
Introduction Proposed approach Numerical results Conclusion

Fixed-Size Pegasos for Large Scale
Pinball Loss SVM

Vilen Jumutc Xiaolin Huang Johan A.K. Suykens

Katholieke Universiteit Leuven, ESAT-SCD, Belgium

ROKS Workshop, July 8 - 10, 2013

1 / 19



Introduction Proposed approach Numerical results Conclusion

Outline

1 Introduction
Stochastic programming
Pegasos

2 Proposed approach
Pegasos with Pinball Loss
Fixed-Size approach
Complete procedure

3 Numerical results
Fixed-Size Pegasos with Pinball Loss
Convergence of Pegasos algorithms

4 Conclusion
Pegasos’s "pros"
References

2 / 19



Introduction Proposed approach Numerical results Conclusion

Stochastic programming

• By stochastic programming [Nemirovski, 2009] we assume
the following unconstrained optimization problem

min
x∈X

{f (x) = E[F (x , ξ)]}. (1)

Here X ∈ R
n is a nonempty bounded closed convex set, ξ is

a random vector whose probability distribution P is supported
on set Ξ ∈ R

d and F : X × Ξ → R.
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Pegasos

• Pegasos [Shalev-Shwartz et al., 2007] has become a widely
acknowledged algorithm for learning linear SVMs. It utilizes
strongly convex optimization objective and hinge loss which
replaces linear constraints.

• As a result we benefit from the faster convergence rates and
can directly apply stochastic approaches via instantaneous
optimization objective

f (w ;At) =
λ

2
‖w‖2 +

1
|At |

∑

(x,y)∈At

L(w ; (x , y)), (2)

where At is our current data at evaluation step t and
L(w ; (x , y)) = max{0, 1 − y〈w , x〉} stands for the hinge loss.
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Pegasos cont’d

• Pegasos in a stochastic programming setting is an iterative
subgradient descent algorithm where at every step t we are
working with a subsample At and the subgradient of the
instantaneous optimization objective is defined as

∇t = λwt −
1

|At |
∑

(x,y)∈A+
t

yx , (3)

where A+
t denotes the subset of At where L(w ; (x , y)) > 0.

Our bounded closed convex set is B = {w : ‖w‖ ≤ 1/
√

λ}
and in theory expectation over ξ is taken w.r.t. our iterates.
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Pinball Loss

• Pinball Loss [Huang et al., 2012] Lτ for SVM classifier is

Lτ (w ; (x , y)) =

{

1 − y〈w , x〉 y〈w , x〉 ≤ 1,
τ(y〈w , x〉 − 1), y〈w , x〉 > 1,

(4)

where the reasonable range of τ is [0, 1]. The pinball loss
Lτ has been successfully applied for quantile regression,
see e.g. [Koenker, 2005].

• Hinge loss is a special case of pinball loss with τ = 0.
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Figure : Loss Lmis(u) is shown by solid lines and some loss functions are displayed
by dashed lines: (a) the hinge loss and the 2-norm loss; (b) the normalized sigmoid
loss and the truncated hinge loss; (c) the pinball loss with τ = 0.5 and τ = 1.
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Pinball Loss vs. Hinge Loss
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Figure : Points in two classes are marked by red crosses and green stars. The
"hyperplanes" are shown by green, blue, and red lines, corresponding to 〈w , x〉 = 1, 0,

and −1, respectively. The solution of the hinge loss SVM is marked by the solid lines.
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Pinball Loss vs. Hinge Loss (cont’d)
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Figure : The results of the hinge loss SVM (the solid lines) differ significantly. In
contrast, the results of the pinball loss SVM (the dashed lines) are more stable to
re-sampling, which is suitable for stochastic subgradient methods.
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Algorithm 1: Pegasos with pinball loss
Data: S , λ, τ, T , k , ǫ

1 Select w1 randomly s.t. ‖w (1)‖ ≤ 1/
√

λ ;
2 for t = 1→ T do
3 Set ηt = 1

λt
4 Select At ⊆ S , where |At | = k ;
5 ρ = 1

|S|
P

(x,y)∈At
(y − 〈wt , x〉) ;

6 A+
t = {(x , y) ∈ At : y(〈wt , x〉 + ρ) < 1} ;

7 A−
t = {(x , y) ∈ At : y(〈wt , x〉 + ρ) > 1} ;

8 wt+ 1
2

= wt − ηt (λwt − 1
k

h

P

(x,y)∈A+
t

yx −P

(x,y)∈A−t
τyx

i

) ;

9 wt+1 = min


1, 1/
√

λ
‖w

t+ 1
2
‖

ff

wt+ 1
2

;

10 if ‖wt+1 − wt‖ ≤ ǫ then
11 return (wt+1,

1
|S|

P

(x,y)∈S(y − 〈wt , x〉)) ;

12 end
13 end
14 return (wT+1,

1
|S|

P

(x,y)∈S(y − 〈wT+1, x〉)) ;
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Convergence bounds

Based on the Lemma 1 in [Shalev-Shwartz et al., 2007], we
can bound the average instantaneous objective of Algorithm 1
in Theorem 1 [Jumutc et al., 2013].

Theorem

Assume ‖x‖ ≤ R for all (x , y) ∈ S. Let

w∗ = arg min
w





λ

2
‖w‖2 +

1
|At|

∑

(x,y)∈At

Lτ (w; (x, y))





and let c = (
√

λ + (τ + 1)R). Then, for T ≥ 3 we have

1
T

T
∑

t=1

f (wt ;At) ≤
1
T

T
∑

t=1

f (w∗;At) +
c2 ln(T )

λT
.
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Fixed-Size approach

• Algorithm 1 operates only in the primal space. To handle
this restriction we go for the Fixed-Size approach
[Suykens et al., 2002].

• Entropy based criterion is used to select m prototype
vectors and construct m × m RBF kernel matrix K .

• Nyström approximation [Williams and Seeger, 2001] gives
an expression for the entries of the approximated feature
map Φ̂(x) : R

d → R
m with Φ̂(x) = (Φ̂1(x), . . . , Φ̂m(x))T and

Φ̂i(x) =
1

√

λi ,m

m
∑

t=1

uti ,mk(xt , x), (5)

where λi ,m and ui ,m denote the i-th eigenvalue and the i-th
eigenvector of K and k(x , y) denotes the RBF function.
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Algorithm 2: Complete procedure
Data : training data S with |S| = n, labeling Y , parameters λ, τ, T , k , ǫ, m
Return: mapping Φ̂(x), ∀x ∈ S , SVM model given by w and ρ

1 begin
2 Sr ← FindActiveSet(S ,m);
3 Φ̂(x)← ComputeNystromApprox(Sr);
4 X ← [Φ̂(x1)

T , . . . , Φ̂(xn)
T ];

5 [w , ρ]← PegasosPBL(X ,Y , λ, τ, T , k , ǫ);
6 end

General notes on the procedure
• In Algorithm 2 "PegasosPBL" function stands for the shortcut of Algorithm 1.

• "ComputeNystromApprox" function denotes the Fixed-Size part.

• "FindActiveSet" function denotes entropy based selection of prototype vectors.
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Toy datasets and evaluation

Table : Test errors for Pegasospbl with the dataset of size 10000

Dataset Hinge Loss Pinball Loss
(% of distortion) τ = 0.1 τ = 0.5 τ = 1

Toy Data (5%) 0.08262 0.06908 0.06926 0.07446
Toy Data (15%) 0.18753 0.15843 0.16141 0.16538
Toy Data (35%) 0.36094 0.31829 0.32335 0.31571
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UCI datasets and evaluation

Table : Test errors for Pegasospbl with k = 1(fully stochastic)

Dataset Size
Hinge Loss Pinball Loss

τ = 0.1 τ = 0.5 τ = 1

Pima 768 0.28896 0.29422 0.28870 0.29198
Spambase 4601 0.21444 0.21229 0.20816 0.21903
Transfusion 748 0.23406 0.23465 0.23396 0.23465
White Wine 4898 0.29607 0.29526 0.29694 0.28898
Magic 19020 0.22667 0.22385 0.22481 0.22750
Shuttle 58000 0.04505 0.04145 0.03499 0.03736
Skin 245057 0.02705 0.02498 0.02172 0.02401
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Convergence of Pegasos algorithms

Figure : Convergence of Pegasos algorithm for Shuttle dataset in a long term (1000
iterations) for hinge loss (blue) and pinball loss (red) respectively. In the experimental
setup λ = 1 and k = 100.
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Pegasos’s "pros"

• Pegasos algorithm in general is suitable for large-scale
linear and fixed-size SVM learning.

• Pegasos algorithm in a fully stochastic setting is suitable
for online learning.

• Incorporating other loss functions (e.g. pinball loss) might
be beneficial in terms of the generalization error and
convergence.
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Thank you for your attention!
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