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Subspace Learning

e H: Hilbert Space
@ p: probability distribution on H

@ supp p: is the support of p

e V,=span{z | z € supp p}
“smallest” linear subspace
containing supp p
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Subspace Learning

e H: Hilbert Space
@ p: probability distribution on H

@ supp p: is the support of p

e V,=span{z | z € supp p}
“smallest” linear subspace
containing supp p

Problem  How to “find” V, given the examples 1, ...,z, ~ p?
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Setting: Why a Hilbert Space H

@ limit for high dimensional data

o embedded data (Z, 1) & H
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Example 1: PCA - Kernel PCA

PCA
V, the smallest linear subspace of H that contains all the distribution

V, = argmin dim(V) such that var(V) = var(H)
\%4
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Example 1: PCA - Kernel PCA

PCA
V, the smallest linear subspace of H that contains all the distribution

V, = argmin dim(V) such that var(V) = var(H)
\%4

Kernel PCA [Scholkopf 1997]
performs PCA on the data embedded in H by a feature map ¢
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Example 2: Kernel Support Estimation

o (Z,p), M = supp p
e ¢p:Z —H, V,=span{¢p(z) | Z € M}
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Example 2: Kernel Support Estimation

o (Z,p), M = supp p
e ¢p:Z —H, V,=span{¢p(z) | Z € M}

If ¢ is separating [De Vito 2010]

M={:c7]|6() € V)
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Example 2: Kernel Support Estimation

° (Z,p), M =supppu
e ¢p:Z —H, V,=span{¢p(z) | Z € M}

If ¢ is separating [De Vito 2010]

M={:€Z]é(z)€ V,}

Examples separating ¢s on R¢
o Abel kernel, (¢(z), ¢(2')) = exp(—7 ||z = 2'l|,)
@ the convex combination or the product of two separating kernels

e Gaussian kernel is NOT separating
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Problem definition

Given 1, ..., z, drawn independently from p, find V such that

P(d(V,V,) > €) < (e, n)
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Problem definition

Given 1, ..., z, drawn independently from p, find V such that
P(d(V,V,) > €) < (e, n)

How to build V?
Which distance d on linear subspaces?
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Covariance Lemma in the continuous case

V,=span{u; | i > 1}

where Cu; = o;u; with C' : H — H the covariance operator

C=Eipz@2]—ppu
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Truncated estimator

Analogously we can define

VE = span{a; |1 <i<k}

where Cu; = 6;u; with C' : H — H the empirical covariance operator

Q>
:IH

n
Z QT — LR fi
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Truncated estimator

Analogously we can define

VE = span{a; |1 <i<k}

where Cu; = 6;4; with C : H — H the empirical covariance operator
o 1

==

n

What is a good value of k7
Shall we simply take k = n?

n
Z QT — LR fi
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Which metric?

Let C be the covariance operator associated to the distribution p.

dop o (U, V) = [[(Py — Py)C?,

e (' is the covariance operator of p

@ Py is the projection operator associated to the subspace U
o |||, is the p-Schatten norm, [|A[|} = 3,5 o7
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Which metric?

Let C be the covariance operator associated to the distribution p.

dop o (U, V) = [[(Py — Py)C?,

e (' is the covariance operator of p
@ Py is the projection operator associated to the subspace U

o |||, is the p-Schatten norm, [|A[|} = 3,5 o7

It generalizes many commonly used subspace distances
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Metric for Kernel PCA

Reconstruction error:

R(V) =Ea~p [||g; - vallqﬂ

e Commonly used in literature [Shawe-Taylor 2005, Blanchard 2007]
o R(V) =2, (V. V)

note that R(W) < R(V) when VC W
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Metric for Support Estimation

When the feature map is separating, the support M is defined as

M={z¢€Z| Fy,(z) =0} with Fy,(z)=disty,(¢(z))
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Metric for Support Estimation

When the feature map is separating, the support M is defined as
M={z¢€Z| Fy,(z) =0} with Fy,(z)=disty,(¢(z))

The natural estimator studied in [De Vito 2010, De Vito 2012] is
defined as

M={z€ 7| Fy(z) <7} with Fp,(z) = dist 4 (6(2))
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Metric for Support Estimation

When the feature map is separating, the support M is defined as
M={z¢€Z| Fy,(z) =0} with Fy,(z)=disty,(¢(z))

The natural estimator studied in [De Vito 2010, De Vito 2012] is
defined as

M={z€ 7| Fy(z) <7} with Fp,(z) = dist 4 (6(2))

In order to study the convergence of the set M to M is of interest to
bound the quantity

A

SEIZ) Py, (2) = Fo(2)| < [|(Pye — Py,)C* = dooop(VF, V)

where o depends on the eigenvalue decay of C.
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More on General metric

® dypp is a metric for A(V,), the collection of subspaces of V,,
where 0 <a<land1<p<oo

e cach V* is a subspace of V, thus Vke A(V,)

© dopp(V, W) < dap,(U, W) UCVCW
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More on General metric

® dypp is a metric for A(V,), the collection of subspaces of V,,
where 0 <a<land1<p<oo

e cach V* is a subspace of V, thus VE e A( Vy)

© dopp(V, W) < dap,(U, W) UCVCW

the metric d, ;, , allows to control a variety of metrics classically used
to measure distance between sets [Beer 1993]
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Learning rate for the general metric

Theorem 1 (Rudi, Canas, Rosasco 2013)
With probability 1 — o

da,p,p(f/ka Vp) < 4taNap(t)a

o t =max{oy, 2log %}
@ o the k-th eigenvalue of C

o Noy(t)=|C(C+ tI)*lﬂap a generalization of the effective
dimension [Caponnetto 2005] (that is N (¢) = Na(t))

tools from: spectral theory, Lowner partial orderings, concentrations
bounds on operators [Tropp 2012]
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Learning rate for the general metric

Assumption on the eigenvalue decay of C
if we assume that o,,(C) ~ m™" with r > 1 we have

—rat+i . N .
dovp Vk, V) < Qk _mj 1 itk <k (polynomial decay)
QF* v if k> k (plateau)

with probability 1 — § and ¢, ) constants

= (Grogtrs))

S
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Learning Rates for Kernel PCA and Reconstruction
error

d(%,Vh)




Rates comparison on Kernel PCA

e [Blanchard 2007] (dotted line). Analysis for fixed k and
reconstruction error. It makes ass(um tions on the fourth order.
. — . s(r—1 .
Learning rate O(n~¢) with ¢ = ;.- where s is the
fourth-moment eigenvalue decay.

o [Shawe-Taylor 2005] (black line) Analysis for fixed k and

reconstruction error. Learning rate O(n~°) with ¢ = 2(r—r—1)

o Our result for reconstruction error (purple thick line). Learning

rate O(n~°) with ¢ = -~ where s is the fourth-moment eigenvalue
decay.

r—1
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Learning Rates for Kernel Support Estimation

With probability 1 — 4

d, (f/k V,) <@ kl_m ra h<i
aL,00, P y Yp) = (%) kzk*

S le

where k* = (%) and 0, (C) ~m™", 7> 1

Rudi, Canas, Rosasco (MIT, IIT) Subspace Learning



Rates comparison on Kernel Support Estimation

e [De Vito 2010, De Vito 2012] (black line on the left) It does not
respect the monotonicity of the distance w.r.t. nested sets (black

line on the right) Learning rate O(n™°) with ¢ = STET=)) ) with the

r—1
worst case a = 5

e Our result (red thick line). (red line on the left). It respect the
monotonicity of the distance (black line on the rlght) Learning
rate O(n=¢) with ¢ = 21 o
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Experiments:Simulation on Kernel PCA(1)

o 4 uniform distribution on [0, 1] with Z = R?

o K(z,y) = exp(—7|z—yll,)
e 1000 trials, each one of 1000 points independently drawn from p
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Experiments:Simulation on Kernel PCA(2)

@ the true covariance C can be computed analytically, it has
polynomial decay r = 2.

e thus we can compute k*

@ the experiment shows the plateau behavior
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Reconstruction error function of the number of the number of
components k
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Experiments: Numerical tradeoff in Kernel PCA (3)

o 1 uniform distribution on [0,1] with Z = R? with Gaussian kernel
@ 1000 points independently drawn from u

e computations performed on 32bits floating point precision

1

d(V, V)

Reconstruction error with respect to the number of components &
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Contribution

e Learning Rates for a wide range of metrics on linear subspaces
@ Specific results for Kernel PCA and Spectral Support Estimation

e an optimal £* for the truncated estimator

Future work

e Theoretical analysis on statistical/computational trade-off

e What happens with the noise?
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