Scalable Structured Low Rank Matrix Optimization Problems

ROKS 2013

Marco Signoretto, ESAT-SCD/SISTA, KULeuven

joint work with V. Cevher and J. A. K. Suykens

Leuven July 10, 2013

Outline

1 General Setting

- 2 A Class of Structured Low-rank Learning Problem
 - Problem Formulation
 - System Identification with Missing Data
- 3 Solution Strategies
 - Proximal Algorithms
 - Reformulations
 - Experiments

Outline

1 General Setting

- A Class of Structured Low-rank Learning Problem
 - Problem Formulation
 - System Identification with Missing Data
- **3** Solution Strategies
 - Proximal Algorithms
 - Reformulations
 - Experiments

Goal: find a model f from observational data

Goal: find a model f from observational data

1 Construct nested subsets of increasingly complex hypotheses f

Goal: find a model f from observational data

1 Construct nested subsets of increasingly complex hypotheses f

$$\mathscr{S}_{\underline{\textit{k}}} = \{f(x;w) \ : \ \Omega(w) \leq \underline{\textit{a}}_{\underline{\textit{k}}}\}$$

Goal: find a model f from observational data

1 Construct nested subsets of increasingly complex hypotheses f

$$\mathscr{S}_{\pmb{k}} = \{f(x;w) \ : \ \Omega(w) \leq \underline{a}_{\pmb{k}}\}$$

2 For each k, find an hypothesis that matches the data

Goal: find a model f from observational data

1 Construct nested subsets of increasingly complex hypotheses f

$$\mathscr{S}_{\pmb{k}} = \{f(x;w) \ : \ \Omega(w) \leq \underline{a_k}\}$$

2 For each k, find an hypothesis that matches the data

$$\hat{w}^{k} = \arg\min R_{\mathsf{emp}}(w) + \lambda_{k}\Omega(w) \qquad (\lambda_{k} \leftrightarrow a_{k})$$

<

Goal: find a model f from observational data

1 Construct nested subsets of increasingly complex hypotheses f

$$\mathscr{S}_{\underline{k}} = \{f(x; w) : \Omega(w) \leq \underline{a_k}\}$$

2 For each k, find an hypothesis that matches the data $\hat{w}^{k} = \arg \min R_{emp}(w) + \lambda_{k}\Omega(w) \qquad (\lambda_{k} \leftrightarrow a_{k})$

3 Pick the complexity/fidelity trade-off hypothesis $f(x; \hat{w}^k)$

6

Goal: find a model f from observational data

1 Construct nested subsets of increasingly complex hypotheses f

$$\mathscr{S}_{\underline{k}} = \{f(x; w) : \Omega(w) \leq \underline{a_k}\}$$

2 For each k, find an hypothesis that matches the data

$$\hat{w}^{k} = \arg\min R_{\mathsf{emp}}(w) + \lambda_{k}\Omega(w) \qquad (\lambda_{k} \leftrightarrow a_{k})$$

3 Pick the complexity/fidelity trade-off hypothesis $f(x; \hat{w}^k)$

design of $\mathscr{S}_1 \subset \mathscr{S}_2 \subset \cdots \subset \mathscr{S}_K \iff$ choice of penalty Ω

Structure-Inducing Penalties

prior knowledge: sparsity

 l_1 penalty and the LASSO

 $\min_{w} R_{\mathsf{emp}}(w) + \lambda \|w\|_1$

$$w = [w_1; w_2; \cdots; w_P] \in \mathbb{R}^P$$

•
$$f(x;w) = \langle x,w \rangle, \ \Omega(w) = \|w\|_1 = \sum_p |w_p|$$

prior knowledge: related tasks

nuclear norm: multitask learning/collaborative filtering

$$\min_{W} \sum_{t} R_{\mathsf{emp}}(w_t) + \lambda \, \| \, W \|_*$$

•
$$W = [w_1, \dots, w_T] \in \mathbb{R}^{P \times T}, f_t(x; W) = \langle x, w_t \rangle$$

•
$$\Omega(W) = \|W\|_* = \sum_r \sigma_r(W)$$

Composite Penalties

prior knowledge: sparsity

fused LASSO

$$\min_{w} R_{emp}(w) + \lambda \|Aw\|_{1}$$

$$w = [w_{1}; w_{2}; \cdots; w_{P}] \in \mathbb{R}^{P}$$

$$\Omega(w) = \|Aw\|_{1} = \sum_{p+1} |w_{p+1} - w_{p}|$$

prior knowledge: related tasks

weighted nuclear norm

 $\min_{W} R_{\mathsf{emp}}(W) + \lambda \, \|AWB^{\top}\|_*$

•
$$W = [w_1, \ldots, w_T] \in \mathbb{R}^{P \times T}, f_t(x; W) = \langle x, w_t \rangle$$

Outline

1 General Setting

- 2 A Class of Structured Low-rank Learning Problem
 - Problem Formulation
 - System Identification with Missing Data

3 Solution Strategies

- Proximal Algorithms
- Reformulations
- Experiments

m Problem Formulation

Structured Low-rank Learning Problem

Goal

Learn from observational data a matrix that, in addition to being low-rank, has entries partitioned into known disjointed groups.

Structured Low-rank Learning Problem

Goal

Learn from observational data a matrix that, in addition to being low-rank, has entries partitioned into known disjointed groups.

$$\min_{w \in \mathbb{R}^L} R_{\text{emp}}(w) + \lambda \, \|\mathcal{B}w\|_*$$

- Composite (spectral) penalty
- Convex, can be turned into an SDP
- Structured matrix as the output of a mutation \mathcal{B} : $\mathbb{R}^L \to \mathbb{R}^{M \times N}$
- Nuclear norm used as a proxy for the rank

Encoding Group Structures via Mutations

- Matrix entries partitioned into disjointed sets $\mathcal{P} = \{\mathscr{P}_1, \dots, \mathscr{P}_L\}$
- Membership function associated to \mathcal{P} :

$$\begin{split} \iota: & \mathbb{N}_M \times \mathbb{N}_N \to \mathbb{N}_L \\ & (m,n) \mapsto \{l \in \mathbb{N}_L : (m,n) \in \mathscr{P}_l\} \end{split}$$

Mutation (forward) operator:

$$\begin{aligned} \mathcal{B}: & \mathbb{R}^L & \to & \mathbb{R}^{M \times N} \\ & x & \mapsto & \left(x_{\iota(m,n)} : (m,n) \in \mathbb{N}_M \times \mathbb{N}_N \right) \end{aligned}$$

Application to System Identification

Goal: find a dynamical model from observed input and output signals

Nuclear Norm In Linear System Identification

- Motivated by well-known subspace properties
- Use of instrumental variables/matrix weights
- Modest improvement over classical subspace algorithms

Dealing with Missing Input and Output Observations

- Solve a structured low rank matrix optimization problem
- Reconstruct the system matrices via simple algebraic steps

Subspace Identification of Linear Dynamical Systems

State-space model of Order N_x

$$\begin{array}{rcl} x(t+1) &=& Ax(t) + Bu(t) \\ y(t) &=& Cx(t) + Du(t) \end{array}$$

Realization Property

$$\mathcal{F}: (u, y) \mapsto \left[\frac{\mathcal{H}(u)}{\mathcal{H}(y)}\right], \ \mathcal{H}(x) = \begin{bmatrix} x(1) & x(2) & \cdots & x(T) \\ x(2) & x(3) & \cdots & x(T+1) \\ \vdots & \vdots & \ddots & \vdots \\ x(I) & x(I+1) & \cdots & x(T+I-1) \end{bmatrix}$$

 $\operatorname{rank}(\mathcal{F}(u, y)) = N_x + \operatorname{rank}(\mathcal{H}(u))$

Subspace Identification of Linear Dynamical Systems

State-space model of Order N_x

$$\begin{array}{rcl} x(t+1) &=& Ax(t)+Bu(t)\\ y(t) &=& Cx(t)+Du(t) \end{array}$$

System Identification with Missing Inputs and Outputs

$$\min_{u,y} \lambda_1 \left\| \mathcal{S}_u(u) - u_{\mathsf{meas}} \right\|^2 + \lambda_2 \left\| \mathcal{S}_y(y) - y_{\mathsf{meas}} \right\|^2 + \left\| \mathcal{F}(u,y) \right\|_*$$

Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with missing inputs and outputs, *System and Control Letters* 62, 605-612, 2013

Essentially a structured low rank matrix optimization problem

Outline

1 General Setting

- A Class of Structured Low-rank Learning Problem
 - Problem Formulation
 - System Identification with Missing Data
- **3** Solution Strategies
 - Proximal Algorithms
 - Reformulations
 - Experiments

$$\min_{w} J(w) = R_{\rm emp}(w) + \Omega(w)$$

Proximity Operator...

$$\operatorname{prox}_{\Omega}(x) = \arg\min_{w} \Omega(w) + \frac{1}{2} \|x - w\|^2$$

$$\min_{w} J(w) = R_{\rm emp}(w) + \Omega(w)$$

Forward-backward Splitting

$$w^{(k)} = \operatorname{prox}_{\gamma\Omega} \left(w^{(k-1)} - \gamma \nabla R_{\operatorname{emp}} \left(w^{(k-1)} \right) \right), \ \gamma > 0$$

$$\min_{w} J(w) = R_{\rm emp}(w) + \Omega(w)$$

Forward-backward Splitting

- simple to implement
- scalable
- can be accelerated

$$\min_{w} J(w) = R_{\rm emp}(w) + \Omega(w)$$

Forward-backward Splitting

- simple to implement
- scalable
- CPU time depends on global iteration complexity

$$\min_{w} J(w) = R_{\rm emp}(w) + \Omega(w)$$

Simple Nuclear Norm Penalty: $\Omega(\cdot) = \|\cdot\|_*$

 $\operatorname{prox}_{\gamma\Omega}(\cdot)$ is the singular value soft-thresholding operator:

if
$$X = U \operatorname{diag}(\{\sigma_r\}_{1 \le r \le R}) V^{\top}$$

then $\operatorname{prox}_{\gamma\Omega}(X) = U \operatorname{diag}(\{\max(\sigma_r - \gamma, 0)\}_{1 \le r \le R}) V^{\top}$

$$\min_{w} J(w) = R_{\rm emp}(w) + \Omega(w)$$

Simple Nuclear Norm Penalty: $\Omega(\cdot) = \|\cdot\|_*$

 $\operatorname{prox}_{\gamma\Omega}(\cdot)$ is the singular value soft-thresholding operator:

if
$$X = U \operatorname{diag}(\{\sigma_r\}_{1 \le r \le R}) V^{\top}$$

then $\operatorname{prox}_{\gamma\Omega}(X) = U \operatorname{diag}(\{\max(\sigma_r - \gamma, 0)\}_{1 \le r \le R}) V^{\top}$

Composite Nuclear Norm Penalty: $\Omega(\cdot) = \|\mathcal{B} \cdot \|_*$

- in general, not proximable (needs to be solved iteratively)
- $J(w^{(k)}) J^* = O(1/k^2)$ under conditions [M. Schmidt et al., 2011], [S. Villa et al., 2012]

$$\min_{w} J(w) = R_{\rm emp}(w) + \Omega(w)$$

Simple Nuclear Norm Penalty: $\Omega(\cdot) = \|\cdot\|_*$

 $\mathrm{prox}_{\gamma\Omega}(\cdot)$ is the singular value soft-thresholding operator:

if
$$X = U \operatorname{diag}(\{\sigma_r\}_{1 \le r \le R}) V^{\top}$$

then $\operatorname{prox}_{\gamma\Omega}(X) = U \operatorname{diag}(\{\max(\sigma_r - \gamma, 0)\}_{1 \le r \le R}) V^{\top}$

Composite Nuclear Norm Penalty: $\Omega(\cdot) = \|\mathcal{B} \cdot \|_*$

$$\operatorname{prox}_{\gamma\Omega}(x) = \mathcal{B}^*\left(\operatorname{prox}_{\gamma\|\cdot\|_*}(\mathcal{B}x)\right)$$

only valid for very special mutations \mathcal{B} !

Implementing Mutations via Linear Indexing

```
Forward Operator: \mathcal{B} : x \mapsto (x_{\iota(m,n)} : (m,n) \in \mathbb{N}_M \times \mathbb{N}_N)
function Y=forwardOp(x,linSets,sizeY)
Y=zeros(sizeY);
for i=1:numel(linSets)
Y(linSets{i})=x(i);
end
```

```
Backward Operator: \mathcal{B}^* : C \mapsto \left( \sum_{(m,n) \in \mathcal{P}_l} c_{mn} : l \in \mathbb{N}_L \right)

function y=backwardOp(X,linSets)

y=zeros(numel(linSets),1);

for i=1:numel(linSets)

y(i)=sum(X(linSetsi));

end
```

Efficient implementations can be given for special structures (e.g. Hankel)

 $\min_{w} R_{\text{emp}}(w) + \lambda \, \|\mathcal{B}w\|_*$

Equivalent Problem with Separable Objective Function

 $\min_{w, Y} \quad R_{emp}(w) + \lambda \| Y \|_{*}$ subject to $\mathcal{B}w = Y$

 $\min_{w} R_{\rm emp}(w) + \lambda \, \|\mathcal{B}w\|_*$

Equivalent Problem with Separable Objective Function

 $\min_{w, Y} \quad R_{emp}(w) + \lambda \| Y \|_{*}$ subject to $\mathcal{B}w = Y$

can be solved by ADMM/Douglas Rachford splitting

S. Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, *Foundations and Trends in Machine Learning* 3(1), 1-122, 2011

 $\min_{w} R_{\rm emp}(w) + \lambda \, \|\mathcal{B}w\|_*$

Equivalent Problem with Separable Objective Function

 $\min_{w,Y} \quad R_{emp}(w) + \lambda \| Y \|_*$ subject to $\mathcal{B}w = Y$

can be solved by ADMM/Douglas Rachford splitting

singular value soft-thresholding operator at each iteration

 $\min_{w} R_{\rm emp}(w) + \lambda \, \|\mathcal{B}w\|_*$

Equivalent Problem with Separable Objective Function

 $\min_{w, Y} \quad R_{emp}(w) + \lambda \|Y\|_*$ subject to $\mathcal{B}w = Y$

- can be solved by ADMM/Douglas Rachford splitting
- singular value soft-thresholding operator at each iteration
- adaptive tolerances and Augmenter Lagrangian parameter
 - Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with missing inputs and outputs, *System and Control Letters* 62, 605-612, 2013

Reformulations

SVD-free Solution Strategy

 $\min_{w} R_{\rm emp}(w) + \lambda \, \|\mathcal{B}w\|_*$

Equivalent Problem with Separable Objective Function

$$\min_{w, U, V} \quad R_{\text{emp}}(w) + \lambda/2 \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

subject to $\mathcal{B}w = UV^{\top}$

(*) using that: $||Y||_* = \min_{U,V} \frac{1}{2} \left(||U||_F^2 + ||V||_F^2 \right)$

M. Signoretto , V. Cevher and J.A.K. Suykens, An SVD-free Approach to a Class of Structured Low Rank Matrix Optimization Problems with Application to System Identification, Int. Rep. 13-44, ESAT-SISTA, K.U.Leuven 2013

Reformulations

SVD-free Solution Strategy

 $\min_{w} R_{\rm emp}(w) + \lambda \, \|\mathcal{B}w\|_*$

Equivalent Problem with Separable Objective Function

$$\min_{w, U, V} \quad R_{\text{emp}}(w) + \lambda/2 \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

subject to $\mathcal{B}w = UV^{\top}$

(*) using that: $||Y||_* = \min_{U,V} \frac{1}{2} (||U||_F^2 + ||V||_F^2)$

non-convex smooth problem

SVD-free Solution Strategy

$$\min_{w} R_{\text{emp}}(w) + \lambda \, \|\mathcal{B}w\|_*$$

Equivalent Problem with Separable Objective Function

$$\min_{w, U, V} \quad R_{\text{emp}}(w) + \lambda/2 \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

subject to $\mathcal{B}w = UV^{\top}$

(*) using that: $||Y||_* = \min_{U,V} \frac{1}{2} (||U||_F^2 + ||V||_F^2)$

size of matrix factors *can* be constrained

Reformulations

SVD-free Solution Strategy

 $\min_{w} R_{\rm emp}(w) + \lambda \, \|\mathcal{B}w\|_*$

Equivalent Problem with Separable Objective Function

$$\min_{w, U, V} \quad R_{\text{emp}}(w) + \lambda/2 \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

subject to $\mathcal{B}w = UV^{\top}$

(*) using that: $||Y||_* = \min_{U,V} \frac{1}{2} (||U||_F^2 + ||V||_F^2)$

• optimality of the non-convex heuristic for problems related to (\star)

B., Recht, M. Fazel and P. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 2010

Augmented Lagrangian Approach

Equivalent Problem with Separable Objective Function

$$\min_{w, U, V} \quad R_{\text{emp}}(w) + \lambda/2 \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

subject to $\mathcal{B}w = UV^{\top}$

Main Iteration

$$\begin{cases} w^{(k+1)} := \arg \min_{w} L_{\mu}(w, U^{(k)}, V^{(k)}; Z^{(k)}) & (1) \\ U^{(k+1)} := \arg \min_{U} L_{\mu}(w^{(k+1)}, U^{(k)}, V^{(k)}; Z^{(k)}) & (2) \\ V^{(k+1)} := \arg \min_{V} L_{\mu}(w^{(k+1)}, U^{(k+1)}, V^{(k)}; Z^{(k)}) & (3) \\ Z^{(k+1)} := Z^{(k)} + \mu \left(\mathcal{B}(w^{(k+1)}) - U^{(k+1)} V^{(k+1)\top} \right) & (4) \end{cases}$$

•
$$L_{\mu}(\cdot)$$
 Lagrangian of (\star)

• (1,2,3) systems of linear equations if $R_{emp}(w) = (w-x)^{\top} H(w-x)$

System Identification with Missing Inputs and Outputs

$$\min_{u,y} \lambda_1 \left\| \mathcal{S}_u(u) - u_{\mathsf{meas}} \right\|^2 + \lambda_2 \left\| \mathcal{S}_y(y) - y_{\mathsf{meas}} \right\|^2 + \left\| F(u,y) \right\|_*$$

Experimental Setting

- random inputs: $u(t) \in \mathbb{R}^P, t = 1, 2, \dots, T$
- \blacksquare randomly generated stable state-space models with order S

•
$$y(t) \in \mathbb{R}^M, t = 1, 2, \dots, T$$
 corrupted by $\epsilon(t) \sim \mathcal{N}(0, \sigma^2)$

 $\lambda_1 = \lambda_2 = 1$

Constrained Non-convex Formulation

$$\min_{\substack{w, U, V \\ \text{subject to}}} \frac{1}{2} (w-a)^{\top} H_{\lambda}(w-a) + \frac{1}{2} \left(\|U\|_{F}^{2} + \|V\|_{F}^{2} \right)$$

Evaluation Metrics

obj val	:	attained value in the constrained formulation
feasibility	:	primal feasibility $\ Y - \mathcal{B}(x)\ _F / \ Y\ _F$
model fit	:	averaged identification performance
CPU time	:	time in seconds used by the process

Results averaged over 20 MC runs; $V\%=20,\ P=2,\ O=3,\ \sigma=0.1$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size		
		M :	= 5, T = 1	500			
SVD-free**	1016.79	0.30	79	0.67	56 × 1402		
SVD-based*	1017.36	0.87	79	5.61	50 × 1493		
		M =	= 15, T = 1	500			
SVD-free**	1166.05	0.51	75	1.96	126 × 1402		
SVD-based*	1165.71	0.30	75	8.65	130 × 1493		
		M = 20, T = 4000					
SVD-free**	2079.09	0.22	76	6.78	176×3003		
SVD-based*	2081.47	0.86	76	47.01	110 × 3333		
		<i>M</i> =	= 40, T = 4	4000			
SVD-free**	2501.61	0.39	70	22.32	336 × 3003		
SVD-based*	2501.76	0.37	70	120.16	550 × 5995		
		M = 50, T = 10000					
SVD-free**	4803.46	0.30	67	111.28	416 × 0002		
SVD-based*	4803.18	0.92	67	825.77	410 × 9992		

* *

factors of unrestricted size in $\mathcal{B}w = UV^{\top}$

Results averaged over 20 MC runs; $V\%=20,\ P=2,\ O=3,\ \sigma=0.1$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size		
		M :	= 5, T = 1	500			
SVD-free**	1016.79	0.30	79	0.67	E6 × 1402		
SVD-based*	1017.36	0.87	79	5.61	50 × 1495		
		M =	= 15, T = 1	.500			
SVD-free**	1166.05	0.51	75	1.96	126 × 1402		
SVD-based*	1165.71	0.30	75	8.65	130 × 1493		
		M = 20, T = 4000					
SVD-free**	2079.09	0.22	76	6.78	176×3003		
SVD-based*	2081.47	0.86	76	47.01	110 × 3333		
		M = 40, T = 4000					
SVD-free**	2501.61	0.39	70	22.32	226 V 2002		
SVD-based*	2501.76	0.37	70	120.16	220 × 2882		
		M = 50, T = 10000					
SVD-free**	4803.46	0.30	67	111.28	416 × 0002		
SVD-based*	4803.18	0.92	67	825.77	410 × 9992		

Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with missing inputs and outputs, *System and Control Letters* 62, 2013

Results averaged over 20 MC runs; $V\%=20,\ P=2,\ O=3,\ \sigma=0.1$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size		
		M	= 5, T = 1	500			
SVD-free**	1016.79	0.30	79	0.67	E6 × 1402		
SVD-based*	1017.36	0.87	79	5.61	50 × 1495		
		<i>M</i> =	= 15, T = 1	500			
SVD-free**	1166.05	0.51	75	1.96	126 × 1402		
SVD-based*	1165.71	0.30	75	8.65	130 × 1495		
		M = 20, T = 4000					
SVD-free**	2079.09	0.22	76	6.78	176 × 3003		
SVD-based*	2081.47	0.86	76	47.01	110 × 3993		
		M = 40, T = 4000					
SVD-free**	2501.61	0.39	70	22.32	226 V 2002		
SVD-based*	2501.76	0.37	70	120.16			
		M = 50, T = 10000					
SVD-free**	4803.46	0.30	67	111.28	416 × 0002		
SVD-based*	4803.18	0.92	67	825.77	410 × 9993		

*

[U,S,V]=svd(X) instead of [U,S,V]=svd(X,'econ') !

Experiments (cont'd)

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size
		M =	= 80, T = 1	0000	
SVD-free full	2991.40	0.07	94.71	400.69	
SVD-free ($\cdot \times 22$)	2991.44	0.07	94.74	140.50	656×9993
SVD-econ	2991.66	0.09	94.60	609.24	

 $\sigma = 0$

$\sigma = 0.03$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size
		<i>M</i> =	= 80, T = 1	0000	
SVD-free full	3279.09	0.13	85.88	285.88	
SVD-free ($\cdot \times 22$)	3279.09	0.13	85.90	132.42	656×9993
SVD-econ	3279.08	0.13	85.82	670.67	

 $\sigma = 0.1$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size
		M =	= 80, T = 1	0000	
SVD-free full	6114.21	0.87	64.63	220.18	
SVD-free ($\cdot \times 22$)	6177.62	0.13	60.93	200.7	656×9993
SVD-econ	6114.21	0.90	64.63	222.62	

Experiments (cont'd)

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size
		M =	= 80, T = 1	0000	
SVD-free full	2991.40	0.07	94.71	400.69	
SVD-free ($\cdot \times 22$)	2991.44	0.07	94.74	140.50	656×9993
SVD-econ	2991.66	0.09	94.60	609.24	

 $\sigma = 0$

$\sigma = 0.03$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matrix size
		M =	= 80, T = 1	0000	
SVD-free full	3279.09	0.13	85.88	285.88	
SVD-free ($\cdot \times 22$)	3279.09	0.13	85.90	132.42	656×9993
SVD-econ	3279.08	0.13	85.82	670.67	

 $\sigma = 0.2$

	obj val	feasibility (10^{-3})	model fit	CPU time (s)	matri× size	
		M = 80, T = 10000				
SVD-free full	11718.84	0.17	61.94	295.79		
SVD-free ($\cdot \times 22$)	15718.70	4.3	37.72	1332.29	656×9993	
SVD-econ	11718.65	0.65	61.93	409.43		

Conclusions

Summary

- Mutations & Structured Low-rank Learning Problem
- Application to System Identification with missing data
- Solution strategy based on explicit factors

New Directions/Open Problems

- Guaranteed solutions: the role of noise
- Further exploitation of the structure of mutations
- Other applications of mutation-induced structured matrices