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Nonlinear system identification with multiple outputs
Overview

Sut

y (1)
t

y (M)
t

I Given input-output data (ut , yt)t=1 with yt = [y (1)
t , . . . , y (M)

t ]T

I Estimate a mathematical model for S
I Often solved via regression:

(yt−1, . . . , yt−P , ut , . . . , ut−Q) → yt

I Kernel based methods and support vector techniques in
particular quite successful

I Applications: load/demand forecasting, virtual sensors, …
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Nonlinear system identification with multiple outputs
Traditional versus proposed approach
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Example for multiple output system

Based on public domain image by United States Department of Energy

C. Alzate, M. Espinoza, B. De Moor, and J.A.K. Suykens (2009). “Identifying customer profiles in power load
time series using spectral clustering”. In: Proc. of the 19th International Conference on Artificial Neural
Networks.

T. Falck, B. De Moor and J. A. K. Suykens: Kernel based identification of systems with multiple outputs using nuclear norm regularization, ROKS 2013 5/21



Example for multiple output system

Based on public domain image by United States Department of Energy

C. Alzate, M. Espinoza, B. De Moor, and J.A.K. Suykens (2009). “Identifying customer profiles in power load
time series using spectral clustering”. In: Proc. of the 19th International Conference on Artificial Neural
Networks.

T. Falck, B. De Moor and J. A. K. Suykens: Kernel based identification of systems with multiple outputs using nuclear norm regularization, ROKS 2013 5/21



Key contributions and challenges

Contributions
I Kernel based model for nonlinear systems with multiple related

outputs
I New primal-dual derivation of kernel based model with nuclear

norm regularization

Challenges
I Finding a kernel based problem formulation
I Connecting dual, kernel based solution, to original model
I Numerical solution
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Nuclear or trace norm

‖W‖∗
Basic properties

I matrix norm
I sum of singular values
I induces sparsity

I can be interpreted as `1-norm of singular values
I promotes low-rank solutions

As regularization term in a support vector model

I columns wi model parameters, i.e. y (i)
t = wT

i ϕ(xt) + b
I promotes relations between models in feature space

M. Fazel (2002). “Matrix Rank Minimization with Applications”. PhD thesis, Stanford.
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Model formulation in a primal-dual setting
Primal model

min
W,b,et

η‖W‖∗ +
N∑

t=1

eTt et

subject to y (i)
t = wT

i ϕ(xt) + bi + e(i)t ,

t = 1, . . . ,N , i = 1, . . . ,M

Derivation in primal-dual setting

(a) Write down Lagrangian for primal problem

(b) Take derivatives with respect to optimization variables

(c) Formulate KKT conditions for optimality

(d) Write down dual optimization problem

(e) Substitute dual solution into primal model

A. Argyriou, C.A. Micchelli, and M.A. Pontil (2009). “When Is There a Representer Theorem? Vector Versus Matrix Regularizers”.
In: Journal of Machine Learning Research.
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Advantage of primal-dual approach

Straightforward to incorporate additional structure

Example: simple constraints
I wT

1ϕ(x) = −wT
2ϕ(x)

I wT
i ϕ(x) ≥ y0

Example: Hammerstein systems

ut f (·)
ũt

H(z) yt

I Static nonlinearity f (x) = wTϕ(x) + c
I Linear dynamical system H : ŷt =

∑P
p=1 apyt−p +

∑Q
q=0 bqũt−q

I Approximate joint model
ŷt =

∑P
p=1 apyt−p +

∑Q
q=0w

T
qϕ(ut−q) + c̃

J.A.K. Suykens, C. Alzate, and
K. Pelckmans (2010). “Primal
and dual model representations
in kernel-based learning”. In:
Statistics Surveys.
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Derivation of kernel based model
From Lagrangian to KKT conditions

Lagrangian

L = η‖W‖∗ +
N∑

t=1

eTt et −
N∑

t=1

αT (WTϕ(xt) + b+ et − yt)

Nuclear norm is not differentiable!

Possible reformulations
I Dual norm, where ‖ · ‖2 is dual norm of ‖ · ‖∗

‖W‖∗ = max
‖C‖2≤1

tr(CTW)

I Conic duality, where K is convex cone {(X, s)|‖X‖∗ ≤ s}

‖W‖∗ = t where (W, t) ∈ K
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Derivation of kernel based model
Kernel based optimization problem

max
A

tr(ATY)− 1

2
tr(ATA)

subject to ATΩA � ηIM,

AT1N = 0M

I A = [α1, . . . ,αN ]
T , Y = [y1, . . . , yN ]

T

I Ωij = K (xi , xj) = ϕ(xi)Tϕ(xj)

KKT condition for W

C =
N∑

t=1

ϕ(xt)αT
t

I W,C ∈ Rnh×M, ϕ(x) ∈ Rnh and αt ∈ RM

I No expansion of primal variablesW!
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Formulation of model in terms of dual solution

Characterization of solution set

{W : tr(WTC) = ξ, ‖W‖∗ = ξ}
= {UηHηVT

η : tr(Hη) = ξ, 0 � Hη ∈ Rr×r}

I Here C and ξ are fixed
I C = ΦAT

I Uη,Vη contain left and right singular vectors corresponding to
largest singular value of C respectively

Connecting W and A

find Hη

subject to Hη � 0, tr(Hη) = ξ

y(i) = [Ωi,1α1, . . . ,Ωi,MαM]VηHηVT
η εi

+ bi1Ni +αi , i = 1, . . . ,M
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Model representation
Primal model representation

ŷ (i) = f (z) = wT
i ϕ(z) + bi

Dual model representation

ŷ (i) = f (z) =
M∑

j=1

Qji

N∑
t=1

At jK (xt , z) + bi

with Q = VηHηVT
η

One dimensional SVM

ŷ = f (z) =
N∑

t=1

αtK (xt , z) + b
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Example
Description

Toy example
I number of data: training 50, validation 100, test 150
I number of outputs: 20
I number of independent contributions: 3
I data generation: Y = WT

0Φ+ noise
I Φ ∈ R50×50,W0 =

∑3
i=1 gir

T
i = GRT , G ∈ R50×3, R ∈ R20×3

Evaluated models

MIMO proposed nuclear norm regularized model

RR ridge regression model (LS-SVM model in primal with given
feature map) with independent LS-SVMmodels for each output

OLS ordinary least squares model

OLS + oracle OLS given the true structure of problem

T. Falck, B. De Moor and J. A. K. Suykens: Kernel based identification of systems with multiple outputs using nuclear norm regularization, ROKS 2013 14/21



Example
Cross validation
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Example
Results
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Comparison of optimization problems
Primal formulation

min
W,b,et

η‖W‖∗ +
N∑

t=1

eTt et

subject to y (i)
t = wT

i ϕ(xt) + bi + e(i)t

Dual formulation

Optimization problem

max
A

tr(ATY)− 1

2
tr(ATA)

subject to ATΩA � ηIM,

AT1N = 0M

Reconstruction of model

find Hη

subject to

Hη � 0, tr(Hη) = ξ

y(i) = [Ωi,1α1, . . . ,Ωi,MαM]

· VηHηVT
η εi + bi1Ni +αi
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Dimensionalities of optimization problems

One input L inputs

Primal
Feature map nh × N L · (nh × N)
UnknownW nh ×M L · (nh ×M)

Dual
Kernel matrix N × N (L · N)× (L · N)
Unknown A N ×M (L · N)×M

I N : number of data
I M: number of outputs
I nh: dimension of feature map
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Solution strategies

SDP formulation

o Problems are SDP representable

o Can be solved with general purpose SDP solvers

+ Small implementation effort

+ High accuracy

- High runtime costs, memory & times⇒ Limited to small
problem sizes

First order techniques

o (Accelerated) gradient projection can be applied

o Higher implementation effort

+ Structure can be exploited

+ Scale to larger problem sizes

- Lower accuracy (crucial for reconstruction of dual model)
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Conclusions

I Proposed novel identification for nonlinear systems with
multiple outputs

I Exploits relations between output variables

I Illustrated improvement on small toy example

I Presented derivation of a nuclear norm regularized model in
primal-dual setting

I Allows straightforward integration of additional
information
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Challenges and Outlook

I Application on real world datasets

I Numerical solution on larger datasets
I New algorithms are already being developed
I Computational power increases exponentially

I Same primal-dual derivation can be applied to other
nonquadratic regularization schemes

I Conjecture
I Promising applications in system identification
I Kernel based models can be used for many applications
besides regression, these might also benefit from
advanced regularization schemes
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