x) = 1
2‖x‖

2
2

Step (2.) of MD becomes

xk+1 ← xk − αkg
k

Example: Multiplicative Weight Updates

Take P = ∆n := {x : eT x = 1, x ≥ 0} and let
d(x) = e(x) :=

∑n
i=1 xi ln(xi) + ln(n)

Step (2.) of MD becomes

xk+1
i ∝ xki · exp(−αkg

k
i) for all i = 1, . . . , n

10

Mirror Descent for Minmax Optimization, continued

Computational Guarantees for MD [Beck and Teboulle, Nesterov,
Polyak, etc.]

For each k ≥ 0 and for any x ∈ P, the following inequality holds:

min
i∈{0,...,k}

f (x i)− f (x) ≤
D(x , x0) + 1

2L
2
f

∑k
i=0 α

2
i∑k

i=0 αi

Furthermore, if P is compact and D̄ ≥ max
x∈P

D(x , x0), then for each

k ≥ 0 the following inequality holds:

min
i∈{0,...,k}

f (x i)− p(λk+1) ≤
D̄ + 1

2L
2
f

∑k
i=0 α

2
i∑k

i=0 αi

11

Boosting and AdaBoost

The set-up of the general boosting problem consists of:

Data/training examples (x1, y1), . . . , (xm, ym) where each
xi ∈ X and each yi ∈ [−1,+1]

A set of base classifiers H = {h1, . . . , hn} where each
hj : X → [−1,+1]

Assume that H is closed under negation (hj ∈ H ⇒ −hj ∈ H)

We would like to construct a nonnegative combination of weak
classifiers

Hλ = λ1h1 + · · ·+ λnhn

that performs significantly better than any individual classifier in
H.

12

Boosting and AdaBoost, continued

Recall
Hλ = λ1h1 + · · ·+ λnhn

In the high-dimensional regime with n� m� 0, we desire:

Good performance on the training data (yiHλ(xi) > 0 for
“most” i = 1, . . . ,m)

Good predictive performance

Shrinkage in the coefficients (‖λ‖1 is small)

Sparsity in the coefficients (‖λ‖0 is small)

13

Some Loss Functions for Boosting

Define the feature matrix A ∈ Rm×n by Aij = yihj(xi)

Two loss functions are often considered in this context:

The margin
p(λ) := min

i∈{1,...,m}
yiHλ(xi) = min

i∈{1,...,m}
(Aλ)i = min

w∈∆m

wTAλ

The exponential loss Lexp(λ) := 1
m

∑m
i=1 exp (−(Aλ)i)

(≡ the log-exponential loss L(λ) := log(Lexp(λ)))

It is known that a high margin implies good generalization
properties [Schapire 97]. On the other hand, the exponential loss
upper bounds the empirical probability of misclassification.

14

The Margin Maximization Problem

The problem of maximizing the margin over all normalized
classifiers is:

(D): ρ∗ = max
λ∈∆n

p(λ)

And its dual is the problem of minimizing the edge:

(P): min
w∈∆m

f (w) := max
λ∈∆n

wTAλ

Suppose that we have access to a weak learner W(·) that, for any
distribution w on the examples (w ∈ ∆m), returns the base
classifier hj∗ in H that does best on the weighted example
determined by w :

j∗ ∈ arg max
j=1,...,n

wTAj = arg max
λ∈∆n

wTAλ

15

AdaBoost Algorithm Description

AdaBoost Algorithm

Initialize at w0 = (1/m, . . . , 1/m),H0 = 0, k = 0

At iteration k ≥ 0:

Compute jk ∈ W(wk)

Choose αk ≥ 0 and set:
Hk+1 ← Hk + αkhjk
wk+1
i ← wk

i exp(−αkyihjk (xi)) i = 1, . . . ,m, and
re-normalize wk+1 so that eTwk+1 = 1

AdaBoost has the following sparsity/regularization properties:

‖λk‖1 ≤
k−1∑
i=0

αi and ‖λk‖0 ≤ k .

16

Optimization Perspectives on AdaBoost

What has been known about AdaBoost in the context of
optimization:

AdaBoost has been interpreted as a coordinate descent
method to minimize the exponential loss [Mason et al.,
Mukherjee et al., etc.]

A related method, the Hedge Algorithm, has been interpreted
as dual averaging [Baes and Bürgisser]

Rudin et al. in fact show that AdaBoost can fail to maximize
the margin, but this is under the particular step-size

αk := 1
2 ln

(
1+rk
1−rk

)
Lots of other work as well...

17

AdaBoost is Mirror Descent

Define a sequence of normalized classifiers from AdaBoost by:

H̄0 := 0 , H̄k :=
Hk∑k−1
i=0 αi

, k ≥ 1 .

Equivalence Theorem

The sequence of weight vectors {wk} in AdaBoost arise as primal
variables in MD applied to the minimum edge problem

(P): min
w∈∆m

f (w)

using the entropy prox function. Moreover, the sequence of dual
variables {λk} in MD define the normalized classifiers in
AdaBoost, i.e.,

H̄k =
n∑

j=1

λki hj .

18

Interpretations of the (P)/(D) Objective Functions in MD

Note that p(λk) is the margin of the normalized classifier H̄k

Let λ̂k be the coefficient vector of the un-normalized classifier Hk

Lemma

For every iteration k ≥ 0 of AdaBoost, the edge f (wk) and the
un-normalized classifier Hk with coefficient vector λ̂k satisfy:

f (wk) = ‖∇L(λ̂k)‖∞ .

19

Complexity of AdaBoost: General Case

Complexity of AdaBoost

For all k ≥ 1, the sequence of normalized and un-normalized
classifiers produced by AdaBoost satisfy:

min
i∈{0,...,k−1}

‖∇L(λ̂i)‖∞ − p(λk) ≤
ln(m) + 1

2

∑k−1
i=0 α

2
i∑k−1

i=0 αi

.

If we decide a priori to run AdaBoost for k ≥ 1 iterations and use a

constant step-size αi :=
√

2 ln(m)
k for all i = 0, . . . , k − 1, then we

have:

min
i∈{0,...,k−1}

‖∇L(λ̂i)‖∞ − p(λk) ≤
√

2 ln(m)

k
.

Recall that ρ∗ = max
λ∈∆n

p(λ) is the maximum margin and ρ∗ ≥ 0

20

Complexity of AdaBoost: Separable Case

If ρ∗ > 0, then the data is separable and the margin is informative

Complexity of AdaBoost: Separable Case

For all k ≥ 1, the sequence of normalized classifiers produced by
AdaBoost satisfy:

ρ∗ − p(λk) ≤
ln(m) + 1

2

∑k−1
i=0 α

2
i∑k−1

i=0 αi

.

If we decide a priori to run AdaBoost for k ≥ 1 iterations and use a

constant step-size αi :=
√

2 ln(m)
k for all i = 0, . . . , k − 1, then we

have:

ρ∗ − p(λk) ≤
√

2 ln(m)

k
.

21

Complexity of AdaBoost: Non-separable Case

If ρ∗ = 0, then the data is not separable and the margin is no
longer informative

Complexity of AdaBoost: Non-separable Case

If ρ∗ = 0, then for all k ≥ 1, the sequence of normalized classifiers
produced by AdaBoost satisfy:

min
i∈{0,...,k−1}

‖∇L(λ̂i)‖∞ ≤
ln(m) + 1

2

∑k−1
i=0 α

2
i∑k−1

i=0 αi

.

If we decide a priori to run AdaBoost for k ≥ 1 iterations and use a

constant step-size αi :=
√

2 ln(m)
k for all i = 0, . . . , k − 1, then we

have:

min
i∈{0,...,k−1}

‖∇L(λ̂i)‖∞ ≤
√

2 ln(m)

k
.

22

Conditional Gradient Method for Regularized
Log-Exponential Loss Minimization

In the non-separable case, AdaBoost has guarantees for ‖∇L(λ)‖∞

What about guarantees for L(λ) := log
(

1
m

∑m
i=1 exp (−(Aλ)i)

)
?

Let us consider applying the conditional gradient method to solve:

L∗δ = min
λ

L(λ)

s.t. ‖λ‖1 ≤ δ
λ ≥ 0

23

Structure of Conditional Gradient Method Updates

At iteration k , the conditional gradient method needs to:

Compute ∇L(λk)

Solve min
λ:‖λ‖1≤δ,λ≥0

∇L(λk)Tλ

Update λk+1

We could compute ∇L(λk) directly...

Instead, we note that L(λ) = max
w∈∆m

{
−wTAλ− e(w)

}
and define

a weight vector wk to be the optimal solution to the above
problem:

wk
i =

exp(−(Aλk)i)∑m
l=1 exp(−(Aλk)l)

i = 1, . . . ,m

Then, ∇L(λk) = −ATwk

24

Structure of Conditional Gradient Method Updates,
continued

Solving the subproblem min
λ:‖λ‖1≤δ,λ≥0

∇L(λk)Tλ is equivalent to

calling the weak learner, that is:

jk ∈ W(wk)⇐⇒ δejk ∈ min
λ:‖λ‖1≤δ,λ≥0

−(wk)TAλ

The update for λk+1 is standard

Also easy to show a simple update rule for wk+1

25

Complete Conditional Gradient Algorithm Description

CG-Boost Algorithm

Initialize at λ0 = 0, w0 = (1/n, . . . , 1/n), k = 0

At iteration k ≥ 0:

Compute:

jk ∈ W(wk)

Choose ᾱk ∈ [0, 1] and set:
λk+1
jk
← (1− ᾱk)λkjk + ᾱkδ

λk+1
j ← (1− ᾱk)λkjk , j 6= jk

wk+1
i ← (wk

i)1−ᾱk exp(−ᾱkδyihjk (xi)) i = 1, . . . ,m, and
re-normalize wk+1 so that eTwk+1 = 1

Note that CG-Boost has the sparsity property that ‖λk‖0 ≤ k

26

Complexity of CG-Boost

Complexity of CG-Boost

With either the fixed step-size rule ᾱk := 2
k+2 or a line-search to

determine ᾱk , then then for all k ≥ 1 we have the following
inequalities:

L(λk)− L∗δ ≤
8δ2

k + 3

ρ∗ − p(λ̄k) ≤ 8δ

k + 3
+

ln(m)

δ

where λ̄k is the normalization of λk , i.e., λ̄k := λk

δ

Bounds can also be obtained for the constant step-size ᾱk := ᾱ

27

Incremental Forward Stagewise Regression

Consider the linear regression model y = Xβ + e

y ∈ Rn is given response data

X ∈ Rn×p is the given model matrix

β ∈ Rp are the coefficents

e ∈ Rn is noise

In the high-dimensional regime with p � n� 0, we desire:

Good performance on the training data (residuals r := y−Xβ
are small)

Good out of sample predictive performance

Shrinkage in the coefficients (‖β‖1 is small)

Sparsity in the coefficients (‖β‖0 is small)

28

Incremental Forward Stagewise Regression, continued

In the high-dimensional regime, the LASSO solution often performs
very well:

min
β

L(β) :=
1

2
‖y − Xβ‖2

2

s.t. ‖β‖1 ≤ δ

Another loss function measures the correlation between the
residuals and the predictors:

min
r∈Pres

f (r) := ‖XT r‖∞

where Pres is the set of residuals.

We also have f (y − Xβ) = ‖∇L(β)‖∞

29

FSε as a Boosting Algorithm

In the setting of boosting:

Each independent variable xj represents the j th weak model

β is the vector of weak model coefficients

The boosting method FSε adds, at iteration k , the predictor xjk
most correlated with the current residuals rk

jk ∈ arg max
j∈{1,...,p}

|(rk)TXj |

30

FSε Algorithm Description

FSε Algorithm

Initialize at r0 = y, β0 = 0, k = 0

At iteration k ≥ 0:

Compute:

jk ∈ arg max
j∈{1,...,p}

|(rk)TXj |

Set:

rk+1 ← rk − ε sgn((rk)TXjk)Xjk

βk+1
jk
← βkjk + ε sgn((rk)TXjk)

βk+1
j ← βkj , j 6= jk

31

FSε is Subgradient Descent

FSε is known to have the following regularization/sparsity
properties:

‖βk‖1 ≤ kε and ‖βk‖0 ≤ k .

What loss function criterion might FSε optimize?

FSε Equivalence Theorem

The FSε algorithm is an instance of the subgradient descent
method to solve

min
r∈Pres

f (r) := ‖XT r‖∞

initialized at r0 = y and with a constant step-size of ε at each
iteration.

32

Complexity of FSε

Complexity of FSε

With the constant shrinkage factor ε, for any k ≥ 0 it holds that:

min
i∈{0,...,k}

‖XT r i‖∞ ≤
‖XβLS‖2

2

2ε(k + 1)
+
ε‖X‖2

1,2

2
.

If we set ε := ‖XβLS‖2

‖X‖1,2

√
k+1

or εk :=
|(rk)TXjk

|
‖Xjk
‖2

2
then

min
i∈{0,...,k}

‖XT r i‖∞ ≤
‖X‖1,2‖XβLS‖2√

k + 1
.

where βLS is the least-squares solution so that ‖XβLS‖2 ≤ ‖y‖2 .

33

Complexity of FSε, continued

The number of iterations k and the shrinkage factor ε should be
chosen to balance:

Guarantees for ‖XT r‖∞ through the previous theorem

Sparsity/regularization guarantees: ‖β‖1 ≤ kε and ‖β‖0 ≤ k

What about guarantees for the least-squares loss 1
2‖y − Xβ‖2

2?

34

Frank-Wolfe on the LASSO

Recall the LASSO:

L∗δ = min
β

L(β) :=
1

2
‖y − Xβ‖2

2

s.t. ‖β‖1 ≤ δ

FSε guarantees that ‖βk‖0 ≤ k . A method with similar sparsity
properties is Frank-Wolfe on the LASSO

At iteration k , Frank-Wolfe needs to:

Compute ∇L(βk) = −XT (y − Xβk) = −(rk)TX

Solve min
β:‖β‖1≤δ

∇L(βk)Tβ

Update βk+1

35

Solving the Linear Optimization Subproblem

Extreme points of {β : ‖β‖1 ≤ δ} are {±δej : j = 1, . . . , p} so

−δsgn(−(rk)TXj∗)ej∗ ∈ arg min
β:‖β‖1≤δ

∇L(βk)Tβ ⇐⇒ j∗ ∈ arg max
j∈{1,...,p}

|(rk)TXj |

This is the same subproblem that FSε solves (find the predictor that

maximizes correlation with the residuals)

36

Complete Frank-Wolfe Algorithm Description

FW-LASSO Algorithm

Initialize at β0 = 0, k = 0

At iteration k ≥ 0:

Compute:

rk ← y − Xβk

jk ∈ arg max
j∈{1,...,p}

|(rk)TXj |

Choose ᾱk ∈ [0, 1] and set:

βk+1
jk
← (1− ᾱk)βkjk + ᾱkδ sgn((rk)TXjk)

βk+1
j ← (1− ᾱk)βkj , j 6= jk

FW-LASSO is structurally very similar to FSε

37

Properties of FW-LASSO

Note that FW-LASSO shares similar sparsity/regularization
properties as FSε:

‖βk‖0 ≤ k

‖βk‖1 ≤ δ

For a fixed step-size ᾱk := ε
δ+ε , observe the update for βk+1 can

be rearranged to:

βk+1 ← δ

ε+ δ

[
βk + εsgn((rk)TXjk)ejk

]
which is equivalent to the FSε update modulo a multiplicative
factor which keeps the coefficient profile within {β : ‖β‖1 ≤ δ}

38

Complexity of FW-LASSO

Complexity of FW-LASSO

With either the fixed step-size rule ᾱk := 2
k+2 or a line-search to

determine ᾱk , then after k iterations there exists an i ∈ {1, . . . , k}
such that the following two inequalities both hold:

L(βi)− L∗δ ≤
17.4‖X‖2

1,2δ
2

k

‖XT (y − Xβi)‖∞ ≤
1

2δ
‖XβLS‖2

2 +
17.4‖X‖2

1,2δ

k
.

Bounds can also be obtained for the constant step-size ᾱk := ε
δ+ε

39

Conclusions

We have shown that:

AdaBoost is equivalent to Mirror Descent with an entropy
prox function ⇒ complexity guarantees for the margin p(λ) in
the case of separable data and for ‖∇L(λ)‖∞ in the case of
non-separable data.

FSε is equivalent to subgradient descent ⇒ complexity
guarantees for ‖XT (y − Xβ)‖∞

The above two results also extend to the functional boosting
setting, as long as the loss function is convex and globally smooth

Conditional gradient/Frank-Wolfe on regularized log-exponential
loss minimization/LASSO are simple modifications to
AdaBoost/FSε

