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NN
Nonnegative Matrix Factorization (NMF)

Given a matrix M € RTX" and a factorization rank r € N, find
U e R™"and V € R"™" such that
min_||M - UV||E =Y (M - UV)j;. (NMF)

U>0,V>0 —
27‘7
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Nonnegative Matrix Factorization (NMF)
Given a matrix M € RTX" and a factorization rank r € N, find
U e R™"and V € R"™" such that
min_||M - UV||E =Y (M - UV)j;. (NMF)

U>0,V>0 —
27‘7

M(:i) ~ U, k) V(k,i) for all 4.

Why nonnegativity?
— Interpretability: Nonnegativity constraints lead to a sparse and
part-based representation.

— Many applications. Taxt mining, hyperspectral unmixing, image
processing, community detection, clustering, etc.
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Text Mining
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Text Mining

I
Dictionary
I

AN

Sets of words found simultaneously in different texts

¢ Basis elements allow to recover the different topics;
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Text Mining

=UV

I
Dictionary
I

Weigths to reconstruct
each text

AN

Sets of words found simultaneously in different texts

¢ Basis elements allow to recover the different topics;
o Weights allow to assign each text to its corresponding topics.
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NSNS
Hyperspectral Unmixing

Hyperspectral data cube of Ludwigsburg (Germany) acquired with the imaging spectrometer HyMap©
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Figure: Hyperspectral image.

ROKS 2013 Robust Separable NMF 4



Hyperspectral Unmixing

Hyperspectral data cube of Ludwigsburg (Germany) acquired with the imaging spectrometer HyMap©
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Figure: Hyperspectral image.

Goal. Recover the endmembers and their abundances.
Model. Linear mixing model.
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Hyperspectral Unmixing
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NSNS
Hyperspectral Unmixing
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Spectral signatures of each consitutive material

¢ Basis elements allow to recover the different materials;
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Hyperspectral Unmixing
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Spectral signatures of each consitutive material

¢ Basis elements allow to recover the different materials;

o Weights allow to know which pixel contains which material.
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Hyperspectral Unmixing

Figure: Urban dataset.
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Hyperspectral Unmixing
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Figure: Urban dataset.
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Hyperspectral Unmixing
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L
Can we only solve NMF problems?

Given a matrix M € RTX" and a factorization rank r € N, find
U € R™"and V € R™™ such that
: M — 2 _ M — 2 NMF
o i I = UV = 04 - UV (NMF)
o NMF is NP-hard [V09], and highly ill-posed.

o In practice, it is often satisfactory to use locally optimal solutions for
further analysis of the data. In other words, heuristics often solve the
problem efficiently with acceptable answers.

[V09] Vavasis, On the Complexity of Nonnegative Matrix Factorization, SIAM J. on
Optimization, 2009.
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L
Can we only solve NMF problems?

Given a matrix M € RTX" and a factorization rank r € N, find
U e R™"and V € R™*" such that
i M — 2=N (M- 2 NMF
pmin M = UVIf = 300 - UV)3 (NMF)

/[/7‘7

o NMF is NP-hard [V09], and highly ill-posed.

o In practice, it is often satisfactory to use locally optimal solutions for
further analysis of the data. In other words, heuristics often solve the
problem efficiently with acceptable answers.

o Try to analyze this state of affairs by considering generative models
and algorithms that can recover hidden data.

[V09] Vavasis, On the Complexity of Nonnegative Matrix Factorization, SIAM J. on
Optimization, 2009.
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NSNS
Separability Assumption

For NMF, it is possible to compute optimal solutions in polynomial time,
given that the input data matrix M satisfies a (rather strong) condition:
separability [AGKM12].

[AGKM12] Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization —
Provably, STOC 2012.
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NSNS
Separability Assumption

For NMF, it is possible to compute optimal solutions in polynomial time,
given that the input data matrix M satisfies a (rather strong) condition:
separability [AGKM12].

The nonnegative matrix M is r-separable if and only if

there exists an NMF (U,V') > 0 of rank r with M = UV where
each column of U is equal to a column of M.

[AGKM12] Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization —
Provably, STOC 2012.
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NSNS
Is separability a reasonable assumption?

o Hyperspectral unmixing: separability is particularly natural: for
each constitutive material, there is a ‘pure’ pixel containing only that
material. This is the so called pure-pixel assumption which is widely
used in hyperspectral imaging.
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Is separability a reasonable assumption?

o Hyperspectral unmixing: separability is particularly natural: for
each constitutive material, there is a ‘pure’ pixel containing only that
material. This is the so called pure-pixel assumption which is widely
used in hyperspectral imaging.

o Text mining: for each topic, there is a ‘pure’ document on that
topic, or, for each topic, there is a ‘pure’ word (an anchor word) used
only by that topic.

[KSK13] Kumar, Sindhwani, Kambadur, Fast Conical Hull Algorithms for Near-separable
Non-Negative Matrix Factorization, ICML 2013.

[AG+13] Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu, A Practical Algorithm for
Topic Modeling with Provable Guarantees, ICML 2013.

[DRIS13] Ding, Rohban, Ishwar, Saligrama, Topic Discovery through Data Dependent and
Random Projections, ICML 2013.
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NSNS
Geometric Interpretation of Separability

After normalization, the columns of M, U and V sum to one: the columns
of U are the vertices of the convex hull of the columns of M.

o‘.°:
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NSNS
Separable NMF

M is r-separable <<= M =U]|I,., V'],

for some V/ > 0, and some permutation matrix II.
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NSNS
Near-Separable NMF

M = U[IL,,V'|Il + N, where N is noise.
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L
Near-Separable NMF: Noise and Conditioning

We will assume that the noise is bounded (but otherwise arbitrary):

[|IN(:,9)|[1 <€  foralli,
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L
Near-Separable NMF: Noise and Conditioning

We will assume that the noise is bounded (but otherwise arbitrary):
I[N, 0|1 <€  foralli,

and some dependence on some condition number is unavoidable:
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[
Near-Separable NMF: Noise and Conditioning
We will assume that the noise is bounded (but otherwise arbitrary):
[ING, )1 <e  forall i,

and some dependence on some condition number is unavoidable:

Parameter & = minimum distance of a vertex to the convex hull of other
vertices.
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[
Hottopixx, a Linear Optimization Model

For a normalized separable matrix M, we have, up to permutation,

/
Mz[U,UV’]=M< I v >:MX0.
O(nfr)xr O(nfr)x(nfr)

XO0gRnXxn

where V' < 1,5 (p—y).

[BRRT12] Bittorf, Recht, Ré, Tropp, Factoring nonnegative matrices with linear programs, NIPS
2012.
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Hottopixx, a Linear Optimization Model

For a normalized separable matrix M, we have, up to permutation,

/
Mz[U,UV’]=M< I v >:MX0.
O(nfr)xr O(nfr)x(nfr)

XOE]Ran

where V' < 1, (,—y). [BRRT12] proposed the following model:
. T 5.
min  p* diag(X)
XGR’HX’R
such that  ||[M — MX||; < 2,
tr(X) =,
0 < Xij < Xii < 1 for all Z,j

where the entries of p are distinct.

[BRRT12] Bittorf, Recht, Ré, Tropp, Factoring nonnegative matrices with linear programs, NIPS
2012.
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[
Hottopixx, a Linear Optimization Model
. T q-
min  p’ diag(X)
XeRnxn
such that  ||[M — MX||; < 2,

tr(X) =,

0 < Xij < Xu < 1 for all Z,j

Theorem ([G12]). If e < O (0‘72> their algorithm leads to an NMF
(W,H) s.t.

M -UV|, <O (%)

[G12] G., Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring
Nonnegative Matrices, SIMAX, 2013.

ROKS 2013 Robust Separable NMF



Hottopixx, a Linear Optimization Model

min  p! diag(X)
XERnxn

such that  ||[M — MX||; < 2,
tr(X) =,
0 < Xij < Xu < 1 for all Z,j

Theorem ([G12]). If e < O (0‘72> their algorithm leads to an NMF
(W,H) s.t.
~ re
— < — .
1z —vvip <o (%)

Drawbacks. Requires to solve a LP in O(n?) variables, the parameters ¢
and r have to be estimated, not very robust in practice, normalization is
necessary.

[G12] G., Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring
Nonnegative Matrices, SIMAX, 2013.
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An Improved Linear Optimization Model

min  p’ diag(X)
XeRp*™

such that  [|M — MX]||; < 2,
tr(X) =r,
Xi; < Xj; for all 4, 4,
X <1 for all 4,
where p is a vector with positive entries.
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An Improved Linear Optimization Model

min  p’ diag(X)
XeRP*™

such that  ||[M — MX||; < pe,
tr(X)=,

|M(:,4)|[1 X5 <

X <1 for all 7,

where p is a vector with positive entries.

()], for all 4, 4,

The new model detects the factorization rank r automatically.
Same robustness analysis as Hottopixx applies for any p > 0.

Does not require column normalization.

[GL13] G., Luce, Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization, February 2013.
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An Improved Linear Optimization Model

min  p’ diag(X)
XeRP*™

such that  ||[M — MX||; < pe,
tr(X)=,

|M(:,4)|[1 X5 <

X <1 for all 7,

where p is a vector with positive entries.

()], for all 4, 4,

The new model detects the factorization rank r automatically.

Same robustness analysis as Hottopixx applies for any p > 0.

Does not require column normalization.

If the columns of U are isolated: € < O (a) = ||M — UV||; < O (e),

which is provably more robust than Hottopixx for which ¢ < O (%)

[GL13] G., Luce, Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization, February 2013.
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Numerical Experiments

o Each entry of U € ]Rioxw uniform in [0, 1]; each column normalized.
o Each of the 90 columns of V' € R1?, Dirichlet.

——SPA
—— HottTopixx
S22t —+—LP-rho2

——LP-rho1

10
noise level

Figure: Noise is Gaussian.
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Numerical Experiments

o Each entry of U € ]Rioxw uniform in [0, 1]; each column normalized.
o Each of the 90 columns of V' € R1?, Dirichlet.

] ——SPA
—+— HottTopixx
w 02+ |~ LP-rho2
° —+—LP-rho1

10
noise level

Figure: Noise is sparse (75%), non-zero entries are Gaussian.
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Numerical Experiments

o Each entry of U € ]Rioxw uniform in [0, 1]; each column normalized.
o Each of the 90 columns of V' € R1?, Dirichlet.

——SPA
—— HottTopixx
OS2l ——LP-rho2
——LP-rhot

10" 10
noise level

Figure: Noise is very sparse: one non-zero entry per column.
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Conclusion

1. Nonnegative matrix factorization (NMF)

» Easily interpretable linear dimensionality reduction technique for
nonnegative data, with many applications
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Conclusion

1. Nonnegative matrix factorization (NMF)

» Easily interpretable linear dimensionality reduction technique for
nonnegative data, with many applications

2. Separable NMF

» Separability makes NMF problems efficiently solvable
» Need for fast, practical and robust algorithms

3. A new LP model for near-separable NMF

» More robust, more flexible, always feasible, no normalization
» but ...computationally expensive.
(Possible fix: preselect a ‘good’ subset of columns.)
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Reference.
G., R. Luce, Robust Near-Separable Nonnegative Matrix Factorization

Using Linear Optimization, arXiv:1302.4385.

Code available on https://sites.google.com/site/nicolasgillis/.

Thank you for your attention!
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