Dynamic ¢; Reconstruction

Justin Romberg
Georgia Tech, ECE

Collaborators:
M. Salman Asif
Aurele Balavoine

Chris Rozell

ROKS Workshop
July 9, 2013
Leuven, Belgium

Underdetermined systems of equations

@ Unknown N-point signal xg

@ Small number of measurements
yk:<$07¢k>a k=1,...,. M or y = dxq

@ Fewer measurements than degrees of freedom, M < N

R

@ Treat acquisition as a linear inverse problem

@ Compressive Sampling: for sparse xg, we can “invert” incoherent ®

Sparse recovery

@ Given M linear measurements of an S-sparse signal
y = Pxg + noise

when can we recover xg ?

Sparse recovery

@ Given M linear measurements of an S-sparse signal
y = Pxg + noise

when can we recover xg ?

o Key condition: matrix @ is a restricted isometry:
L=zl < [Pz} < (1+0)l|=[3

for all 25-sparse x

[Candes and Tao '06]

Random matrices

Example: ®; ; ~ +1 w/ prob 1/2, iid
Y b x
| E‘b&l

Can recover S-sparse xg from

M z S-log(N/S)

measurements using convex programming, greedy algorithms, ...

Random matrices

Example: ®; ; ~ +1 w/ prob 1/2, iid

Can recover S-sparse xg from
M =z S-log(N/S)
measurements using £1 minimization:

min ||z||; subjectto Pxr =y

Random matrices

Example: ®; ; ~ +1 w/ prob 1/2, iid
Y P x
| E?il

Can recover S-sparse (in basis ¥) o = Yoy from
M =z S-log(N/S)
measurements using £1 minimization:

min ||alj; subjectto PVa =y

Random matrices

Example: ®; ; ~ +1 w/ prob 1/2, iid
Y P x
| E?ﬁl

Can stably recover ~ S-sparse (in basis ¥) 2o = Wy from
M =z S-log(N/S)
noisy measurements using ¢; minimization:
min Mols + 5 |20 —]2

for appropriate \.

Sparsity

Decompose signal /image x(t) in orthobasis {t;(t)};

z(t) = Zaiﬂ%(t)

wavelet transform zoom

o {ai}i

Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original

approximated

rel. error = 0.031

Integrating compression and sensing

Gab Spacngan

Data
Converter
ADS5485

i3 Texas

INSTRUMENTS

Goal: a dynamical framework for sparse recovery

Given y and ®, solve

. 1
min el + 5% — y3

Goal: a dynamical framework for sparse recovery

We want to move from:

Given y and ®, solve
. 1
min Al + 519z — |3

to

min ¢, [

Agenda

We will look at dynamical reconstruction in two different contexts:

@ Fast updating of solutions of ¢; optimization programs

M. Salman Asif

e Systems of nonlinear differential equations that solve ¢; (and related)
optimization programs, implemented as continuous-time neural nets

Aurele Balavoine Chris Rozell

Classical: Recursive least-squares

@ System model: Yy [4)) €T
y = dx

@ ® has full column rank

@ x is arbitrary _—

@ Least-squares estimate:

min ||y — ®z3 = 1= (®T®)'oTy

Classical: Recursive least-squares

@ Sequential measurement:

o] =15

6]
@ Compute new estimate using rank-1 update:
i = (2T +o¢") N (@Y + ¢ w)
= 20 + K1(w — ¢"x)
where
K1 =(27®) 'o(1+ o7 (27 2) 1)

@ With the previous inverse in hand, the update has the cost of a

few matrix-vector multiplies

Classical: The Kalman filter

@ Linear dynamical system for state evolution and measurement:

yr = Pz + e
Te41 = Froe + fi
i 0 0 0 i [Foxo]

d 0 0 0 N 1
- I 0 0 951 0
0 & 0 0 wz — | »
0 -F I 0 3 0
0 0 P; 0 Y3

@ As time marches on, we add both rows and columns.
@ Least-squares problem:

min Z otl|Peye — yell3 + Mellze — Fioimea|l3)

Z1,22,.

Classical: The Kalman filter

@ Linear dynamical system for state evolution and measurement:

yr = Prxp + ey
Tr1 = Fray + dy

@ Least-squares problem:

min Z (oel|Peye — well3 + Aellwe — Frmrae—1]13)
Tt

T1,T2,..
@ Again, we can use low-rank updating to solve this recursively:

v = Fra
Ky1 = (FPoFy + DOy (Pp 1 (Fe P Fy + D@y + 1)1
Tpr1jbr1 = Uk + Ker1(Uns1 — Prr1vr)
Pyi1 = (I = Ky1®pi1) (FR P FL + 1)

Dynamic sparse recovery: /¢y filtering

o Goal: efficient updating for optimization programs like

. 1
min Wl + 5@z — yl3

o We want to dynamically update the solution when

> the underlying signal changes slightly,
> we add/remove measurements,
» the weights changes,

» we have streaming measurements for an evolving signal
(adding/removing columns from ®)

Optimality conditions for BPDN

, 1
min ||Wal + 5[®x - yl3

e Conditions for z* (supported on I'*) to be a solution:

Pl (®x* —y) = Wy, ylzly] yel®
¢ (P2 —y)| < Wy, ver*

where z[y] = sign(z[v])

@ Derived simply by computing the subgradient of the functional above

Example: time-varying sparse signal

@ Initial measurements. Observe
y1 = Px1 + e
@ Initial reconstruction. Solve

. 1
min Allzlly + 5| @z — y1ll3
T 2

Example: time-varying sparse signal

@ Initial measurements. Observe
y1 = Px1 + e
@ Initial reconstruction. Solve
1
. 2
min Allz([y + S[[®z — y1]3
z 2
@ A new set of measurements arrives:
y2 = Do + €2

@ Reconstruct again using £1-min:

) 1
min Azl + 2 [z — yolf3
T 2

Example: time-varying sparse signal

@ Initial measurements. Observe
y1 = Px1 + e
@ Initial reconstruction. Solve
1
. 2
min Allz([y + S[[®z — y1]3
z 2
@ A new set of measurements arrives:
y2 = Do + €2
@ Reconstruct again using £1-min:
) 1 9
min Az} + 5|82 — 42l3

@ We can gradually move from the first solution to the second solution
using homotopy

) 1
min Azl + 5182 = (1 = Oy — eval3

Take e from 0 — 1

Example: time-varying sparse signal

1
min A||z|[; + §H<I>x — (1 = €)Yold — Ynew||3, take € from 0 — 1

@ Path from old solution to new solution is piecewise linear

@ Optimality conditions for fixed e:
O (Pz — (1 — €)Yold — Ynew) = —Asign zp
||(I)FC((I>$ — (1 = €)Yold — €Ynew)|loo < A

I' = active support

e Update direction:

or = {_((I)II‘QF)I(yOId - ynew) onT

0 off I'

Path from old solution to new

I' = support of current solution.
Move in this direction

Or = _(@IT(I)F)il(yold - ynew) onT
0 off I

until support changes, or one of these constraints is violated:

|02 (®(x + €dz) — (1 — €)yord — Ynew)| <A forall y € T

///71@2
/

/ ’
/
P J

X1

‘Sparse signal example, with update. n=1024, m=512, T=m/5, k = [0, T/20]

Sparse innovations
&
House
05H
4 T T Wavee cosficiers (zom 1) Sicesaf e mage

05F

1 201 400 0 600 700 800 900 1

Blocks Pcw.
Piecewise constant signal [adapted from WaveLab] po |\/ Piecewise polynomial signal (cubic) [adapted from Wavelab]

. i
2 i
oI
. o H, = |

200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000

Zoom i for Haar wavelet coefficients Zoomin for wavelet coefficients (using Daubs)

L s . L
600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000

Numerical experiments: time-varying sparse signals

. LASSO
. DynamicX* GPSR-BB FPC AS
Signal type homotopy —

(nProdAtA, CPU) ("ProdAtA, CPU) (nProdAtA, CPU) | (nProdAtA, CPU)
N =1024
M =512 (23.72,0.132) (235, 0.924) (104.5,0.18) | (148.65, 0.177)
T=m/5,k ~T/20 S T o R
Values = +/- 1
Blocks (2.7, 0.028) (76.8, 0.490) (17, 0.133) (53.5, 0.196)
Pcw. Poly. (13.83,0.151) | (150.2, 1.096) | (26.05,0.212) | (66.89, 0.25)
House slices (26.2,0.011) (53.4,0.019) | (92.24,0.012) | (90.9, 0.036)

7 =0.01| ATy 0o

nProdAtA: roughly the avg. no. of matrix vector products with A and AT
CPU: average cputime to solve

[Asif and R. 2009]

Adding a measurement

@ Analog of recursive least squares for 1 min:

Yy - [} e . 1 . 2 1 . 2
=] = i el gt 5l -l

@ Work in the new measurement slowly
n A 1 P — |2 2
min A[z][1 + 5 (|92 = yllz + el[(d, 2) — w]*)

Again, the solution path is piecewise linear in €

[Garrigues et al. 08, Asif and R 09]

Adding a measurement: updating

o Optimality conditions
Of (0 —y) + e({¢, 2) —w)¢r = —Asignar
|®F (Px — y) + €({d,) — w)drelo < A

@ From critical point z,, update direction is

oy =) (W= ($:@a)) - (2rr+enddt) " tor on T
0 off '

Numerical experiments: adding a measurement

N = 1024, measurements M = 512, sparsity S = 100
Add P new measurements

Compare the average number of matrix-vector products per update

P /\|i" | DynamicSeq | LASSO | GPSR-BB | FPC_AS
(T = ¥llee)
0.5 2.3 41.86 11.86 15.98
] 0.1 4.72 159.76 42.64 50.70
0.05 4.5 162.34 38.80 97.7:
0.01 8.02 233.70 55.46 79.83
0.5 5.88 42.00 14.24 15.96
- 0.1 9.58 152.54 46.42 47.48
Y 0.05 10.70 161.36 47.96 98.75
0.01 20.32 227.82 66.64 78.58
0.5 7.6 44.72 14.96 16.12
10 0.1 14.98 155.26 53.12 47.05
0.05 16.40 162.72 52.12 98.51
0.01 29.34 241.52 75.44 82.91

Reweighted ¢,

Weighted ¢ reconstruction:

. 1 2 . 1 2
min 3 unfoe] + g%z =yl = min| Wl -+ 5llos — i
solve this iteratively, adapting the weights to the previous solution:
A
Wi = —
|$zld| +c

1

(from Boyd, Candes, Wakin '08)

Changing the weights

Iterative reweighting: take {wy} — {wy}

Optimality conditions:
Oy — ®x) = (ewy, + (1 — €)wy) 2z, on support, k € T’
|pr(y — @x)| < ewy, + (1 — €)Wy, off support, k € I'“

Update direction (increasing ¢):

oy — (®5Dp) Y (W — W)z onT
0 on I'®

[Asif and R 2012]

Numerical experiments: changing the weights

Iterative reweighting

Total AtA count

Numerical Experiments

Sparse signal of length N recovered from M Gaussian measurements

ADP-H (adaptive weighting via homotopy) SpaRSA [Wright et al 2007]

IRW-H (iterative reweighting via homotopy)

YALL1 [Yang et al 2007]

[0 ADP-H O IRW-H < YALL1 > SpaRsA|
800[=
< 4 < < T 800 & f:ff 500 2
600~ - <
> > > > | B00F a Ea S w0 P >
400 1 400 --— 300
> 2001 <t 4 > a o
200{-— - 200k . S — 5w o
g __.8 __8 g 6 6 0| 100
ok - B
<
2000-————— 49 2000 771 1000 3
1500—— 1500 94— <
1000 . S| 1000 < T seor 4
500 —————p———1 500~ S b
> > E B
oo o o o o 0 B o) = 0 & o]
3000~ g ———<—| 3000 < A
P 1500 -
< <
2000 — —| 2000 - <
P 4 A o | 1000 b —
1000}~ SR S S T R e [N I .
> 5 > Q b o o
ofB B B 85 5] g B8 8B 8| |8 3 6 __ o
N2 & ® > & N & O ® 4 PN ;0 CSl &
& Al A ° \ R AN % v A A ™ 0 > o v
RN [& & NG o 4 NSNS DS . S, | . o

A general, flexible homotopy framework

@ Formulations above
» depend critically on maintaining optimality
> are very efficient when the solutions are close

@ Streaming measurements for evolving signals require some type of
predict and update framework

Kalman filter: v, = Fiy, (predict)
Tkl = Vg + K(y - @kvk), (update)

@ What program does the prediction vy solve?
@ Can we trace the path to the solution from a general “warm start”?

A general, flexible homotopy framework

We want to solve .
min ([Wes + 519 — yl3

o Initial guess/prediction: v
@ Solve
. 1 2 T
min [[Wzlly + S| @2 —yll; + (1 —e)u’z
fore: 0 — 1.
o Taking
uw=—-Wz— & (dv —1y)

for some z € J(J|v||1) makes v optimal for e =0

Moving from the warm-start to the solution

. 1
min [Waly+ Z[|®x = yll3 + (1 - eju’x

The optimality conditions are

dL(®x —y)+ (1 — €)u = —Wsignar
|62 (Pz —y) + (1 —)u| < Wy,9]

We move in direction

D — ur onT
0 on I'®

until a component shrinks to zero or a constraint is violated, yielding new I'

Streaming measurements: random modulation receiver

@ Built as part of DARPA’s A2l
program

e Multiple (8) channels, operating
with different mixing sequences

o Effective BW/chan = 2.5 GHz
Sample rate/chan = 50 MHz

@ Applications: radar pulse
detection, communications
surveillance, geolocation

(arch. of Yoo and Emami;
see also Mishali et al,
Murray et al)

Streaming basis: Lapped orthogonal transform

[

05 1 15 2 25 3 35

Original signal (zoom in)

4] 8 10
time index (p)

frequency index (k)

15

0.5

-1

-0.5

250

200

150

100

50

0 0.5 1

Time-frequency LOT coefficients

40 60 80
time index (p)

15

Streaming sparse recovery

Observations: Y = Pyxy + €4

Representation: x[n] = Z ap kUp k1)
D,k

Measurements Measurement matrices Signal Error LOT Signal LOT representation bases LOT
z windows coefficients
x
—— 1
A1 ™~ ! 1ol
© 1
P T [l (> Lt
gt |5 < B
e S L sl 1 L
g a1y | g Ty
i E]

Streaming sparse recovery

Iteratively reconstruct the signal over a sliding (active) interval,
form u from your prediction, then take € : 0 — 1 in

1=
min |Wali + §H<I>\Ifa — g3+ (1 - eula

where U, § account for edge effects

Overlapping system matrix Sparse Error Divide the system into two parts
L yvector

Streaming signal recovery: Simulation

Original signal (zoom in) Reconstruction error (R=4)

2 4 6 8 10 20 40 60 80 100 120
time index (p) time index (p)
Time—frequency LOT coefficients Reconstruction error (LOT coefficients)
250 R
15
_ - 08
= 200 10 = 200
7 | SSEERSEISR . =
@ 5 @ 08
B 150 E 150
3 ‘ T o
g 100 = 5 100
El El
1 10 g
&= 50 o " = 50 0z
T 18
— 0
20 40 60 80 100 120 20 40 60 80 100 120
time index (p) time index (p)

(Top-left) Mishmash signal (zoomed in for first 2560 samples.
(Top-right) Error in the reconstruction at R=N/M = 4.
(Bottom-left) LOT coefficients. (Bottom-right) Error in LOT coefficients

Streaming signal recovery: Simulation

x 10
12 B
ey — & &
a ; o 120 ————————————————
c o
5 30F————— e
= 100 ————————————————
. B8 4 iy
] = o g
o 3 ¢ B | —
E o @
= M < 6] E
E) :: o 5 s0b—————————————— —]
B = = o
o 15F————————— —————— o o
o * L B I
3 F oo
Z10p———————————————— ¢ o
& * 2
o ® 1 20F ———— 4
A ° o o
o 5 * * * . + "
x * *
0 R
P 0
2 4 6 8 2 4 8 2 4 6 8
R R R
| # lihomolopy $ spaAsa O YAL % DGT |

(right) Matlab execution time

(left) SER at different R from +1 random measurements in 35 db noise
(middle) Count for matrix-vector multiplications

Streaming signal recovery: Dynamic signal

Observation/evolution model:

Yy = Py + ey
Tip1 = Frxy + dy

We solve

1 1
Hgnzt: [Wia|lr + §H<I>t\11tat —ull3 + §\|Ft71‘1’t7104t71 — Wpov||3

(formulation similar to Vaswani 08, Carmi et al 09, Angelosante et al 09, Zainel at al 10, Charles et al 11)

using

) 1 == _ 1, == -
min [Wally + 5 [8Fa - g3 + 5|1 F¥a — @3 + (1 - u’a

Dynamic signal: Simulation

Qriginal signal examples Reconstruction

error

time index (n)

20 40 60 80 100 120

time index (p) time index (p)
Recenstructed signal p Compari: between L1 and LS
35
—
= 30
E 2
3 Y
5 < 25
£ & I’!
o w 1
E ® 20

—>Lu
-—--LS
40 0 80 100 120-20 O 20 40 20 4 60 80 100 120
time index (p) time index (p)

(Top-left) Piece-Regular signal (shifted copies) in image

(Top-right) Error in the reconstruction at R=N/M = 4.

(Bottom-left) Reconstructed signal at R=4.

(Bottom-right) Comparison of SER for the L1-regularized and the L2-regularized
problems

Dynamic signal: Simulation

[T ————————
d 8000 & 4
8 30—9————#————‘— ——————
c
£ 7000 g
2 ¢ <
w25 o —————
= o 6000 R —_
o — (&)
= c o ?
ol] —
o g 5000 1 >
7 |- :
777777777777777777 < 4000 g 4
215 B o E
o o [}
2 = 3000 g 5
8 10 —————— =
B 2000 1
g o
E T 1000 g
a
o * * * *
O ————— o _
2 4 6 8 2 4 6 8
R R
[# homotopy O SRSA O LSKaman O OWT |

________________ Q|
¢
(A S
(A S S
2 4 6 8

(right) Matlab execution time

(left) SER at different R from +1 random measurements in 35 db noise
(middle) Count for matrix-vector multiplications

Dynamical systems for sparse recovery

Approximate analog computing

@ Radical re-think of how computer arithmetic is done — computations
use the physics of the devices (transistors) more directly

@ Use < 1% of the transistors, maybe 1/10,000 of the power, possibly
100x faster than GPU

e Computations are noisy, overall precision ~ 1072

Approximate analog computing

@ Radical re-think of how computer arithmetic is done — computations
use the physics of the devices (transistors) more directly

@ Use < 1% of the transistors, maybe 1/10,000 of the power, possibly
100x faster than GPU

Computations are noisy, overall precision ~ 1072

Small scale successes (embedded beamforming, adaptive filtering)

Approximate analog computing

@ Radical re-think of how computer arithmetic is done — computations
use the physics of the devices (transistors) more directly

@ Use < 1% of the transistors, maybe 1/10,000 of the power, possibly
100x faster than GPU

e Computations are noisy, overall precision ~ 1072

@ Small scale successes (embedded beamforming, adaptive filtering)
@ Medium to large scale potential

» FPAAs

» specialized circuits for optimization

(Hopfield networks, neural net implementations)

» general (SIMD) computing architecture ?

@ Much of this work is proprietary, start-ups swallowed up by AD, NI, ...
Lyric semiconductor, GTronix, Singular Computing, ...

Analog vector-matrix-multiply

 Digital Multiply-and- < AnalogVector-
Accumulate Matrix Multlpller

Hq J'—HHL IHHL L—HHL
R
FE |

— Small time constant — Limited accuracy

E;E;

cQ
7

c

l—%

E;

— Low power consumption — Limited dynamic range

Dynamical systems for sparse recovery

There are simple systems of nonlinear differential equations that settle to
the solution of

. 1
min Allz]1 + 5[@2 — 3
x

or more generally

N
) 1
min A g C(z[n]) + §H<I>x —yl3
n=1

The Locally Competitive Algorithm (LCA):

Tu(t) = —u(t) — (®T® — Nz(t) + &y
z(t) = Th(u(?))

is a neurologically-inspired (Rozell et al 08) system which settles to the
solutions of the above

Locally competitive algorithm

TU(t)

x(t)
inputs
$1Yy

S—

=—u(t) — (&7 ® — Daz(t) + @'y
= T (u(t))

state activation outputs

GO))

b3y

Yy—

() Ta() [a(t)

—(oN, p2)wa(t)

|
~{ oy v @—{ O f—an (0

Locally competitive algorithm
Cost function

Via) =AY Olan) + 5ll0a —ylp Til0) = —ult) = (@7® = Da(t) + 8y
Z 2a(t) = T (un (1))

Key questions

@ Uniform convergence

o Convergence speed (general)

@ Convergence speed for sparse recovery via £1 minimization

LCA convergence

Assumptions
Q u—ac)C(a)

0 lu| <A

@B {f(u) ul > A

@ T,\(-) is odd and continuous,

f(w) >0, fu) <u

LCA convergence

Global asymptotic convergence:

If 1-3 hold above, then the outputs
stop moving eventually:

z(t) = 0

Uy,

as t — o0

If the critical points of the cost func-
tion are isolated then

LCA convergence

Assumptions
Q@ u—aeXdC(a)

PR L T
® 7 =N {f(U) ful > A

@ T)\(-) is odd and continuous,

f'(u) >0, f(u) <u

@ f(-) is subanalytic

Q f(u)<a

LCA convergence

0.2t

Global asymptotic convergence:

-0.4

-0.6

If 1-5 hold above, then the LCA is -
globally asymptotically convergent:

z(t) = 2%, wu(t) > u", ast— oo

1.4

where x* is a critical point of the func-
tional.

0.8

-1.2

u137(t)

Convergence: support is recovered in finite time

If the LCA converges to a fixed point # of switches/sparsity

u* such that

luy| > X+,

for all v € I'*¢, then the support of x* < 0045
is recovered in finite time

and |uy| < A—r

threshold

[L% y
A il a3 s R 20 4gpar8ityeg 80 100
ey] —
o = [DCT 1)

M =256, N =512

32

Convergence: exponential (of a sort)

In addition to the conditions for global convergence, if there exists
0<6§ < 1suchthatforallt>0

A=-olz®ml; < 2z < A +a)llz@®)3,

where Z(t) = z(t) — z*, and ad < 1 (f'(u) < «), then the LCA
exponentially converges to a unique fixed point:

lu(t) =l < moe (7o

Convergence: exponential (of a sort)

In addition to the conditions for global convergence, if there exists
0 <6 < 1 such that forall ¢t >0

1=olz®l; < 2zl < 1 +a)lz@®)3,

where Z(t) = z(t) — z*, and ad < 1 (f'(u) < «), then the LCA
exponentially converges to a unique fixed point:

lu(t) —u*flz < moe” Um0/

Of course, this depends on not too many nodes being active at any one
time ...

Activation in proper subsets for /;

If ® a “random compressed sensing matrix" and
M > Const - S%log(N/S)
then for reasonably small values of A and starting from rest
I crs
That is, only subsets of the true support are ever active

0. 1

08
3012 . 0.6
g 0.4
0.2

hreshol

60 80 100
sparsity S

Similar results for OMP and homotopy algorithms in CS literature

Efficient activation for ¢;
If ® a “random compressed sensing matrix" and
M > Const - Slog(N/S)
then for reasonably small values of A\ and starting from rest

QIR

sparsity S

Similar results for OMP/ROMP, CoSAMP, etc. in CS literature

References

@ M. Asif and J. Romberg, “Dynamic updating for 11 minimization” IEEE Journal on Special Topics in Signal Processing,
April 2010.

@ M. Asif and J. Romberg, “Fast and accurate algorithms for re-weighted £1-norm minimization,” submitted to IEEE
Transactions on Signal Processing, July 2012.

@ M. Asif and J. Romberg, “Sparse recovery of streaming signals using £1 homotopy,” submitted to IEEE Transactions on
Signal Processing, June 2013.

@ A. Balavoine, J. Romberg, and C. Rozell, “Convergence and Rate Analysis of Neural Networks for Sparse
Approximation,” |IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 9, pp. 13771389,
September 2012.

@ A. Balavoine, J. Romberg, and C. Rozell, "Convergence Speed of a Dynamical System for Sparse Recovery,” to appear
in IEEE Transactions on Signal Processing, late 2013.

@ A. Balavoine, J. Romberg, and C. Rozell, “Convergence of a neural network for sparse approximation using the
nonsmooth ojasiewicz inequality,” Proc. of Int. Joint. Conf. on Neural Networks, August 2013.

http://users.ece.gatech.edu/~justin/Publications.html

http://users.ece.gatech.edu/~justin/Publications.html

