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General Setting

Learn From Empirical Data Via Regularization

Goal: find a model f from observational data

1 Construct nested subsets of increasingly complex hypotheses f

2 For each k, find an hypothesis that matches the data

ŵk = arg min Remp(w) + λkΩ(w) (λk ↔ ak)

3 Pick the complexity/fidelity trade-off hypothesis f (x; ŵk)

design of S1 ⊂ S2 ⊂ · · · ⊂ SK ⇔ choice of penalty Ω
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ŵk = arg min Remp(w) + λkΩ(w) (λk ↔ ak)

3 Pick the complexity/fidelity trade-off hypothesis f (x; ŵk)
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design of S1 ⊂ S2 ⊂ · · · ⊂ SK ⇔ choice of penalty Ω

2



General Setting

Structure-Inducing Penalties

prior knowledge: sparsity

l1 penalty and the LASSO

minw Remp(w) + λ‖w‖1
w = [w1; w2; · · · ; wP ] ∈ RP

f (x; w) = 〈x,w〉, Ω(w) = ‖w‖1 =
∑

p |wp|

prior knowledge: related tasks

nuclear norm: multitask learning/collaborative filtering

minW
∑

t Remp(wt) + λ ‖W ‖∗

W = [w1, . . . ,wT ] ∈ RP×T , ft(x; W ) = 〈x,wt〉

Ω(W ) = ‖W ‖∗ =
∑

r σr(W )

×
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General Setting

Composite Penalties

prior knowledge: sparsity

fused LASSO

minw Remp(w) + λ‖Aw‖1
w = [w1; w2; · · · ; wP ] ∈ RP

Ω(w) = ‖Aw‖1 =
∑

p+1 |wp+1 − wp|

prior knowledge: related tasks

weighted nuclear norm

minW Remp(W ) + λ ‖AWB>‖∗

W = [w1, . . . ,wT ] ∈ RP×T , ft(x; W ) = 〈x,wt〉

Ω(W ) = ‖W ‖∗ =
∑

r σr(W )

×
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A Class of Structured Low-rank Learning Problem Problem Formulation

Structured Low-rank Learning Problem

Goal
Learn from observational data a matrix that, in addition to being low-rank,
has entries partitioned into known disjointed groups.

min
w∈RL

Remp(w) + λ ‖Bw‖∗

Composite (spectral) penalty

Convex, can be turned into an SDP

Structured matrix as the output of a mutation B : RL → RM×N

Nuclear norm used as a proxy for the rank
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A Class of Structured Low-rank Learning Problem Problem Formulation

Encoding Group Structures via Mutations

Matrix entries partitioned into disjointed sets P = {P1, . . . ,PL}

Membership function associated to P:

ι : NM ×NN → NL
(m,n) 7→ {l ∈ NL : (m,n) ∈Pl}

Mutation (forward) operator:

B : RL → RM×N

x 7→
(
xι(m,n) : (m,n) ∈ NM ×NN

)
6



A Class of Structured Low-rank Learning Problem System Identification with Missing Data

Application to System Identification

Goal: find a dynamical model from observed input and output signals

Nuclear Norm In Linear System Identification
Motivated by well-known subspace properties
Use of instrumental variables/matrix weights
Modest improvement over classical subspace algorithms

Dealing with Missing Input and Output Observations
Solve a structured low rank matrix optimization problem
Reconstruct the system matrices via simple algebraic steps
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A Class of Structured Low-rank Learning Problem System Identification with Missing Data

Subspace Identification of Linear Dynamical Systems

State-space model of Order Nx{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Realization Property

F : (u, y) 7→
[
H(u)
H(y)

]
, H (x) =


x(1) x(2) · · · x(T )
x(2) x(3) · · · x(T + 1)
...

... . . . ...
x(I ) x(I + 1) · · · x(T + I − 1)



rank
(
F(u, y)

)
= Nx + rank(H(u))
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A Class of Structured Low-rank Learning Problem System Identification with Missing Data

Subspace Identification of Linear Dynamical Systems

State-space model of Order Nx{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

System Identification with Missing Inputs and Outputs

min
u,y

λ1 ‖Su(u)− umeas‖2 + λ2 ‖Sy(y)− ymeas‖2 + ‖F(u, y)‖∗[
Z. Liu, A. Hansson, L. Vandenberghe, Nuclear norm system identification with
missing inputs and outputs, System and Control Letters 62, 605-612, 2013

]

Essentially a structured low rank matrix optimization problem

8



Solution Strategies
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Solution Strategies Proximal Algorithms

Proximal Algorithms for Nuclear-norm Problems

min
w

J (w) = Remp(w) + Ω(w)

Proximity Operator...

proxΩ(x) = arg minw Ω(w) + 1
2‖x − w‖2

Composite Nuclear Norm Penalty: Ω(·) = ‖B · ‖∗
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Proximal Algorithms for Nuclear-norm Problems

min
w

J (w) = Remp(w) + Ω(w)

Forward-backward Splitting

w(k) = proxγΩ

(
w(k−1) − γ∇Remp

(
w(k−1)

))
, γ > 0

Composite Nuclear Norm Penalty: Ω(·) = ‖B · ‖∗
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Solution Strategies Proximal Algorithms

Proximal Algorithms for Nuclear-norm Problems

min
w

J (w) = Remp(w) + Ω(w)

Simple Nuclear Norm Penalty: Ω(·) = ‖ · ‖∗

proxγΩ(·) is the singular value soft-thresholding operator :

if X = U diag({σr}1≤r≤R)V>

then proxγΩ(X) = U diag({max(σr − γ, 0)}1≤r≤R)V>
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proxγΩ(·) is the singular value soft-thresholding operator :

if X = U diag({σr}1≤r≤R)V>

then proxγΩ(X) = U diag({max(σr − γ, 0)}1≤r≤R)V>

Composite Nuclear Norm Penalty: Ω(·) = ‖B · ‖∗
in general, not proximable (needs to be solved iteratively)

J
(
w(k))− J ∗ = O(1/k2) under conditions [M. Schmidt et al., 2011],

[S. Villa et al., 2012]
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Solution Strategies Proximal Algorithms

Proximal Algorithms for Nuclear-norm Problems

min
w

J (w) = Remp(w) + Ω(w)

Simple Nuclear Norm Penalty: Ω(·) = ‖ · ‖∗

proxγΩ(·) is the singular value soft-thresholding operator :

if X = U diag({σr}1≤r≤R)V>

then proxγΩ(X) = U diag({max(σr − γ, 0)}1≤r≤R)V>

Composite Nuclear Norm Penalty: Ω(·) = ‖B · ‖∗

proxγΩ(x) = B∗
(
proxγ‖·‖∗(Bx)

)
only valid for very special mutations B!
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Solution Strategies Proximal Algorithms

Implementing Mutations via Linear Indexing

Forward Operator: B : x 7→
(
xι(m,n) : (m,n) ∈ NM ×NN

)
function Y=forwardOp(x,linSets,sizeY)

Y=zeros(sizeY);
for i=1:numel(linSets)

Y(linSets{i})=x(i);
end

Backward Operator: B∗ : C 7→
(∑

(m,n)∈Pl
cmn : l ∈ NL

)
function y=backwardOp(X,linSets)

y=zeros(numel(linSets),1);
for i=1:numel(linSets)

y(i)=sum(X(linSetsi));
end

Efficient implementations can be given for special structures (e.g. Hankel)
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Solution Strategies Reformulations

Constrained Problem Formulation

min
w

Remp(w) + λ ‖Bw‖∗

Equivalent Problem with Separable Objective Function

minw,Y Remp(w) + λ ‖Y ‖∗
subject to Bw = Y
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can be solved by ADMM/Douglas Rachford splitting

singular value soft-thresholding operator at each iteration
adaptive tolerances and Augmenter Lagrangian parameter

 S. Boyd et al., Distributed optimization and statistical learning via the alter-
nating direction method of multipliers, Foundations and Trends in Machine
Learning 3(1), 1-122, 2011
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Solution Strategies Reformulations

SVD-free Solution Strategy

min
w

Remp(w) + λ ‖Bw‖∗

Equivalent Problem with Separable Objective Function

minw,U ,V Remp(w) + λ /2
(
‖U‖2F + ‖V ‖2F

)
subject to Bw = UV>

(?)

(?) using that: ‖Y ‖∗ = minU ,V : Y =UV>
1
2
(
‖U‖2F + ‖V ‖2F

)
 M. Signoretto , V. Cevher and J.A.K. Suykens, An SVD-free Approach to a

Class of Structured Low Rank Matrix Optimization Problems with Application
to System Identification, Int. Rep. 13-44, ESAT-SISTA, K.U.Leuven 2013
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Solution Strategies Reformulations

SVD-free Solution Strategy

min
w

Remp(w) + λ ‖Bw‖∗

Equivalent Problem with Separable Objective Function

minw,U ,V Remp(w) + λ /2
(
‖U‖2F + ‖V ‖2F

)
subject to Bw = UV>

(?)

(?) using that: ‖Y ‖∗ = minU ,V : Y =UV>
1
2
(
‖U‖2F + ‖V ‖2F

)
optimality of the non-convex heuristic for problems related to (?)[
B., Recht, M. Fazel and P. Parrilo, Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization, SIAM Rev., 2010

]
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Solution Strategies Reformulations

Augmented Lagrangian Approach

Equivalent Problem with Separable Objective Function

minw,U ,V Remp(w) + λ/2
(
‖U‖2F + ‖V ‖2F

)
subject to Bw = UV> (?)

Main Iteration
w(k+1) := arg minw Lµ(w,U (k),V (k); Z (k)) (1)
U (k+1) := arg minU Lµ(w(k+1),U (k),V (k); Z (k)) (2)
V (k+1) := arg minV Lµ(w(k+1),U (k+1),V (k); Z (k)) (3)
Z (k+1) := Z (k) + µ

(
B(w(k+1))−U (k+1)V (k+1)>

)
(4)

Lµ(·) Lagrangian of (?)

(1, 2, 3) systems of linear equations if Remp(w) = (w − x)>H (w − x)
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Solution Strategies Reformulations

Experiments

System Identification with Missing Inputs and Outputs

min
u,y

λ1 ‖Su(u)− umeas‖2 + λ2 ‖Sy(y)− ymeas‖2 + ‖F(u, y)‖∗

Experimental Setting
random inputs: u(t) ∈ RP , t = 1, 2, . . . ,T

randomly generated stable state-space models with order S

y(t) ∈ RM , t = 1, 2, . . . ,T corrupted by ε(t) ∼ N (0, σ2)

λ1 = λ2 = 1
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Solution Strategies Reformulations

Experiments

Constrained Non-convex Formulation

min
w,U ,V

1
2(w − a)>Hλ(w − a) + 1

2
(
‖U‖2F + ‖V ‖2F

)
subject to Bw = UV>

Evaluation Metrics

obj val : attained value in the constrained formulation
feasibility : primal feasibility ‖Y − B(x)‖F/‖Y ‖F
model fit : averaged identification performance
CPU time : time in seconds used by the process
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Solution Strategies Reformulations

Experiments

Results averaged over 20 MC runs; V % = 20, P = 2, O = 3, σ = 0.1
obj val feasibility (10−3) model fit CPU time (s) matrix size

M = 5, T = 1500
SVD-free** 1016.79 0.30 79 0.67 56 × 1493SVD-based* 1017.36 0.87 79 5.61

M = 15, T = 1500
SVD-free** 1166.05 0.51 75 1.96 136 × 1493SVD-based* 1165.71 0.30 75 8.65

M = 20, T = 4000
SVD-free** 2079.09 0.22 76 6.78 176 × 3993SVD-based* 2081.47 0.86 76 47.01

M = 40, T = 4000
SVD-free** 2501.61 0.39 70 22.32 336 × 3993SVD-based* 2501.76 0.37 70 120.16

M = 50, T = 10000
SVD-free** 4803.46 0.30 67 111.28 416 × 9993SVD-based* 4803.18 0.92 67 825.77[

∗ ∗ factors of unrestricted size in Bw = UV>
]
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M = 40, T = 4000
SVD-free** 2501.61 0.39 70 22.32 336 × 3993SVD-based* 2501.76 0.37 70 120.16

M = 50, T = 10000
SVD-free** 4803.46 0.30 67 111.28 416 × 9993SVD-based* 4803.18 0.92 67 825.77[

∗ [U,S,V]=svd(X) instead of [U,S,V]=svd(X,’econ’) !
]
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Solution Strategies Experiments

Experiments (cont’d)

σ = 0
obj val feasibility (10−3) model fit CPU time (s) matrix size

M = 80, T = 10000
SVD-free full 2991.40 0.07 94.71 400.69

656 × 9993SVD-free ( · × 22) 2991.44 0.07 94.74 140.50
SVD-econ 2991.66 0.09 94.60 609.24

σ = 0.03
obj val feasibility (10−3) model fit CPU time (s) matrix size

M = 80, T = 10000
SVD-free full 3279.09 0.13 85.88 285.88

656 × 9993SVD-free ( · × 22) 3279.09 0.13 85.90 132.42
SVD-econ 3279.08 0.13 85.82 670.67

σ = 0.1
obj val feasibility (10−3) model fit CPU time (s) matrix size

M = 80, T = 10000
SVD-free full 6114.21 0.87 64.63 220.18

656 × 9993SVD-free ( · × 22) 6177.62 0.13 60.93 200.7
SVD-econ 6114.21 0.90 64.63 222.62
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Solution Strategies Experiments

Experiments (cont’d)

σ = 0
obj val feasibility (10−3) model fit CPU time (s) matrix size

M = 80, T = 10000
SVD-free full 2991.40 0.07 94.71 400.69

656 × 9993SVD-free ( · × 22) 2991.44 0.07 94.74 140.50
SVD-econ 2991.66 0.09 94.60 609.24

σ = 0.03
obj val feasibility (10−3) model fit CPU time (s) matrix size

M = 80, T = 10000
SVD-free full 3279.09 0.13 85.88 285.88

656 × 9993SVD-free ( · × 22) 3279.09 0.13 85.90 132.42
SVD-econ 3279.08 0.13 85.82 670.67

σ = 0.2
obj val feasibility (10−3) model fit CPU time (s) matrix size

M = 80, T = 10000
SVD-free full 11718.84 0.17 61.94 295.79

656 × 9993SVD-free ( · × 22) 15718.70 4.3 37.72 1332.29
SVD-econ 11718.65 0.65 61.93 409.43
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Solution Strategies Experiments

Conclusions

Summary
Mutations & Structured Low-rank Learning Problem
Application to System Identification with missing data
Solution strategy based on explicit factors

New Directions/Open Problems
Guaranteed solutions: the role of noise
Further exploitation of the structure of mutations
Other applications of mutation-induced structured matrices
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