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Nonnegative Matrix Factorization (NMF)
Given a matrix M ∈ Rm×n+ and a factorization rank r ∈ N, find

U ∈ Rm×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i,j

(M − UV )2ij . (NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

M(:, i)︸ ︷︷ ︸
≥0

≈
r∑

k=1

U(:, k)︸ ︷︷ ︸
≥0

V (k, i)︸ ︷︷ ︸
≥0

for all i.

Why nonnegativity?

→ Interpretability: Nonnegativity constraints lead to a sparse and
part-based representation.
→ Many applications. Taxt mining, hyperspectral unmixing, image
processing, community detection, clustering, etc.
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Text Mining

� Basis elements allow to recover the different topics;

� Weights allow to assign each text to its corresponding topics.
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Hyperspectral Unmixing

Figure: Hyperspectral image.

Goal. Recover the endmembers and their abundances.
Model. Linear mixing model.
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Hyperspectral Unmixing

� Basis elements allow to recover the different materials;

� Weights allow to know which pixel contains which material.
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Hyperspectral Unmixing

Figure: Urban dataset.
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Can we only solve NMF problems?

Given a matrix M ∈ Rm×n+ and a factorization rank r ∈ N, find

U ∈ Rm×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i,j

(M − UV )2ij . (NMF)

� NMF is NP-hard [V09], and highly ill-posed.

� In practice, it is often satisfactory to use locally optimal solutions for
further analysis of the data. In other words, heuristics often solve the
problem efficiently with acceptable answers.

� Try to analyze this state of affairs by considering generative models
and algorithms that can recover hidden data.

[V09] Vavasis, On the Complexity of Nonnegative Matrix Factorization, SIAM J. on
Optimization, 2009.

ROKS 2013 Robust Separable NMF 7



Can we only solve NMF problems?

Given a matrix M ∈ Rm×n+ and a factorization rank r ∈ N, find

U ∈ Rm×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i,j

(M − UV )2ij . (NMF)

� NMF is NP-hard [V09], and highly ill-posed.

� In practice, it is often satisfactory to use locally optimal solutions for
further analysis of the data. In other words, heuristics often solve the
problem efficiently with acceptable answers.

� Try to analyze this state of affairs by considering generative models
and algorithms that can recover hidden data.

[V09] Vavasis, On the Complexity of Nonnegative Matrix Factorization, SIAM J. on
Optimization, 2009.

ROKS 2013 Robust Separable NMF 7



Separability Assumption

For NMF, it is possible to compute optimal solutions in polynomial time,
given that the input data matrix M satisfies a (rather strong) condition:
separability [AGKM12].

The nonnegative matrix M is r-separable if and only if

there exists an NMF (U, V ) ≥ 0 of rank r with M = UV where
each column of U is equal to a column of M .

[AGKM12] Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization –
Provably, STOC 2012.
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Is separability a reasonable assumption?

� Hyperspectral unmixing: separability is particularly natural: for
each constitutive material, there is a ‘pure’ pixel containing only that
material. This is the so called pure-pixel assumption which is widely
used in hyperspectral imaging.

� Text mining: for each topic, there is a ‘pure’ document on that
topic, or, for each topic, there is a ‘pure’ word (an anchor word) used
only by that topic.
[KSK13] Kumar, Sindhwani, Kambadur, Fast Conical Hull Algorithms for Near-separable
Non-Negative Matrix Factorization, ICML 2013.
[AG+13] Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu, A Practical Algorithm for
Topic Modeling with Provable Guarantees, ICML 2013.
[DRIS13] Ding, Rohban, Ishwar, Saligrama, Topic Discovery through Data Dependent and
Random Projections, ICML 2013.
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Geometric Interpretation of Separability

After normalization, the columns of M,U and V sum to one: the columns
of U are the vertices of the convex hull of the columns of M .
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Separable NMF

M is r-separable ⇐⇒ M = U [Ir, V
′]Π,

for some V ′ ≥ 0, and some permutation matrix Π.
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Near-Separable NMF

M̃ = U [Ir, V
′]Π +N, where N is noise.
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Near-Separable NMF: Noise and Conditioning

We will assume that the noise is bounded (but otherwise arbitrary):

||N(:, i)||1 ≤ ε, for all i,

and some dependence on some condition number is unavoidable:

Parameter α = minimum distance of a vertex to the convex hull of other
vertices.
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Hottopixx, a Linear Optimization Model
For a normalized separable matrix M , we have, up to permutation,

M = [U,UV ′] = M

(
Ir V ′

0(n−r)×r 0(n−r)×(n−r)

)
︸ ︷︷ ︸

X0∈Rn×n

= MX0.

where V ′ ≤ 1r×(n−r). [BRRT12] proposed the following model:

min
X∈Rn×n

pT diag(X)

such that ||M̃ − M̃X||1 ≤ 2ε,

tr(X) = r,

0 ≤ Xij ≤ Xii ≤ 1 for all i, j.

where the entries of p are distinct.

[BRRT12] Bittorf, Recht, Ré, Tropp, Factoring nonnegative matrices with linear programs, NIPS
2012.
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Hottopixx, a Linear Optimization Model

min
X∈Rn×n

pT diag(X)

such that ||M̃ − M̃X||1 ≤ 2ε,

tr(X) = r,

0 ≤ Xij ≤ Xii ≤ 1 for all i, j.

Theorem ([G12]). If ε ≤ O
(
α2

r

)
, their algorithm leads to an NMF

(W,H) s.t.

||M̃ − UV ||1 ≤ O
(rε
α

)
.

Drawbacks. Requires to solve a LP in O(n2) variables, the parameters ε
and r have to be estimated, not very robust in practice, normalization is
necessary.

[G12] G., Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring
Nonnegative Matrices, SIMAX, 2013.
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An Improved Linear Optimization Model

min
X∈Rn×n

+

pT diag(X)

such that ||M̃ − M̃X||1 ≤ 2ε,

tr(X) = r,

Xij ≤ Xii for all i, j,

Xii ≤ 1 for all i,

where p is a vector with positive entries.

The new model detects the factorization rank r automatically.

Same robustness analysis as Hottopixx applies for any ρ > 0.

Does not require column normalization.

If the columns of U are isolated: ε ≤ O (α)⇒ ||M̃ − UV ||1 ≤ O (ε),
which is provably more robust than Hottopixx for which ε ≤ O

(
α
r

)
.

[GL13] G., Luce, Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization, February 2013.

ROKS 2013 Robust Separable NMF 15



An Improved Linear Optimization Model

min
X∈Rn×n

+

pT diag(X)

such that ||M̃ − M̃X||1 ≤ 2ε,

�����
tr(X) = r,

Xij ≤ Xii for all i, j,

Xii ≤ 1 for all i,

where p is a vector with positive entries.

The new model detects the factorization rank r automatically.

Same robustness analysis as Hottopixx applies for any ρ > 0.

Does not require column normalization.

If the columns of U are isolated: ε ≤ O (α)⇒ ||M̃ − UV ||1 ≤ O (ε),
which is provably more robust than Hottopixx for which ε ≤ O

(
α
r

)
.

[GL13] G., Luce, Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization, February 2013.

ROKS 2013 Robust Separable NMF 15



An Improved Linear Optimization Model

min
X∈Rn×n

+

pT diag(X)

such that ||M̃ − M̃X||1 ≤ ρε,

�����
tr(X) = r,

Xij ≤ Xii for all i, j,

Xii ≤ 1 for all i,

where p is a vector with positive entries.

The new model detects the factorization rank r automatically.

Same robustness analysis as Hottopixx applies for any ρ > 0.

Does not require column normalization.

If the columns of U are isolated: ε ≤ O (α)⇒ ||M̃ − UV ||1 ≤ O (ε),
which is provably more robust than Hottopixx for which ε ≤ O

(
α
r

)
.

[GL13] G., Luce, Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization, February 2013.

ROKS 2013 Robust Separable NMF 15



An Improved Linear Optimization Model

min
X∈Rn×n

+

pT diag(X)

such that ||M̃ − M̃X||1 ≤ ρε,

�����
tr(X) = r,

||M̃(:, i)||1Xij ≤ ||M̃(:, j)||1Xii for all i, j,

Xii ≤ 1 for all i,

where p is a vector with positive entries.

The new model detects the factorization rank r automatically.

Same robustness analysis as Hottopixx applies for any ρ > 0.

Does not require column normalization.

If the columns of U are isolated: ε ≤ O (α)⇒ ||M̃ − UV ||1 ≤ O (ε),
which is provably more robust than Hottopixx for which ε ≤ O

(
α
r

)
.

[GL13] G., Luce, Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization, February 2013.

ROKS 2013 Robust Separable NMF 15



An Improved Linear Optimization Model

min
X∈Rn×n

+

pT diag(X)

such that ||M̃ − M̃X||1 ≤ ρε,

�����
tr(X) = r,

||M̃(:, i)||1Xij ≤ ||M̃(:, j)||1Xii for all i, j,

Xii ≤ 1 for all i,

where p is a vector with positive entries.

The new model detects the factorization rank r automatically.

Same robustness analysis as Hottopixx applies for any ρ > 0.

Does not require column normalization.

If the columns of U are isolated: ε ≤ O (α)⇒ ||M̃ − UV ||1 ≤ O (ε),
which is provably more robust than Hottopixx for which ε ≤ O

(
α
r

)
.

[GL13] G., Luce, Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization, February 2013.

ROKS 2013 Robust Separable NMF 15



Numerical Experiments

� Each entry of U ∈ R50×10
+ uniform in [0, 1]; each column normalized.

� Each of the 90 columns of V ′ ∈ R10
+ , Dirichlet.

Figure: Noise is Gaussian.
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Numerical Experiments

� Each entry of U ∈ R50×10
+ uniform in [0, 1]; each column normalized.

� Each of the 90 columns of V ′ ∈ R10
+ , Dirichlet.

Figure: Noise is very sparse: one non-zero entry per column.
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Conclusion

1. Nonnegative matrix factorization (NMF)

I Easily interpretable linear dimensionality reduction technique for
nonnegative data, with many applications

2. Separable NMF

I Separability makes NMF problems efficiently solvable
I Need for fast, practical and robust algorithms

3. A new LP model for near-separable NMF

I More robust, more flexible, always feasible, no normalization
I but . . . computationally expensive.

(Possible fix: preselect a ‘good’ subset of columns.)
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Reference.
G., R. Luce, Robust Near-Separable Nonnegative Matrix Factorization
Using Linear Optimization, arXiv:1302.4385.

Code available on https://sites.google.com/site/nicolasgillis/.

Thank you for your attention!
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