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Underdetermined systems of equations

Unknown N -point signal x0

Small number of measurements

yk = 〈x0, φk〉, k = 1, . . . ,M or y = Φx0

Fewer measurements than degrees of freedom, M � N

y ! x0=

Treat acquisition as a linear inverse problem

Compressive Sampling: for sparse x0, we can “invert” incoherent Φ



Sparse recovery

Given M linear measurements of an S-sparse signal

y = Φx0 + noise

when can we recover x0 ?



Sparse recovery

Given M linear measurements of an S-sparse signal

y = Φx0 + noise

when can we recover x0 ?

Key condition: matrix Φ is a restricted isometry:

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

for all 2S-sparse x

[Candes and Tao ’06]



Random matrices

Example: Φi,j ∼ ±1 w/ prob 1/2, iid

Can recover S-sparse x0 from

M & S · log(N/S)

measurements using convex programming, greedy algorithms, ...
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Random matrices

Example: Φi,j ∼ ±1 w/ prob 1/2, iid

Can recover S-sparse (in basis Ψ ) x0 = Ψα0 from

M & S · log(N/S)

measurements using `1 minimization:

min ‖α‖1 subject to ΦΨα = y



Random matrices

Example: Φi,j ∼ ±1 w/ prob 1/2, iid

Can stably recover ≈ S-sparse (in basis Ψ ) x0 = Ψα0 from

M & S · log(N/S)

noisy measurements using `1 minimization:

min λ‖α‖1 +
1

2
‖ΦΨα− y‖22

for appropriate λ.



Sparsity

Decompose signal/image x(t) in orthobasis {ψi(t)}i

x(t) =
∑

i

αiψi(t)

wavelet transform zoom

x0 {αi}i



Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



Integrating compression and sensing



Goal: a dynamical framework for sparse recovery

Given y and Φ, solve

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22



Goal: a dynamical framework for sparse recovery

We want to move from:

Given y and Φ, solve

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22

to

y(t)

8
>>>><
>>>>:

9
>>>>>>=
>>>>>>;

x̂(t)

�(t)

min `1



Agenda

We will look at dynamical reconstruction in two different contexts:

Fast updating of solutions of `1 optimization programs

M. Salman Asif

Systems of nonlinear differential equations that solve `1 (and related)
optimization programs, implemented as continuous-time neural nets

Aurèle Balavoine Chris Rozell



Classical: Recursive least-squares

System model:

y = Φx

Φ has full column rank

x is arbitrary

Motivation: dynamic updating in LS

y = ©x
© xy

• System model:

minimize k©x¡ yk2 ! x0 = (©
T©)¡1©Ty

• LS estimate

  is full rank

 x is arbitrary

=

• Updates for a time-varying signal with the same 
mainly incurs a one-time cost of factorization. 
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Least-squares estimate:

min ‖y − Φx‖22 =⇒ x̂ = (ΦTΦ)−1ΦT y



Classical: Recursive least-squares

Sequential measurement:

[
y
w

]
=

[
Φ
φT

]
x

Recursive updates

• Sequential measurements:

w

© xy

·
y
w

¸
=

·
©
Á

¸
x

Á

=

• Recursive LS 

x1 = (©
T©+ ÁTÁ)¡1(©Ty + ÁTw)

= x0 +K1(w¡ Áx0)
K1 = (©

T©)¡1ÁT (1+Á(©T©)¡1ÁT )

Rank one update
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Compute new estimate using rank-1 update:

x̂1 = (ΦTΦ + φφT )−1(ΦT y + φ · w)

= x̂0 +K1(w − φTx0)

where
K1 = (ΦTΦ)−1φ(1 + φT (ΦTΦ)−1φ)−1

With the previous inverse in hand, the update has the cost of a
few matrix-vector multiplies



Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

yt = Φtxt + et

xt+1 = Ftxt + ft



I 0 0 0 · · ·
Φ1 0 0 0 · · ·
−F1 I 0 0 · · ·

0 Φ2 0 0 · · ·
0 −F2 I 0 · · ·
0 0 Φ3 0 · · ·
...

...
...

. . .
...







x1

x2

x3
...


 =




F0x0

y1

0
y2

0
y3
...




As time marches on, we add both rows and columns.

Least-squares problem:

min
x1,x2,...

∑

t

(
σt‖Φtyt − yt‖22 + λt‖xt − Ft−1xt−1‖22

)



Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

yt = Φtxt + et

xt+1 = Ftxt + dt

Least-squares problem:

min
x1,x2,...

∑

t

(
σt‖Φtyt − yt‖22 + λt‖xt − Ft−1xt−1‖22

)

Again, we can use low-rank updating to solve this recursively:

vk = Fkx̂

Kk+1 = (FkPkF
T
k + I)ΦT

k+1(Φk+1(FkPkF
T
k + I)ΦT

k+1 + I)−1

x̂k+1|k+1 = vk +Kk+1(yk+1 − Φk+1vk)

Pk+1 = (I −Kk+1Φk+1)(FkPkF
T
k + I)



Dynamic sparse recovery: `1 filtering

Goal: efficient updating for optimization programs like

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

We want to dynamically update the solution when

I the underlying signal changes slightly,

I we add/remove measurements,

I the weights changes,

I we have streaming measurements for an evolving signal
(adding/removing columns from Φ)



Optimality conditions for BPDN

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

Conditions for x∗ (supported on Γ∗) to be a solution:

φTγ (Φx∗ − y) = −W [γ, γ]z[γ] γ ∈ Γ∗

|φTγ (Φx∗ − y)| ≤W [γ, γ] γ ∈ Γ∗c

where z[γ] = sign(x[γ])

Derived simply by computing the subgradient of the functional above



Example: time-varying sparse signal

Initial measurements. Observe

y1 = Φx1 + e1

Initial reconstruction. Solve

min
x

λ‖x‖1 +
1

2
‖Φx− y1‖22

A new set of measurements arrives:

y2 = Φx2 + e2

Reconstruct again using `1-min:

min
x

λ‖x‖1 +
1

2
‖Φx− y2‖22

We can gradually move from the first solution to the second solution
using homotopy

min λ‖x‖1 +
1

2
‖Φx− (1− ε)y1 − εy2‖22

Take ε from 0→ 1
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Example: time-varying sparse signal

min λ‖x‖1 +
1

2
‖Φx− (1− ε)yold − εynew‖22, take ε from 0→ 1

Path from old solution to new solution is piecewise linear

Optimality conditions for fixed ε:

ΦT
Γ (Φx− (1− ε)yold − εynew) = −λ signxΓ

‖ΦT
Γc(Φx− (1− ε)yold − εynew)‖∞ < λ

Γ = active support

Update direction:

∂x =

{
−(ΦT

ΓΦΓ)−1(yold − ynew) on Γ

0 off Γ



Path from old solution to new

Γ = support of current solution.
Move in this direction

∂x =

{
−(ΦT

ΓΦΓ)−1(yold − ynew) on Γ

0 off Γ

until support changes, or one of these constraints is violated:
∣∣φTγ (Φ(x+ ε∂x)− (1− ε)yold − εynew)

∣∣ < λ for all γ ∈ Γc

Time-varying signals

y1 =©x1+ e1• System model:

minimize ¿kxk1 +
1

2
k©x¡ y2k22• New `1 problem:
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x1! x2 ) y1! y2• Signal varies:  
“Sparse  innovations”

minimize ¿kxk1 +
1

2
k©x¡ y1k22• `1 problem:

minimize ¿kxk1 +
1

2
k©x¡ (1¡ ²)y1 ¡ ²y2k22

Homotopy parameter: 0 ! 1

bx1

bx2
• Path from old solution to new 

solution is piecewise linear and 
it is parameterized by ²: 0 ! 1



Blocks Pcw. poly

House

20

Sparse innovations



Numerical experiments: time-varying sparse signals
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Adding a measurement

Analog of recursive least squares for `1 min:

[
y
w

]
=

[
Φ
φ

]
x+

[
e
d

]
−→ min

x
λ‖x‖1+

1

2
‖Φx−y‖22+

1

2
|〈φ, x〉−w|2

Work in the new measurement slowly

min λ‖x‖1 +
1

2

(
‖Φx− y‖22 + ε|〈φ, x〉 − w|2

)

Again, the solution path is piecewise linear in ε

[Garrigues et al. 08, Asif and R 09]



Adding a measurement: updating

Optimality conditions

ΦT
Γ (Φx− y) + ε(〈φ, x〉 − w)φΓ = −λ signxΓ

‖ΦT
Γc(Φx− y) + ε(〈φ, x〉 − w)φΓc‖∞ < λ

From critical point xε0 , update direction is

∂x =

{
(w − 〈φ, xε0〉) · (ΦT

ΓΦΓ + ε0φφ
T)−1φΓ on Γ

0 off Γ

Time-varying signals

y1 =©x1+ e1• System model:

minimize ¿kxk1 +
1

2
k©x¡ y2k22• New `1 problem:
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x1! x2 ) y1! y2• Signal varies:  
“Sparse  innovations”

minimize ¿kxk1 +
1

2
k©x¡ y1k22• `1 problem:

minimize ¿kxk1 +
1

2
k©x¡ (1¡ ²)y1 ¡ ²y2k22

Homotopy parameter: 0 ! 1

bx1

bx2
• Path from old solution to new 

solution is piecewise linear and 
it is parameterized by ²: 0 ! 1



Numerical experiments: adding a measurement

N = 1024, measurements M = 512, sparsity S = 100

Add P new measurements

Compare the average number of matrix-vector products per update

Dynamic `1 numerical experiments

4

Initial problem: N = 1024, M = 512, K = M/5 (Gaussian)
Sequential update: Added P new measurements
Comparison for the count of matrix-vector products per update



Reweighted `1

Weighted `1 reconstruction:

min
x

∑

k

wk|xk| +
1

2
‖Φx− y‖22 = min

x
‖Wx‖1 +

1

2
‖Φx− y‖22

solve this iteratively, adapting the weights to the previous solution:

wk =
λ

|xold
k |+ c

Enhancing Sparsity by Reweighted l1 Minimization 25
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FIGURE 11 (a) Original two-pulse signal (blue) and reconstructions (red) via (b)
!1 synthesis, (c) !1 analysis, (d) reweighted !1 analysis.

4.2 Frequency sampling of biomedical images

Compressive Sensing can help reduce the scan time in Magnetic Resonance
Imaging (MRI) and offer sharper images of living tissues. This is especially
important because time consuming MRI scans have traditionally limited the
use of this sensing modality in important applications. Simply put, faster
imaging here means novel applications. In MR, one collects information
about an object by measuring its Fourier coefficients and faster acquisition
here means fewer measurements.

We mimic an MR experiment by taking our unknown image x0 to be
the n = 256×256 = 65536 pixel MR angiogram image shown in Figure 12(a).
We sample the image along 80 lines in the Fourier domain (see Figure 12(b)),
effectively taking m = 18737 real-valued measurements y = Φx0. In plain
terms, we undersample by a factor of about 3.

Figure 12(c) shows the minimum energy reconstruction which solves

min ‖x‖!2 subject to y = Φx. (4.3)

Figure 12(d) shows the result of TV minimization. The minimum !1-analysis
(4.2) solution where Ψ is a three-scale redundant D4 wavelet dictionary that
is 10 times overcomplete, is shown on Figure 12(e). Figure 12(f) shows

(from Boyd, Candes, Wakin ’08)



Changing the weights

Iterative reweighting: take {wk} → {w̃k}

Optimality conditions:

φ∗k(y − Φx) = (εwk + (1− ε)w̃k)zk on support, k ∈ Γ

|φ∗k(y − Φx)| < εwk + (1− ε)w̃k off support, k ∈ Γc

Update direction (increasing ε):

∂x =

{
(Φ∗ΓΦΓ)−1(W − W̃ )z on Γ

0 on Γc

[Asif and R 2012]



Numerical experiments: changing the weights

Numerical Experiments 
Sparse signal of length N recovered from M Gaussian measurements

ADP-H (adaptive weighting via homotopy) SpaRSA [Wright et al 2007]
IRW-H (iterative reweighting via homotopy) YALL1 [Yang et al 2007]



A general, flexible homotopy framework

Formulations above
I depend critically on maintaining optimality
I are very efficient when the solutions are close

Streaming measurements for evolving signals require some type of
predict and update framework

Kalman filter: vk = Fx̂k, (predict)

x̂k+1 = vk +K(y − Φkvk), (update)

What program does the prediction vk solve?

Can we trace the path to the solution from a general “warm start”?



A general, flexible homotopy framework

We want to solve

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

Initial guess/prediction: v

Solve

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22 + (1− ε)uTx

for ε : 0→ 1.

Taking
u = −Wz − ΦT (Φv − y)

for some z ∈ ∂(‖v‖1) makes v optimal for ε = 0



Moving from the warm-start to the solution

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22 + (1− ε)uTx

The optimality conditions are

ΦT
Γ (Φx− y) + (1− ε)u = −W signxΓ∣∣φTγ (Φx− y) + (1− ε)u

∣∣ ≤W [γ, γ]

We move in direction

∂x =

{
uΓ on Γ

0 on Γc

until a component shrinks to zero or a constraint is violated, yielding new Γ



Streaming measurements: random modulation receiver

A-to-I Receiver Development Program  DARPA BAA 08-03 
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Northrop Grumman Private  [not for public distribution] 

PLL

clock

!
N

ADC

0101100111010001 ...

Reset /sample

modulator

Random 

sequencememory

ref

!
N

ADC

1100010110110011 ...

buffer

!
N

ADC

1001010111110010 ...

A
m

pinput

 
 

Figure 1.  Top-level block diagram of the RMPI front-end with eight parallel channels. 

 

1.1.1 CMOS Implementation 

In the proposed RMPI architecture, with eight channels in parallel, we need to choose a chip 

fabrication technology that not only can support the target modulation rate of 5.0 Gbps, but also 

facilitates very low-power consumption per channel. Considering the speed and power requirements of 

the design, we plan to design and implement our first prototype in a 90 nm bulk CMOS 

(complementary metal-oxide-semiconductor) technology.  Some of the advantages of using standard 

CMOS technologies are: very low area and power consumption, potential for mass-production (low 

cost), possibility of full integration of the front-end with both the ADCs and the digital processing 

units.  We plan to use the 90 nm CMOS process that is offered by TAPO (via DoD).  Our team 

member, Azita Emami, has an ongoing research project using the IBM CMOS9sf technology through 

TAPO, sponsored by DARPA (FCRP). This FCRP-funded research is focused on clocking and 

synchronization for a 10 Gbps data communication system. Our ongoing and previous work on precise 

clock generation and signaling in the 90nm technology will be extremely beneficial to the RMPI 

implementation effort.  

  

As part of this project, we will also investigate and explore scalability of our design to 65 nm and 

beyond, which will allow higher modulation rates, lower power consumption and a smaller design. In 

(arch. of Yoo and Emami;

see also Mishali et al,

Murray et al)

Built as part of DARPA’s A2I
program

Multiple (8) channels, operating
with different mixing sequences

Effective BW/chan = 2.5 GHz
Sample rate/chan = 50 MHz

Applications: radar pulse
detection, communications
surveillance, geolocation



Streaming basis: Lapped orthogonal transform
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(Top-left) Mishmash signal (zoomed in for first 2560 samples. 
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Streaming sparse recovery

Observations: yt = Φtxt + et

Representation: x[n] =
∑

p,k

αp,kψp,k[n]

Sparse recovery: streaming system

• Signal observations:     

• Sparse representation:     

34
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Streaming sparse recovery

Iteratively reconstruct the signal over a sliding (active) interval,
form u from your prediction, then take ε : 0→ 1 in

min
α
‖Wα‖1 +

1

2
‖Φ̄Ψ̃α− ỹ‖22 + (1− ε)uTα

where Ψ̃, ỹ account for edge effects

Sparse recovery: streaming system

• Iteratively estimate the signal over a sliding (active) interval: 

37

Overlapping system matrix Sparse
vector

Error

minimize kW®k1 +
1

2
k¹©~ª®¡ ~yk22

minimize kW®k1 +
1

2
k¹©~ª®¡ ~yk22 + (1¡ ²)uT®

Desired

Homotopy

Divide the system into two parts



Streaming signal recovery: Simulation
Streaming signal recovery - Results

40

(Top-left) Mishmash signal (zoomed in for first 2560 samples. 
(Top-right)  Error in the reconstruction at R=N/M = 4. 
(Bottom-left) LOT coefficients. (Bottom-right) Error in LOT coefficients



Streaming signal recovery: SimulationStreaming signal recovery - Results

41

(left) SER at different R from ±1 random measurements in 35 db noise 
(middle)  Count for matrix-vector multiplications
(right) Matlab execution time



Streaming signal recovery: Dynamic signal

Observation/evolution model:

yt = Φtxt + et

xt+1 = Ftxt + dt

We solve

min
α

∑

t

‖Wtαt‖1 +
1

2
‖ΦtΨtαt − yt‖22 +

1

2
‖Ft−1Ψt−1αt−1 −Ψtαt‖22

(formulation similar to Vaswani 08, Carmi et al 09, Angelosante et al 09, Zainel at al 10, Charles et al 11)

using

min
α
‖Wα‖1 +

1

2
‖Φ̄Ψ̃α− ỹ‖22 +

1

2
‖F̄ Ψ̃α− q̃‖22 + (1− ε)uTα



Dynamic signal: SimulationDynamic signal recovery - Results

46

(Top-left) Piece-Regular signal (shifted copies) in image
(Top-right)  Error in the reconstruction at R=N/M = 4. 
(Bottom-left) Reconstructed signal at R=4. 
(Bottom-right) Comparison of SER for the L1-regularized and the L2-regularized 
problems



Dynamic signal: Simulation
Dynamic signal recovery - Results

47

(left) SER at different R from ±1 random measurements in 35 db noise 
(middle)  Count for matrix-vector multiplications
(right) Matlab execution time



Dynamical systems for sparse recovery



Approximate analog computing

Radical re-think of how computer arithmetic is done — computations
use the physics of the devices (transistors) more directly

Use < 1% of the transistors, maybe 1/10, 000 of the power, possibly
100x faster than GPU

Computations are noisy, overall precision ≈ 10−2

Small scale successes (embedded beamforming, adaptive filtering)

Medium to large scale potential
I FPAAs
I specialized circuits for optimization

(Hopfield networks, neural net implementations)
I general (SIMD) computing architecture ?

Much of this work is proprietary, start-ups swallowed up by AD, NI, ...
Lyric semiconductor, GTronix, Singular Computing, ...
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Analog vector-matrix-multiplyMotivation(

•  Analog(Vector0
Matrix(Multiplier(

(
!
!

–  Limited!accuracy!
–  Limited!dynamic!range!

!

[Schlo'mann+et+al.+2012]+ 7+

•  Digital(Multiply0and0
Accumulate(

!
!
!

–  Small!time!constant!
–  Low!power!consumption!

!



Dynamical systems for sparse recovery

There are simple systems of nonlinear differential equations that settle to
the solution of

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22

or more generally

min
x

λ

N∑

n=1

C(x[n]) +
1

2
‖Φx− y‖22

The Locally Competitive Algorithm (LCA):

τ u̇(t) = −u(t)− (ΦTΦ− I)x(t) + ΦT y

x(t) = Tλ(u(t))

is a neurologically-inspired (Rozell et al 08) system which settles to the
solutions of the above



Locally competitive algorithm

τ u̇(t) = −u(t)− (ΦTΦ− I)x(t) + ΦT y

x(t) = Tλ(u(t))
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Locally competitive algorithm

Cost function

V (x) = λ
∑

n

C(xn) +
1

2
‖Φx− y‖22 τ u̇(t) = −u(t)− (ΦTΦ− I)x(t) + ΦT y

xn(t) = Tλ(un(t))

un
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xn = T�(un)
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dx
(u) = u � x



Key questions
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Uniform convergence

Convergence speed (general)

Convergence speed for sparse recovery via `1 minimization



LCA convergence

x(t)
Assumptions

1 u− a ∈ λ∂C(a)

2 x = Tλ(u) =

{
0 |u| ≤ λ
f(u) |u| > λ

3 Tλ(·) is odd and continuous,
f ′(u) > 0, f(u) < u



LCA convergence

Global asymptotic convergence:

If 1–3 hold above, then the outputs
stop moving eventually:

ẋ(t)→ 0 as t→∞

If the critical points of the cost func-
tion are isolated then

x(t)→ x∗, u(t)→ u∗, as t→∞



LCA convergence

x(t)

Assumptions

1 u− a ∈ λ∂C(a)

2 x = Tλ(u) =

{
0 |u| ≤ λ
f(u) |u| > λ

3 Tλ(·) is odd and continuous,
f ′(u) > 0, f(u) < u

4 f(·) is subanalytic

5 f ′(u) ≤ α



LCA convergence

Global asymptotic convergence:

If 1–5 hold above, then the LCA is
globally asymptotically convergent:

x(t)→ x∗, u(t)→ u∗, as t→∞

where x∗ is a critical point of the func-
tional.



Convergence: support is recovered in finite time

If the LCA converges to a fixed point
u∗ such that

|uγ | ≥ λ+ r, and |uγ | ≤ λ− r

for all γ ∈ Γ∗c, then the support of x∗

is recovered in finite time

# of switches/sparsity

Φ = [DCT I]

M = 256, N = 512



Convergence: exponential (of a sort)

In addition to the conditions for global convergence, if there exists
0 ≤ δ < 1 such that for all t ≥ 0

(1− δ)‖x̃(t)‖22 ≤ ‖Φx̃(t)‖22 ≤ (1 + δ)‖x̃(t)‖22,

where x̃(t) = x(t)− x∗, and αd < 1 (f ′(u) ≤ α), then the LCA
exponentially converges to a unique fixed point:

‖u(t)− u∗‖2 ≤ κ0 e
−(1−αδ)/τ



Convergence: exponential (of a sort)

In addition to the conditions for global convergence, if there exists
0 ≤ δ < 1 such that for all t ≥ 0

(1− δ)‖x̃(t)‖22 ≤ ‖Φx̃(t)‖22 ≤ (1 + δ)‖x̃(t)‖22,

where x̃(t) = x(t)− x∗, and αd < 1 (f ′(u) ≤ α), then the LCA
exponentially converges to a unique fixed point:

‖u(t)− u∗‖2 ≤ κ0 e
−(1−αδ)/τ

Of course, this depends on not too many nodes being active at any one
time ...



Activation in proper subsets for `1

If Φ a “random compressed sensing matrix” and

M ≥ Const · S2 log(N/S)

then for reasonably small values of λ and starting from rest

Γ(t) ⊂ Γ∗

That is, only subsets of the true support are ever active

Similar results for OMP and homotopy algorithms in CS literature



Efficient activation for `1

If Φ a “random compressed sensing matrix” and

M ≥ Const · S log(N/S)

then for reasonably small values of λ and starting from rest

|Γ(t)| ≤ 2|Γ∗|

Similar results for OMP/ROMP, CoSAMP, etc. in CS literature
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