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Learn From Empirical Data Via Regularization

Goal: find a model f from observational data
Construct nested subsets of increasingly complex hypotheses f
S ={f(z3w) + Qw) < a3}
For each £, find an hypothesis that matches the data

k

" = arg min Remp(w) + \pQ(w) (A > a)

Pick the complexity/fidelity trade-off hypothesis f(x; @")

design of /1 C S C --- C Sk < choice of penalty (2




General Setting

Structure-Inducing Penalties

prior knowledge: sparsity

l; penalty and the LASSO
miny Remp(w) 4 Allw|1
B w = [w; w5 wp) e R”
> |wp|

= f(z;w) = (2, w), Uw) = [Jwlly =

prior knowledge: related tasks
nuclear norm: multitask learning/collaborative filtering X I
minyy 32, Remp(wr) + A [ W]
w W=[uw,...,wp] € R"*T, fi(z; W) = (, w,)
= QW) = [W]l. =, 0n(W)




General Setting

Composite Penalties

prior knowledge: sparsity

fused LASSO
ming, Remp(w) + Al|Awlq
f >
Bw=[w;w; - ;wp] €ER

m Q(w) = [[Awlly = 3p 11 [wpr1 — wpl

prior knowledge: related tasks
weighted nuclear norm
minw Remp( W) + A [[AWBT .

m W= [wla ey U}T] S RPXT7 ft($7 W) = <£1?, wt>
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Structured Low-rank Learning Problem

Goal

Learn from observational data a matrix that, in addition to being low-rank,
has entries partitioned into known disjointed groups.

min Remp(w) + A || Bwl|«
weRE

Composite (spectral) penalty
m Convex, can be turned into an SDP
m Structured matrix as the output of a mutation B : RY — RM*N

m Nuclear norm used as a proxy for the rank



A Class of Structured Low-rank Learning Problem Problem Formulation

Encoding Group Structures via Mutations

m Matrix entries partitioned into disjointed sets P = {#;,..., 1}

m Membership function associated to P:

L NMXNN — NL
(m,n) — {leNp : (m,n)e P}

m Mutation (forward) operator:
B~
B: RF — RMV
T (xb(m,n) : (m,n)ENMXNN)




A Class of Structured Low-rank Learning Problem System Identification with Missing Data

Application to System Identification

Goal: find a dynamical model from observed input and output signals

Nuclear Norm In Linear System Identification
m Motivated by well-known subspace properties
m Use of instrumental variables/matrix weights

m Modest improvement over classical subspace algorithms

Dealing with Missing Input and Output Observations
m Solve a structured low rank matrix optimization problem

m Reconstruct the system matrices via simple algebraic steps




A Class of Structured Low-rank Learning Problem

System Identification with Missing Data

Subspace Identification of Linear Dynamical Systems

State-space model of Order N,

z(t+1) = Az(t) + Bu(t)
y(t) = Cxz(t) + Du(t)

Realization Property

x(I) z(I + 1)

rank (F(u,y)) = Ny + rank(H(u))

z(T)
z(T+1)

z(T —l-:I - 1)




A Class of Structured Low-rank Learning Problem System Identification with Missing Data

Subspace Identification of Linear Dynamical Systems

State-space model of Order N,
{ z(t+1) = Ax(t) + Bu(t

~— —

y(t) = Cx(t) + Du(t

System Identification with Missing Inputs and Outputs
min Ay (|8, (u) Umeas||” + A2 1Sy (¥) — tmeas||” + 1 F (u, )|«

Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with
missing inputs and outputs, System and Control Letters 62, 605-612, 2013

Essentially a structured low rank matrix optimization problem

J
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Solution Strategies Proximal Algorithms

Proximal Algorithms for Nuclear-norm Problems

min J(w) = Remp(w) + Q(w)

Proximity Operator...

proxg(z) = arg min,, Q(w) + 5z — wl|?

10
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Proximal Algorithms for Nuclear-norm Problems

min J(w) = Remp(w) + Q(w)
Forward-backward Splitting

wh) = Prox,q (w(’“_l) — YV Remp (w(k_l))) , v>0

10
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Proximal Algorithms for Nuclear-norm Problems

min J(w) = Remp(w) + Q(w)
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@ simple to implement
@ scalable

© can be accelerated
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Solution Strategies Proximal Algorithms

Proximal Algorithms for Nuclear-norm Problems

min J(w) = Remp(w) + Q(w)

Forward-backward Splitting

simple to implement
scalable

@ CPU time depends on global iteration complexity
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Proximal Algorithms for Nuclear-norm Problems

min J(w) = Remp(w) + Q(w)
Simple Nuclear Norm Penalty: Q(-) = || - ||«

prox.q(-) is the singular value soft-thresholding operator:

if X = Udiag({ar}1§r§3) VT
then prox o(X) = Udiag({max(o, —7,0)}1<r<r) V"

Composite Nuclear Norm Penalty: Q(-) = ||B - ||«
m in general, not proximable (needs to be solved iteratively)

m J(w®) — J* = O(1/k?) under conditions [M. Schmidt et al., 2011],
[S. Villa et al., 2012]




Solution Strategies Proximal Algorithms

Proximal Algorithms for Nuclear-norm Problems

min J(w) = Remp(w) + Q(w)
Simple Nuclear Norm Penalty: Q(-) = || - ||«

prox.q(-) is the singular value soft-thresholding operator:

if X = Udiag({ar}1§r53) VT
then proxo(X) = Udiag({max(c, —7,0)h<r<r) V7

Composite Nuclear Norm Penalty: Q(-) = [|B - ||«

prox.q(r) = B* (prox7||,||*(l3x))

only valid for very special mutations B!

10



Solution Strategies Proximal Algorithms

Implementing Mutations via Linear Indexing

Forward Operator: B : z — (%(m,n) : (m,n) € Ny x NN)

function Y=forwardOp(x,linSets,sizeY)
Y=zeros(sizeY);
for i=1:numel(linSets)
Y(linSets{i})=x(i);
end

Backward Operator: B* : C' — (Z(m’n)e'pl Cmn : L€ NL>

function y=backwardOp(X,linSets)
y=zeros (numel (1inSets),1);
for i=1:numel(linSets)
y(i)=sum(X(linSetsi));
end

Efficient implementations can be given for special structures (e.g. HankeI)J

11



Solution Strategies Reformulations

Constrained Problem Formulation

min Remp(w) + X || Bw||«
Equivalent Problem with Separable Objective Function

ity Resp(w) + AVl
subject to Bw =Y
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Constrained Problem Formulation

min Remp(w) + X || Bw||«
Equivalent Problem with Separable Objective Function

ity Resp(w) + AVl
subject to Bw =Y

m can be solved by ADMM/Douglas Rachford splitting

S. Boyd et al., Distributed optimization and statistical learning via the alter-
nating direction method of multipliers, Foundations and Trends in Machine
Learning 3(1), 1-122, 2011
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Solution Strategies Reformulations

Constrained Problem Formulation

min Remp(w) + X || Bw||«
Equivalent Problem with Separable Objective Function

ity Resp(w) + AVl
subject to Bw =Y

m can be solved by ADMM/Douglas Rachford splitting
m singular value soft-thresholding operator at each iteration

m adaptive tolerances and Augmenter Lagrangian parameter

Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with
missing inputs and outputs, System and Control Letters 62, 605-612, 2013
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Solution Strategies Reformulations

SVD-free Solution Strategy

min Remp(w) + X || Bw||«
Equivalent Problem with Separable Objective Function

miny, v, v Remp(w) + A /2 (|U]F+ | VIF)
subject to Bw = UV

(%)

(%) using that: || Y|« = ming v . y_yyr 5 (105 +11VIIE)

M. Signoretto , V. Cevher and J.A.K. Suykens, An SVD-free Approach to a
Class of Structured Low Rank Matrix Optimization Problems with Application
to System ldentification, Int. Rep. 13-44, ESAT-SISTA, K.U.Leuven 2013

12



Solution Strategies Reformulations

SVD-free Solution Strategy

min Remp(w) + X || Bw||«
Equivalent Problem with Separable Objective Function

miny, v, v Remp(w) + A /2 (|U]F+ | VIF)
subject to Bw = UV "

(%)

(*) using that: || Y[, =miny . y_gyyr 5 (1UI5+ [ VIF) J

B non-convex smooth problem
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Solution Strategies Reformulations

SVD-free Solution Strategy

min Remp(w) + X || Bw||«
Equivalent Problem with Separable Objective Function

miny, v, v Remp(w) + A /2 (|U]F+ | VIF)
subject to Bw = UV "

(%)

(*) using that: || Y[, =miny . y_gyyr 5 (1UI5+ [ VIF) J

m size of matrix factors can be constrained

12



Solution Strategies Reformulations

SVD-free Solution Strategy

min Remp(w) + X || Bw||«
Equivalent Problem with Separable Objective Function

miny, v, v Remp(w) + A /2 (|U]F+ | VIF)
subject to Bw = UV

(%)

(*) using that: || Y[, =miny . y_gyyr 5 (1UI5+ [ VIF) J

m optimality of the non-convex heuristic for problems related to (x)

B., Recht, M. Fazel and P. Parrilo, Guaranteed minimum-rank solutions of

linear matrix equations via nuclear norm minimization, SIAM Rev., 2010
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Solution Strategies Reformulations

Augmented Lagrangian Approach

Equivalent Problem with Separable Objective Function

Hlinu;,U,V Remp(w)+/\/2 (HUH%"i' HVH%> (*)
subject to Bw= UV

Main lteration

wktD) = argmin, L, (w, UR, V), Zz(K) (1)
Ukt .=  argming L (w(k+1 Uk, vk, z(k) (2)
v+ .= argminy L L (wED ] gkl fy (), 7 (k) (3)
2040 =z 4y <B(w(k+1)) _ k1) V(k-i-l)‘l') (4)

m L,(-) Lagrangian of (x)
m (1,2,3) systems of linear equations if Remp(w) = (v — )" H(w — z)

13



Solution Strategies Reformulations

Experiments

System Identification with Missing Inputs and Outputs

If}i;l AL [|Su(u) — Umea5H2 + A2 Hsy(y) - ?/measH2 + | F(u, y) |«

Experimental Setting
= random inputs: u(t) e R, t=1,2,..., T
m randomly generated stable state-space models with order §
my(t) eRM t=1,2,..., T corrupted by €(t) ~ N(0,0?)
B\ =X=1

14



Solution Strategies Reformulations

Experiments

Constrained Non-convex Formulation

min - g(w—a) Hy(w—a)+ 3 (1U[E+VIF)

subject to Bw=UVT

Evaluation Metrics

obj val : attained value in the constrained formulation
feasibility : primal feasibility || Y — B(z)||#z/|| Y |r
model fit : averaged identification performance
CPU time : time in seconds used by the process

14



Solution Strategies Reformulations

Experiments

Results averaged over 20 MC runs; V% =20, P=2, O0=3, 0 =0.1

‘ obj val ‘ feasibility (10~ 3) ‘ model fit ‘ CPU time (s) ‘ matrix size ‘
M =35, T = 1500
SVD-free** [T0T6.70 | 030 7 ] 067 I
SVD-based® | 1017.36 | 057 7™ ] 561 | 56 <1498
M =15, T = 1500
SVD-free** [ 116605 | 051 7] 196 T
SVD-based® | 116571 | 0.30 7] 8.65 | 136 x 1493
M = 20, T = 4000
SVD-free** [2079.09 | 022 76 ] 678 I
SVD-based® | 208147 | 0.8 76 | awor | 6 x 3%
M = 40, T = 4000
SVD-free** [ 250161 | 039 [ 70 [ 232 ]
SVD-based® | 2501.76 | 037 70 [ Tois | 336x39%
M = 50, T = 10000
SVD-free** [ 750346 | 030 [ 67 [ T2 ]
SVD-based® | 4803.18 | 002 [ 67 | ®mrr | H6x9%8
. . . T
* % factors of unrestricted size in Bw = UV

15



Solution Strategies Reformulations

Experiments

Results averaged over 20 MC runs; V% =20, P=2, O0=3, 0 =0.1

‘ obj val ‘ feasibility (10~ 3) ‘ model fit ‘ CPU time (s) ‘ matrix size ‘

M =5, T = 1500

SVD-free** [ 1016.79 | 030 [ 79 ] 0.67 I

SVD-based® | 1017.36 | 0.87 7 ] 5.61 | 56 <1498
M =15, T = 1500

SVD-free** [ 1166.05 | 051 75 ] 1.06 I

SVD-based® | 1165.71 | 0.30 7 ] 8.65 | 136 x 1493
I = 20, T = 4000

SVD-free** [ 2079.09 ] 022 [ 76 ] 6.78 T

SVD-based® | 208147 | 0.8 76 | awor | 6 x 3%
M = 40, T = 4000

SVD-free** [ 250161 | 039 [ 70 [ 2232 ]

SVD-based® | 2501.76 | 037 [ 70 | _iois | 30 %398
M = 50, T = 10000

SVD-free** [ 480346 | 030 [ 67 [ 11128 |

SVD-based® | 4803.18 | 0.92 [ 67 | ®mrr | H6x9%8

Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification

with missing inputs and outputs, System and Control Letters 62, 2013



Solution Strategies Reformulations

Experiments

Results averaged over 20 MC runs; V% =20, P=2, O0=3, 0 =0.1

‘ obj val ‘ feasibility (10~ 3) ‘ model fit ‘ CPU time (s) ‘ matrix size ‘

M =5, T = 1500

SVD-free** [ 1016.79 | 0.30 [ 79 ] 0.67 I

SVD-based® | 1017.36 | 0.87 7 ] 561 | 56 <1498
M =15, T = 1500

SVD-free** [ 1166.05 | 0.51 75 ] 1.96 I

SVD-based® | 1165.71 | 0.30 7 ] 8.65 | 136 x 1493
M = 20, T = 4000

SVD-free** [ 2079.09 | 022 [ 76 ] 6.78 I

SVD-based® | 208147 | 0.86 76 | aror | o x 3%
M = 40, T = 4000

SVD-free** [ 2501.61 | 0.39 [ 70 ] 2232 I

SVD-based® | 2501.76 | 0.37 70 [ Tooie | 336x39%
M = 50, T = 10000

SVD-free** [ 480346 | 0.30 [ 67 [ 11128 |

SVD-based® | 4803.18 | 0.92 67 | ®mar | H6x9%8

* [U,S,V]=svd(X) instead of [U,S,V]=svd(X,’econ’) !

15



Experiments (cont’d)

Solution Strategies

Experiments

c=0
‘ obj val feasibility (10~2) ‘ model fit CPU time (s) ‘ matrix size
M = 80, T = 10000
SVD-free full 2991.40 0.07 94.71 400.69
SVD-free (- X 22) 2991.44 0.07 94.74 140.50 656 x 9993
SVD-econ 2991.66 0.09 94.60 609.24
o =0.03
| objval | feasibility (1073) | model fit | CPU time (s) | matrix size
M = 80, T = 10000
SVD-free full 3279.09 0.13 85.88 285.88
SVD-free (- X 22) 3279.09 0.13 85.90 132.42 656 x 9993
SVD-econ 3279.08 0.13 85.82 670.67
oc=0.1
‘ obj val feasibility (10~ 3) ‘ model fit CPU time (s) ‘ matrix size
M = 80, T = 10000
SVD-free full 6114.21 0.87 64.63 220.18
SVD-free (- X 22) 6177.62 0.13 60.93 200.7 656 x 9993
SVD-econ 6114.21 0.90 64.63 222.62

16



Experiments (cont’d)

Solution Strategies

Experiments

oc=0
‘ obj val feasibility (10~2) ‘ model fit CPU time (s) ‘ matrix size
M = 80, T = 10000
SVD-free full 2991.40 0.07 94.71 400.69
SVD-free (- X 22) 2991.44 0.07 94.74 140.50 656 x 9993
SVD-econ 2991.66 0.09 94.60 609.24
o =0.03
| objval | feasibility (1073) | model fit | CPU time (s) | matrix size
M = 80, T = 10000
SVD-free full 3279.09 0.13 85.88 285.88
SVD-free (- X 22) 3279.09 0.13 85.90 132.42 656 x 9993
SVD-econ 3279.08 0.13 85.82 670.67
oc=02
obj val feasibility (10~ 3) ‘ model fit CPU time (s) ‘ matrix size
M = 80, T = 10000
SVD-free full 11718.84 0.17 61.94 295.79
SVD-free (- X 22) 15718.70 4.3 37.72 1332.29 656 x 9993
SVD-econ 11718.65 0.65 61.93 409.43

16



Solution Strategies Experiments

Conclusions

Summary
m Mutations & Structured Low-rank Learning Problem
m Application to System Identification with missing data

m Solution strategy based on explicit factors

New Directions/Open Problems
m Guaranteed solutions: the role of noise
m Further exploitation of the structure of mutations

m Other applications of mutation-induced structured matrices

17
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