The First-Order View of Boosting Methods:
Computational Complexity and Connections to
Regularization

Robert M. Freund Paul Grigas Rahul Mazumder
pgrigas@mit.edu

Massachusetts Institute of Technology

July 2013

Motivation

Boosting methods are learning methods for combining weak
models into accurate and predictive models

@ Add one new weak model per iteration

@ The weight on each weak model is typically small

We consider boosting methods in two modeling contexts:
@ Binary (confidence-rated) classification

o (Regularized/sparse) Linear regression

Boosting methods are typically tuned to perform implicit
regularization

Motivation, continued

To properly balance the bias-variance tradeoff, a direct approach is
to use models that solve explicitly defined regularized optimization
problems

We therefore ask:
@ Are boosting methods solving any optimization problem(s)?
@ If so, what computational guarantees can we derive?

© Can we adapt boosting methods to solve regularized
problems?

Overview/Results

Our Results:

@ AdaBoost for binary classification is Mirror Descent to
minimize the edge and, through dual iterates, maximize the
margin

@ Incremental Forward Stagewise Regression (FS;) is

subgradient descent to minimize the correlation between the
residuals and the predictors

o Computational complexity guarantees through both of these
interpretations

e Conditional Gradient/Frank-Wolfe to minimize log-exponential
loss/LASSO directly solves a regularized loss function
minimization problem and is a very slight modification of
AdaBoost/FS.

Mirror Descent for Minmax Optimization

Our problem of interest is:

P): in f
(P): min £(x)
@ P CR"is convex and closed

e f(-): P— Ris a (non-smooth) Lipschitz continuous convex
function with Lipschitz value L¢

Mirror Descent for Minmax Optimization, continued

We assume that f(-) arises from minmax structure:

f(x):= max o(x, \)

e @ CR™is convex and compact

® ¢(-,-) : P x @ = R is convex-concave

Danskin's Theorem says that computing subgradients of 7(-)
depends on solving the maximization problem that defines f(-):

df (x) = conv ({qub(x, A):Ae arg max é(x, A)})

Mirror Descent for Minmax Optimization, continued

When P is bounded, define p()\) := mi,r; #(x,A) . Then a dual
Xe

problem is:

(D): max p(})

MD uses a 1-strongly convex prox function d(-) : P — R

@ d(-) needs to be chosen such that solving mig{ch +d(x)}is
IS
easy for any c € R”

@ The Bregman distance associated with d(-) is:

D(x.y) = d(x) ~ d(y) ~ V() (x —y) > 3 |x - I

Mirror Descent for Minmax Optimization, continued

Mirror Descent Method

Initialize at x° € P, A2 = 0,k = 0

At iteration k > 0:

o Compute:
MK argmax ¢(xk, \)
ACQ
8"+ Vig(xk, 3K
@ Choose o > 0 and set:
xk1 < arg Tellg {ar(g®)Tx 4+ D(x,x¥)}

K o
A A

)\k-i—]. — Zl?(Qal'
Zi:O (&%

v

(Note: the assignment of A**1 plays no role in the dynamics of the
method)

Mirror Descent for Minmax Optimization, continued

Example: Subgradient Descent

o Take P =R" and d(x) = 3||x|13
e Step (2.) of MD becomes

XKLk gk

Example: Multiplicative Weight Updates

o Take P=A, :={x:e'x=1,x>0} and let
d(x) = e(x) :==>_7_1 xi In(x;) + In(n)
e Step (2.) of MD becomes

X!<+1

KL o xK - exp(—argl) foralli=1,...,n

Mirror Descent for Minmax Optimization, continued

Computational Guarantees for MD [Beck and Teboulle, Nesterov,
Polyak, etc.]

For each kK > 0 and for any x € P, the following inequality holds:

. D) + 12T o2
min f(x') = f(x) < Lo x7) +k2 iz
i€{0,...,k} Z,':o Qj

Furthermore, if P is compact and D> ma’g< D(x,xo), then for each
XE

k > 0 the following inequality holds:

. D+Ll125k 42
min f‘(XI) - p()\k—i-l) < + 2 :Z:_O Q;
i€{0,....k} im0 i

Boosting and AdaBoost

The set-up of the general boosting problem consists of:

e Data/training examples (x1,y1), ..., (Xm, Ym) wWhere each
x; € X and each y; € [-1,+1]
@ A set of base classifiers H = {h1,..., hy} where each

hj : X — [-1,+1]
@ Assume that # is closed under negation (hj € H = —h; € H)

We would like to construct a nonnegative combination of weak

classifiers
Hyx = Aihy + -+ + Anhp

that performs significantly better than any individual classifier in
H.

11

Boosting and AdaBoost, continued

Recall
Hy = Ah1 + -+ Aphp

In the high-dimensional regime with n > m > 0, we desire:
@ Good performance on the training data (y;Hx(x;) > 0 for
“most” i=1,...,m)
@ Good predictive performance
@ Shrinkage in the coefficients (|| A||1 is small)

@ Sparsity in the coefficients (|| Al|p is small)

12

Some Loss Functions for Boosting

Define the feature matrix A € R™*" by A;; = y;hj(x;)

Two loss functions are often considered in this context:

@ The margin

A) = i Hy(xi) = i AN); = mi T AN
P(Y) ie{rlr?.l.r],m}y A(4) ie{T.'.h,m}() wrggm v

® The exponential loss Lexp(A) := 2 577 exp (—(AN);)
@ (= the log-exponential loss L(\) := log(Lexp())))

It is known that a high margin implies good generalization
properties [Schapire 97]. On the other hand, the exponential loss
upper bounds the empirical probability of misclassification.

13

The Margin Maximization Problem

The problem of maximizing the margin over all normalized
classifiers is:

D): p* = A
(D): p" = max p(})

And its dual is the problem of minimizing the edge:

(P): min f(w):= max w’ A\
wEAM, AEA,
Suppose that we have access to a weak learner W(+) that, for any
distribution w on the examples (w € A,,), returns the base
classifier hj= in H that does best on the weighted example
determined by w:

j* € argmaxw’ A; = argmaxw " A\
j=1,..,n XeA,

14

AdaBoost Algorithm Description

AdaBoost Algorithm
Initialize at w® = (1/m,...,1/m),Hp =0,k =0
At iteration k > 0:
o Compute ji € W(wk)
@ Choose o > 0 and set:
Hk+1 «— H, + Oékhjk
Wi o wk exp(—akyih (x7)) i=1,...,m, and
re-normalize wkt1 so that eTwkt1 =1

AdaBoost has the following sparsity/regularization properties:

k—1
A1 <> a; and A< [lo < k .

i=0
15

Optimization Perspectives on AdaBoost

What has been known about AdaBoost in the context of
optimization:
@ AdaBoost has been interpreted as a coordinate descent

method to minimize the exponential loss [Mason et al.,
Mukherjee et al., etc.]

@ A related method, the Hedge Algorithm, has been interpreted
as dual averaging [Baes and Biirgisser|

@ Rudin et al. in fact show that AdaBoost can fail to maximize
the margin, but this is under the particular step-size

1 1+
ak =3 In (175)

@ Lots of other work as well...

16

AdaBoost is Mirror Descent

Define a sequence of normalized classifiers from AdaBoost by:

Equivalence Theorem

The sequence of weight vectors {w*} in AdaBoost arise as primal
variables in MD applied to the minimum edge problem

(P): WrgiAnm f(w)

using the entropy prox function. Moreover, the sequence of dual
variables {*} in MD define the normalized classifiers in

AdaBoost, i.e.,
A= Afhj .
j=1

Interpretations of the (P)/(D) Objective Functions in MD

Note that p(AK) is the margin of the normalized classifier Hj

Let \¥ be the coefficient vector of the un-normalized classifier H,

For every iteration k > 0 of AdaBoost, the edge f(wX) and the
un-normalized classifier Hi with coefficient vector A* satisfy:

F(W) = VL) oo -

18

Complexity of AdaBoost: General Case

Complexity of AdaBoost

For all kK > 1, the sequence of normalized and un-normalized
classifiers produced by AdaBoost satisfy:

In(m) + 3 Zk ! a?
e HVL(A)IIOO p(A\F) < S :

If we decide a priori to run AdaBoost for kK > 1 iterations and use a

constant step-size o 1= 2'"("’) forall i =0,...,k—1, then we

have:
[A 2|n(m)
L(N 0o T)\k < \/: .
e IVEA) oo = P(Y) < p

Recall that p* = max p(A) is the maximum margin and p* > 0
SVAV

Complexity of AdaBoost: Separable Case

If p* > 0, then the data is separable and the margin is informative

Complexity of AdaBoost: Separable Case

For all kK > 1, the sequence of normalized classifiers produced by
AdaBoost satisfy:

In(m) +

1

k 2

p" —p(\°) < k—
i=

Z
1
@ @

If we decide a priori to run AdaBoost for k > 1 iterations and use a

constant step-size a; 1= 2'"('") foralli=0,...,k—1, then we
have:
5 — p(AF) < 2InlEm) '

20

Complexity of AdaBoost: Non-separable Case

If p* =0, then the data is not separable and the margin is no
longer informative

Complexity of AdaBoost: Non-separable Case

If p* =0, then for all k > 1, the sequence of normalized classifiers
produced by AdaBoost satisfy:

i N\ In(m) + 1 367,
L)oo
ie{or,?.l,rll—l} VLA oo < k 01

If we decide a priori to run AdaBoost for k > 1 iterations and use a

constant step-size «; := 2'"() for all i = 0,...,k—1, then we

have:

i i 2In(m)
LA < 1/
ie{oT.l,r/l—u”V (Moo < .

Conditional Gradient Method for Regularized

Log-Exponential Loss Minimization

In the non-separable case, AdaBoost has guarantees for [|[VL(A)|/co
What about guarantees for L(\) := log (1 3= exp (—(AX);))?

Let us consider applying the conditional gradient method to solve:
Ly = m)in L(N)

st. M1 <6
A>0

22

Structure of Conditional Gradient Method Updates

At iteration k, the conditional gradient method needs to:
o Compute VL(A\¥)

e Solve min VLA
A[A1<8,2>0

o Update \<t1
We could compute VL(AK) directly...
Instead, we note that L(\) = max {—wTAX — e(w)} and define
WEAm

a weight vector w* to be the optimal solution to the above
problem:

K exp(—(AXN):)

Wi = m
DLy exp(—=(ANK))
Then, VL(AF) = —ATwk

=1,...,m

23

Structure of Conditional Gradient Method Updates,

continued

Solving the subproblem min VL(A)T) is equivalent to
A1 <6,A>0

calling the weak learner, that is:

jk EW(WK) <= de;, € —(wk)T AN

min
X[A1 <8,2>0

The update for Ak*1 is standard

Also easy to show a simple update rule for wk+1

24

Complete Conditional Gradient Algorithm Description

CG-Boost Algorithm

Initialize at \° =0, w® = (1/n,...,1/n), k=0
At iteration k > 0:

o Compute:

Jk € W(wh)
@ Choose @y € [0,1] and set:
ijﬁ: - c?k)Aj:k +.5<k5.
G (L= A S # dk

k+1

wi T (wf)1 =% exp(—akdyih; (%)) i=1,...,m, and

re-normalize wXt! so that e” wk*1l =1

Note that CG-Boost has the sparsity property that ||\<|[o < k

25

Complexity of CG-Boost

Complexity of CG-Boost

With either the fixed step-size rule ay = k%rz or a line-search to
determine ay, then then for all kK > 1 we have the following

inequalities:
862
L) - L; <
M) -L<i33
- 89 In(m)
*)\k < _°
G e
where ¥ is the normalization of ¥, i.e., Nk :=)‘Tk

Bounds can also be obtained for the constant step-size ay := &

26

Incremental Forward Stagewise Regression

Consider the linear regression model y = X5 + e
e y € R" is given response data
e X € R™P js the given model matrix
@ (3 € RP are the coefficents

@ e € R" is noise

In the high-dimensional regime with p > n > 0, we desire:

e Good performance on the training data (residuals r :=y — Xf3
are small)

@ Good out of sample predictive performance
e Shrinkage in the coefficients (|| 3||1 is small)

@ Sparsity in the coefficients (||3]|o is small)

27

Incremental Forward Stagewise Regression, continued

In the high-dimensional regime, the LASSO solution often performs
very well:

, 1
min L(8) := Slly - X3

st [|Blli<é

Another loss function measures the correlation between the
residuals and the predictors:

in f(r) = X"
min - £(r) = [1X " rlloo

where P is the set of residuals.

We also have f(y — X3) = ||[VL(8) |l

28

FS. as a Boosting Algorithm

In the setting of boosting:
@ Each independent variable x; represents the j™ weak model

@ [is the vector of weak model coefficients

The boosting method FS,. adds, at iteration k, the predictor x;,
most correlated with the current residuals r¥

Jjk € arg max |(rk)TXj|
je{1,...,p}

29

FS. Algorithm Description

FS: Algorithm

Initialize at ° =y, B2=0,k=0

At iteration k > 0:

o Compute:

Jjk € arg max |(rk)TXj|
Je{1,....p}

o Set:
r’:_11<— rkk— € sgn((rkz?_(jk)xjk
/31;5 . — /Bjk + e sgn((r) " Xj,)
B B # i

30

FS. is Subgradient Descent

FSe is known to have the following regularization /sparsity
properties:
18|l < ke and [|8¥]lo < & -

What loss function criterion might FS. optimize?

FS: Equivalence Theorem

The FS; algorithm is an instance of the subgradient descent
method to solve

min f(r) = X7 r|s

r&Pres
initialized at r® =y and with a constant step-size of ¢ at each
iteration.

31

Complexity of FS.

Complexity of FS,

With the constant shrinkage factor ¢, for any k > 0 it holds that:
HXT IH HX/BLSH% ‘SHXH%Q
ie{O, ,k} <= 2 (k+1) 2
_ _IXBis]l2 : |(’ 1(r) X, |
If we set ¢ : = XliavkrT or g : X2 then
”XT IH ||X||1,2||XﬁL5||2
el T Vk+1

where [3; s is the least-squares solution so that || X3 s|l2 < |lyl|2 -

32

Complexity of FS., continued

The number of iterations k and the shrinkage factor ¢ should be
chosen to balance:

o Guarantees for ||X7r||s through the previous theorem

o Sparsity/regularization guarantees: ||3][1 < ke and ||B]lo < k

1 2
What about guarantees for the least-squares loss 5|ly — Xg3||57

33

Frank-Wolfe on the LASSO

Recall the LASSO:

* N 1
Ly = mﬁln L(B) := §|ly — XB|3

st. |l <6

FS. guarantees that ||3]|o < k. A method with similar sparsity
properties is Frank-Wolfe on the LASSO

At iteration k, Frank-Wolfe needs to:
o Compute VL(B*) = —XT(y — XB¥) = —(rk)TX

@ Solve min VL(8MT
B:1IBll1<é (5%)°8

o Update gkl

34

Solving the Linear Optimization Subproblem

Extreme points of {5 : ||3]|1 < 0} are {+dej:j=1,...,p} so

—dsgn(—(r*)TX;-)ej- € argmin VL(B)" B <= j* € argmax |(r*) "X
BBl <é je{t,.p}

This is the same subproblem that FS, solves (find the predictor that
maximizes correlation with the residuals)

35

Complete Frank-Wolfe Algorithm Description

FW-LASSO Algorithm

Initialize at 50 =0, k=0

At iteration k > 0:

o Compute:
rk « y — X gk
jk € argmax |(rK)TX;|
Jje{1,...,p}
@ Choose ay € [0, 1] and set:
,BJ{:H' — (1 = dk)ﬁ_;z + Qe sgn((rk)TXjk)
BITE — (1 — au)BE . # ik

FW-LASSO is structurally very similar to FS,
36

Properties of FW-LASSO

Note that FW-LASSO shares similar sparsity/regularization
properties as FS,:

o |80 < k
o [[BX1 <0

For a fixed step-size ax := 35, observe the update for Bk+L can
be rearranged to:

)
BT P [ﬁk + 55%”((rk)TXjk)ejk]

which is equivalent to the FS. update modulo a multiplicative
factor which keeps the coefficient profile within {5 : ||3]|1 < ¢}

37

Complexity of FW-LASSO

Complexity of FW-LASSO

With either the fixed step-size rule ay := k+2 or a line-search to
determine &y, then after k iterations there exists an i € {1,..., k}
such that the following two inequalities both hold:

o, 17.4]X]13 502
L(B) - L5 < ——
, 17.4)|X][2 ,0
IXT(y = X8 oo < <X+~ 22

Bounds can also be obtained for the constant step-size ay := 65?

38

Conclusions

We have shown that:

@ AdaBoost is equivalent to Mirror Descent with an entropy
prox function = complexity guarantees for the margin p(}) in
the case of separable data and for || VL(\)|| in the case of
non-separable data.

e FS. is equivalent to subgradient descent = complexity
guarantees for || X7 (y — X8)|lo0

The above two results also extend to the functional boosting
setting, as long as the loss function is convex and globally smooth

Conditional gradient/Frank-Wolfe on regularized log-exponential
loss minimization/LASSO are simple modifications to
AdaBoost/FS,
39

