Scalable Structured Low Rank Matrix Optimization Problems

ROKS 2013

Marco Signoretto, ESAT-SCD/SISTA, KULeuven joint work with V. Cevher and J. A. K. Suykens

Leuven July 10, 2013

Outline

1 General Setting

2 A Class of Structured Low-rank Learning Problem
■ Problem Formulation

- System Identification with Missing Data

3 Solution Strategies
■ Proximal Algorithms

- Reformulations
- Experiments

Outline

1 General Setting

2 A Class of Structured Low-rank Learning Problem

- Problem Formulation
- System Identification with Missing Data

3 Solution Strategies
■ Proximal Algorithms

- Reformulations
- Experiments

Learn From Empirical Data Via Regularization

Goal: find a model f from observational data

Learn From Empirical Data Via Regularization

Goal: find a model f from observational data
1 Construct nested subsets of increasingly complex hypotheses f

Learn From Empirical Data Via Regularization

Goal: find a model f from observational data
1 Construct nested subsets of increasingly complex hypotheses f

$$
\mathscr{S}_{k}=\left\{f(x ; w): \Omega(w) \leq a_{k}\right\}
$$

Learn From Empirical Data Via Regularization

Goal: find a model f from observational data
1 Construct nested subsets of increasingly complex hypotheses f

$$
\mathscr{S}_{k}=\left\{f(x ; w): \Omega(w) \leq a_{k}\right\}
$$

2 For each k, find an hypothesis that matches the data

Learn From Empirical Data Via Regularization

Goal: find a model f from observational data
1 Construct nested subsets of increasingly complex hypotheses f

$$
\mathscr{S}_{k}=\left\{f(x ; w): \Omega(w) \leq a_{k}\right\}
$$

2 For each k, find an hypothesis that matches the data

$$
\hat{w}^{k}=\arg \min R_{\mathrm{emp}}(w)+\lambda_{k} \Omega(w) \quad\left(\lambda_{k} \leftrightarrow a_{k}\right)
$$

Learn From Empirical Data Via Regularization

Goal: find a model f from observational data
1 Construct nested subsets of increasingly complex hypotheses f

$$
\mathscr{S}_{k}=\left\{f(x ; w): \Omega(w) \leq a_{k}\right\}
$$

2 For each k, find an hypothesis that matches the data

$$
\hat{w}^{k}=\arg \min R_{\mathrm{emp}}(w)+\lambda_{k} \Omega(w) \quad\left(\lambda_{k} \leftrightarrow a_{k}\right)
$$

3 Pick the complexity/fidelity trade-off hypothesis $f\left(x ; \hat{w}^{k}\right)$

Learn From Empirical Data Via Regularization

Goal: find a model f from observational data
1 Construct nested subsets of increasingly complex hypotheses f

$$
\mathscr{S}_{k}=\left\{f(x ; w): \Omega(w) \leq a_{k}\right\}
$$

2 For each k, find an hypothesis that matches the data

$$
\hat{w}^{k}=\arg \min R_{\mathrm{emp}}(w)+\lambda_{k} \Omega(w) \quad\left(\lambda_{k} \leftrightarrow a_{k}\right)
$$

3 Pick the complexity/fidelity trade-off hypothesis $f\left(x ; \hat{w}^{k}\right)$

Structure-Inducing Penalties

prior knowledge: sparsity
l_{1} penalty and the LASSO

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|w\|_{1}
$$

- $w=\left[w_{1} ; w_{2} ; \cdots ; w_{P}\right] \in \mathbb{R}^{P}$

■ $f(x ; w)=\langle x, w\rangle, \Omega(w)=\|w\|_{1}=\sum_{p}\left|w_{p}\right|$
prior knowledge: related tasks
nuclear norm: multitask learning/collaborative filtering

$$
\min _{W} \sum_{t} R_{\operatorname{emp}}\left(w_{t}\right)+\lambda\|W\|_{*}
$$

- $W=\left[w_{1}, \ldots, w_{T}\right] \in \mathbb{R}^{P \times T}, f_{t}(x ; W)=\left\langle x, w_{t}\right\rangle$

■ $\Omega(W)=\|W\|_{*}=\sum_{r} \sigma_{r}(W)$

Composite Penalties

prior knowledge: sparsity

fused LASSO

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|A w\|_{1}
$$

■ $w=\left[w_{1} ; w_{2} ; \cdots ; w_{P}\right] \in \mathbb{R}^{P}$
$■ \Omega(w)=\|A w\|_{1}=\sum_{p+1}\left|w_{p+1}-w_{p}\right|$

prior knowledge: related tasks

weighted nuclear norm

$$
\min _{W} R_{\mathrm{emp}}(W)+\lambda\left\|A W B^{\top}\right\|_{*}
$$

- $W=\left[w_{1}, \ldots, w_{T}\right] \in \mathbb{R}^{P \times T}, f_{t}(x ; W)=\left\langle x, w_{t}\right\rangle$

Outline

1 General Setting

2 A Class of Structured Low-rank Learning Problem

- Problem Formulation
- System Identification with Missing Data

3 Solution Strategies

- Proximal Algorithms
- Reformulations
- Experiments

Structured Low-rank Learning Problem

Goal

Learn from observational data a matrix that, in addition to being low-rank, has entries partitioned into known disjointed groups.

Structured Low-rank Learning Problem

Goal

Learn from observational data a matrix that, in addition to being low-rank, has entries partitioned into known disjointed groups.

$$
\min _{w \in \mathbb{R}^{L}} R_{\mathrm{emp}}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

■ Composite (spectral) penalty
■ Convex, can be turned into an SDP

- Structured matrix as the output of a mutation $\mathcal{B}: \mathbb{R}^{L} \rightarrow \mathbb{R}^{M \times N}$

■ Nuclear norm used as a proxy for the rank

Encoding Group Structures via Mutations

■ Matrix entries partitioned into disjointed sets $\mathcal{P}=\left\{\mathscr{P}_{1}, \ldots, \mathscr{P}_{L}\right\}$

■ Membership function associated to \mathcal{P} :

$$
\begin{aligned}
\iota: \mathbb{N}_{M} \times \mathbb{N}_{N} & \rightarrow \mathbb{N}_{L} \\
(m, n) & \mapsto\left\{l \in \mathbb{N}_{L}:(m, n) \in \mathscr{P}_{l}\right\}
\end{aligned}
$$

■ Mutation (forward) operator:

$$
\begin{aligned}
\mathcal{B}: \mathbb{R}^{L} & \rightarrow \mathbb{R}^{M \times N} \\
x & \mapsto\left(x_{\iota(m, n)}:(m, n) \in \mathbb{N}_{M} \times \mathbb{N}_{N}\right)
\end{aligned}
$$

日 \mapsto

Application to System Identification

Goal: find a dynamical model from observed input and output signals

Nuclear Norm In Linear System Identification
■ Motivated by well-known subspace properties
■ Use of instrumental variables/matrix weights
■ Modest improvement over classical subspace algorithms

Dealing with Missing Input and Output Observations
■ Solve a structured low rank matrix optimization problem
■ Reconstruct the system matrices via simple algebraic steps

Subspace Identification of Linear Dynamical Systems

State-space model of Order N_{x}

$$
\left\{\begin{aligned}
x(t+1) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}\right.
$$

Realization Property

$\mathcal{F}:(u, y) \mapsto\left[\frac{\mathcal{H}(u)}{\mathcal{H}(y)}\right], \mathcal{H}(x)=\left[\begin{array}{cccc}x(1) & x(2) & \cdots & x(T) \\ x(2) & x(3) & \cdots & x(T+1) \\ \vdots & \vdots & \ddots & \vdots \\ x(I) & x(I+1) & \cdots & x(T+I-1)\end{array}\right]$
$\operatorname{rank}(\mathcal{F}(u, y))=N_{x}+\operatorname{rank}(\mathcal{H}(u))$

Subspace Identification of Linear Dynamical Systems

State-space model of $\operatorname{Order} N_{x}$

$$
\left\{\begin{aligned}
x(t+1) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}\right.
$$

System Identification with Missing Inputs and Outputs

$$
\min _{u, y} \lambda_{1}\left\|\mathcal{S}_{u}(u)-u_{\text {meas }}\right\|^{2}+\lambda_{2}\left\|\mathcal{S}_{y}(y)-y_{\text {meas }}\right\|^{2}+\|\mathcal{F}(u, y)\|_{*}
$$

Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with missing inputs and outputs, System and Control Letters 62, 605-612, 2013

Essentially a structured low rank matrix optimization problem

Outline

1 General Setting

2 A Class of Structured Low-rank Learning Problem

- Problem Formulation
- System Identification with Missing Data

3 Solution Strategies
■ Proximal Algorithms

- Reformulations
- Experiments

Proximal Algorithms for Nuclear-norm Problems

$$
\min _{w} J(w)=R_{\mathrm{emp}}(w)+\Omega(w)
$$

Proximity Operator...

$$
\operatorname{prox}_{\Omega}(x)=\arg \min _{w} \Omega(w)+\frac{1}{2}\|x-w\|^{2}
$$

Proximal Algorithms for Nuclear-norm Problems

$$
\min _{w} J(w)=R_{\mathrm{emp}}(w)+\Omega(w)
$$

Forward-backward Splitting

$$
w^{(k)}=\operatorname{prox}_{\gamma \Omega}\left(w^{(k-1)}-\gamma \nabla R_{\operatorname{emp}}\left(w^{(k-1)}\right)\right), \gamma>0
$$

Proximal Algorithms for Nuclear-norm Problems

$$
\min _{w} J(w)=R_{\mathrm{emp}}(w)+\Omega(w)
$$

Forward-backward Splitting
(4) simple to implement
(4) scalable
(4) can be accelerated

Proximal Algorithms for Nuclear-norm Problems

$$
\min _{w} J(w)=R_{\mathrm{emp}}(w)+\Omega(w)
$$

Forward-backward Splitting
(4) simple to implement
(+) scalable

- CPU time depends on global iteration complexity

Proximal Algorithms for Nuclear-norm Problems

$$
\min _{w} J(w)=R_{\mathrm{emp}}(w)+\Omega(w)
$$

Simple Nuclear Norm Penalty: $\Omega(\cdot)=\|\cdot\|_{*}$
$\operatorname{prox}_{\gamma \Omega}(\cdot)$ is the singular value soft-thresholding operator:

$$
\begin{aligned}
\text { if } & =U \operatorname{diag}\left(\left\{\sigma_{r}\right\}_{1 \leq r \leq R}\right) V^{\top} \\
\text { then } \operatorname{prox}_{\gamma \Omega}(X) & =U \operatorname{diag}\left(\left\{\max \left(\sigma_{r}-\gamma, 0\right)\right\}_{1 \leq r \leq R}\right) V^{\top}
\end{aligned}
$$

Proximal Algorithms for Nuclear-norm Problems

$$
\min _{w} J(w)=R_{\mathrm{emp}}(w)+\Omega(w)
$$

Simple Nuclear Norm Penalty: $\Omega(\cdot)=\|\cdot\|_{*}$
$\operatorname{prox}_{\gamma \Omega}(\cdot)$ is the singular value soft-thresholding operator:

$$
\begin{aligned}
\text { if } & =U \operatorname{diag}\left(\left\{\sigma_{r}\right\}_{1 \leq r \leq R}\right) V^{\top} \\
\text { then } \operatorname{prox}_{\gamma \Omega}(X) & =U \operatorname{diag}\left(\left\{\max \left(\sigma_{r}-\gamma, 0\right)\right\}_{1 \leq r \leq R}\right) V^{\top}
\end{aligned}
$$

Composite Nuclear Norm Penalty: $\Omega(\cdot)=\|\mathcal{B} \cdot\|_{*}$
■ in general, not proximable (needs to be solved iteratively)
■ $J\left(w^{(k)}\right)-J^{*}=O\left(1 / k^{2}\right)$ under conditions [M. Schmidt et al., 2011], [S. Villa et al., 2012]

Proximal Algorithms for Nuclear-norm Problems

$$
\min _{w} J(w)=R_{\mathrm{emp}}(w)+\Omega(w)
$$

Simple Nuclear Norm Penalty: $\Omega(\cdot)=\|\cdot\|_{*}$
$\operatorname{prox}_{\gamma \Omega}(\cdot)$ is the singular value soft-thresholding operator:

$$
\begin{aligned}
\text { if } & =U \operatorname{diag}\left(\left\{\sigma_{r}\right\}_{1 \leq r \leq R}\right) V^{\top} \\
\text { then } \operatorname{prox}_{\gamma \Omega}(X) & =U \operatorname{diag}\left(\left\{\max \left(\sigma_{r}-\gamma, 0\right)\right\}_{1 \leq r \leq R}\right) V^{\top}
\end{aligned}
$$

Composite Nuclear Norm Penalty: $\Omega(\cdot)=\|\mathcal{B} \cdot\|_{*}$

$$
\operatorname{prox}_{\gamma \Omega}(x)=\mathcal{B}^{*}\left(\operatorname{prox}_{\gamma\|\cdot\|_{*}}(\mathcal{B} x)\right)
$$

only valid for very special mutations \mathcal{B} !

Implementing Mutations via Linear Indexing

```
Forward Operator: \mathcal{B : x\mapsto ( }\mp@subsup{x}{\iota(m,n)}{}:(m,n)\in\mp@subsup{\mathbb{N}}{M}{}\times\mp@subsup{\mathbb{N}}{N}{})
function Y=forwardOp(x,linSets,sizeY)
    Y=zeros(sizeY);
    for i=1:numel(linSets)
        Y(linSets{i})=x(i);
    end
```

Backward Operator: $\mathcal{B}^{*}: C \mapsto\left(\sum_{(m, n) \in \mathcal{P}_{l}} c_{m n}: l \in \mathbb{N}_{L}\right)$
function $y=$ backwardOp (X,linSets)
$y=z e r o s(n u m e l(l i n S e t s), 1)$;
for $i=1:$ numel (linSets)
$y(i)=\operatorname{sum}(X(l i n S e t s i))$;
end

Efficient implementations can be given for special structures (e.g. Hankel)

Constrained Problem Formulation

$$
\min _{w} R_{\text {emp }}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

Equivalent Problem with Separable Objective Function

$$
\begin{aligned}
\min _{w, Y} & R_{\operatorname{emp}}(w)+\lambda\|Y\|_{*} \\
\text { subject to } & \mathcal{B} w=Y
\end{aligned}
$$

Constrained Problem Formulation

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

Equivalent Problem with Separable Objective Function

$$
\begin{aligned}
\min _{w, Y} & R_{\mathrm{emp}}(w)+\lambda\|Y\|_{*} \\
\text { subject to } & \mathcal{B} w=Y
\end{aligned}
$$

■ can be solved by ADMM/Douglas Rachford splitting
S. Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning 3(1), 1-122, 2011

Constrained Problem Formulation

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

Equivalent Problem with Separable Objective Function

$$
\begin{aligned}
\min _{w, Y} & R_{\mathrm{emp}}(w)+\lambda\|Y\|_{*} \\
\text { subject to } & \mathcal{B} w=Y
\end{aligned}
$$

- can be solved by ADMM/Douglas Rachford splitting
- singular value soft-thresholding operator at each iteration

Constrained Problem Formulation

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

Equivalent Problem with Separable Objective Function

$$
\begin{aligned}
\min _{w, Y} & R_{\mathrm{emp}}(w)+\lambda\|Y\|_{*} \\
\text { subject to } & \mathcal{B} w=Y
\end{aligned}
$$

- can be solved by ADMM/Douglas Rachford splitting
- singular value soft-thresholding operator at each iteration

■ adaptive tolerances and Augmenter Lagrangian parameter
Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with missing inputs and outputs, System and Control Letters 62, 605-612, 2013

SVD-free Solution Strategy

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

Equivalent Problem with Separable Objective Function

$$
\begin{align*}
\min _{w, U, V} & R_{\mathrm{emp}}(w)+\lambda / 2\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right) \\
\text { subject to } & \mathcal{B} w=U V^{\top}
\end{align*}
$$

(\star) using that: $\|Y\|_{*}=\min _{U, V: Y=U V^{\top}} \frac{1}{2}\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right)$
M. Signoretto , V. Cevher and J.A.K. Suykens, An SVD-free Approach to a Class of Structured Low Rank Matrix Optimization Problems with Application to System Identification, Int. Rep. 13-44, ESAT-SISTA, K.U.Leuven 2013

SVD-free Solution Strategy

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

Equivalent Problem with Separable Objective Function

$$
\begin{align*}
\min _{w, U, V} & R_{\mathrm{emp}}(w)+\lambda / 2\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right) \\
\text { subject to } & \mathcal{B} w=U V^{\top}
\end{align*}
$$

(*) using that: $\|Y\|_{*}=\min _{U, V: Y=U V^{\top}} \frac{1}{2}\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right)$

- non-convex smooth problem

SVD-free Solution Strategy

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

Equivalent Problem with Separable Objective Function

$$
\begin{align*}
\min _{w, U, V} & R_{\mathrm{emp}}(w)+\lambda / 2\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right) \\
\text { subject to } & \mathcal{B} w=U V^{\top}
\end{align*}
$$

(*) using that: $\|Y\|_{*}=\min _{U, V: Y=U V^{\top}} \frac{1}{2}\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right)$

- size of matrix factors can be constrained

SVD-free Solution Strategy

$$
\min _{w} R_{\mathrm{emp}}(w)+\lambda\|\mathcal{B} w\|_{*}
$$

Equivalent Problem with Separable Objective Function

$$
\begin{align*}
\min _{w, U, V} & R_{\mathrm{emp}}(w)+\lambda / 2\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right) \\
\text { subject to } & \mathcal{B} w=U V^{\top}
\end{align*}
$$

(\star) using that: $\|Y\|_{*}=\min _{U, V: Y=U V^{\top}} \frac{1}{2}\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right)$

- optimality of the non-convex heuristic for problems related to (\star)
B., Recht, M. Fazel and P. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 2010

Augmented Lagrangian Approach

Equivalent Problem with Separable Objective Function

$$
\begin{array}{ll}
\min _{w, U, V} & R_{\text {emp }}(w)+\lambda / 2\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right) \\
\text { subject to } & \mathcal{B} w=U V^{\top} \tag{*}
\end{array}
$$

Main Iteration

$$
\left\{\begin{align*}
w^{(k+1)} & :=\arg \min _{w} \quad L_{\mu}\left(w, U^{(k)}, V^{(k)} ; Z^{(k)}\right) \tag{1}\\
U^{(k+1)} & :=\arg \min _{U} \quad L_{\mu}\left(w^{(k+1)}, U^{(k)}, V^{(k)} ; Z^{(k)}\right) \tag{2}\\
V^{(k+1)} & :=\arg \min _{V} \quad L_{\mu}\left(w^{(k+1)}, U^{(k+1)}, V^{(k)} ; Z^{(k)}\right) \tag{3}\\
Z^{(k+1)} & :=Z^{(k)}+\mu\left(\mathcal{B}\left(w^{(k+1)}\right)-U^{(k+1)} V^{(k+1) \top}\right) \tag{4}
\end{align*}\right.
$$

- $L_{\mu}(\cdot)$ Lagrangian of (\star)
$\square(1,2,3)$ systems of linear equations if $R_{\mathrm{emp}}(w)=(w-x)^{\top} H(w-x)$

Experiments

System Identification with Missing Inputs and Outputs

$$
\min _{u, y} \lambda_{1}\left\|\mathcal{S}_{u}(u)-u_{\text {meas }}\right\|^{2}+\lambda_{2}\left\|\mathcal{S}_{y}(y)-y_{\text {meas }}\right\|^{2}+\|F(u, y)\|_{*}
$$

Experimental Setting

■ random inputs: $u(t) \in \mathbb{R}^{P}, t=1,2, \ldots, T$
■ randomly generated stable state-space models with order S

- $y(t) \in \mathbb{R}^{M}, t=1,2, \ldots, T$ corrupted by $\epsilon(t) \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- $\lambda_{1}=\lambda_{2}=1$

Experiments

Constrained Non-convex Formulation

$$
\min _{w, U, V} \begin{array}{cc}
\frac{1}{2}(w-a)^{\top} H_{\lambda}(w-a)+\frac{1}{2}\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right) \\
\text { subject to } & \mathcal{B} w=U V^{\top}
\end{array}
$$

Evaluation Metrics

obj val : attained value in the constrained formulation
feasibility : primal feasibility $\|Y-\mathcal{B}(x)\|_{F} /\|Y\|_{F}$
model fit : averaged identification performance
CPU time : time in seconds used by the process

Experiments

Results averaged over 20 MC runs; $V \%=20, P=2, O=3, \sigma=0.1$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size
SVD-free**	$M=5, T=1500$				
	1016.79	0.30	79	0.67	56×1493
SVD-based*	1017.36	0.87	79	5.61	
SVD-free**	$M=15, T=1500$				
	1166.05	0.51	75	1.96	136×1493
SVD-based*	1165.71	0.30	75	8.65	
SVD-free**	$M=20, T=4000$				
	2079.09	0.22	76	6.78	176×3993
SVD-based*	2081.47	0.86	76	47.01	
SVD-free**	$M=40, T=4000$				
	2501.61	0.39	70	22.32	336×3993
	2501.76	0.37	70	120.16	
SVD-free**	$M=50, T=10000$				
	4803.46	0.30	67	111.28	416×9993
SVD-based*	4803.18	0.92	67	825.77	

Experiments

Results averaged over 20 MC runs; $V \%=20, P=2, O=3, \sigma=0.1$

	obj val	feasibility $\left(10^{-3}\right)$	model fit	CPU time (s)	matrix size
SVD-free**	$M=5, T=1500$				
	1016.79	0.30	79	0.67	56×1493
SVD-based*	1017.36	0.87	79	5.61	
SVD-free**	$M=15, \quad T=1500$				
	1166.05	0.51	75	1.96	136×1493
SVD-based*	1165.71	0.30	75	8.65	
SVD-free**	$M=20, T=4000$				
	2079.09	0.22	76	6.78	176×3993
SVD-based*	2081.47	0.86	76	47.01	
SVD-free**	$M=40, T=4000$				
	2501.61	0.39	70	22.32	336×3993
SVD-based*	2501.76	0.37	70	120.16	
SVD-free**	$M=50, \quad T=10000$				
	4803.46	0.30	67	111.28	416×9993
SVD-based*	4803.18	0.92	67	825.77	

* Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with missing inputs and outputs, System and Control Letters 62, 2013

Experiments

Results averaged over 20 MC runs; $V \%=20, P=2, O=3, \sigma=0.1$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size
	$M=5, T=1500$				
SVD-free**	1016.79	0.30	79	0.67	56×1493
SVD-based*	1017.36	0.87	79	5.61	
	$M=15, T=1500$				
SVD-free**	1166.05	0.51	75	1.96	136×1493
SVD-based*	1165.71	0.30	75	8.65	
	$M=20, T=4000$				
SVD-free**	2079.09	0.22	76	6.78	176×3993
SVD-based*	2081.47	0.86	76	47.01	
	$M=40, T=4000$				
SVD-free**	2501.61	0.39	70	22.32	336×3993
SVD-based*	2501.76	0.37	70	120.16	
	$M=50, T=10000$				
SVD-free**	4803.46	0.30	67	111.28	416×9993
SVD-based*	4803.18	0.92	67	825.77	

* $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{X}) \quad$ instead of $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{X}$, 'econ') !

Experiments (cont'd)

		$\sigma=0$.			
	obj val	feasibility $\left(10^{-3}\right)$	model fit	CPU time (s)	matrix size
	$M=80, T=10000$				
SVD-free full	3279.09	0.13	85.88	285.88	656×9993
SVD-free ($\cdot \times 22$)	3279.09	0.13	85.90	132.42	
SVD-econ	3279.08	0.13	85.82	670.67	

$$
\sigma=0.1
$$

| | obj val | feasibility $\left(10^{-3}\right)$ | model fit | CPU time (s) | matrix size |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M=80, T=10000$ | | | | | |
| | 6114.21 | 0.87 | 64.63 | 220.18 | 656×9993 |
| | 6177.62 | 0.13 | 60.93 | 200.7 | |
| | 6114.21 | 0.90 | 64.63 | 222.62 | |

Experiments (cont'd)

		$\sigma=0$.			
	obj val	feasibility $\left(10^{-3}\right)$	model fit	CPU time (s)	matrix size
	$M=80, T=10000$				
SVD-free full	3279.09	0.13	85.88	285.88	656×9993
SVD-free ($\cdot \times 22$)	3279.09	0.13	85.90	132.42	
SVD-econ	3279.08	0.13	85.82	670.67	

Conclusions

Summary

- Mutations \& Structured Low-rank Learning Problem
- Application to System Identification with missing data

■ Solution strategy based on explicit factors

New Directions/Open Problems
■ Guaranteed solutions: the role of noise

- Further exploitation of the structure of mutations

■ Other applications of mutation-induced structured matrices

