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What makes Social Science “Social”?

• Social phenomena arise when individuals interact to 
produce collective entities that have their own 
attributes, rules etc.
– Families, firms, markets, associations, societies, cultures

• Yet historically social scientists have tended to study 
either individual or aggregate behavior, but not both 
at the same time
– “microeconomics” vs. “macroeconomics” 

– psychology vs. sociology

• Difficulty is that “micro”  “macro” transition depends 
on networks of information / influence

– Result is “emergent” behavior:
• Systemic risk in financial systems, changes in cultural 

norms, collapse of political regimes



The Web and Social Science

• Two big reasons for lack of progress
– Networks hard to measure, especially at scale, over time

– Can‟t do “macro” experiments (i.e. on large groups)

• Very hard to do science when you can‟t measure 
anything or test theories with experiments

• Recent technological advances may lift these historical 
constraints
– Email, IM, Social Networking Sites, Online communities, Phone, 

SMS, Twitter, etc. are generating mountains of observational 
network and behavioral data

– Also possible to do human subjects experiments on a 
previously unimaginable scale

• These changes are bigger than the WWW proper, but I‟ll 
use the term “Web” loosely to mean the whole gamut.



Outline For Rest of Talk

• Will describe four projects dating back to 

2001, right up until the present

• All four motivated by a general interest in 

social networks and relevance to other 

questions of social science

– Each captures a different aspect of problem

– Each has also taught us something about 

using the web to do social science

• Looking forward, can speculate about 

what might be possible



1. Small World Experiment

• 1960‟s: Stanley Milgram and Jeffrey Travers 
designed first “small world” experiment
– A single “target” in Boston

– 300 initial “senders” in Boston and Omaha

– Each sender asked to forward a packet to a friend 
who was “closer” to the target

– The friends got the same instructions

• Protocol generated 300 “letter chains” of which 
64 reached the target.

• Found that typical chain length was 6

• Led to the famous “six degrees” phrase 



The Small World Web

• 2001-2002: decided to recreate Travers and Milgram‟s experiment 

– But using email/web server instead of physical packets

• Whereas Milgram had 

– one target (Boston)  

– 300 chains (Boston and Omaha)

– 64 reached target

• We used

– 18 Targets around world

• A university professor in upstate New York

• A policeman in Perth, Australia

• An librarian in Paris

• A veterinarian in Norway, etc…

– 24,163 chains passing through 61,168 hands in 166 countries

– Roughly 400 reached targets 



Chain Progression For One 

Target



The “Bored At Work” Network

• Results mostly confirmed Milgram‟s findings

– 6 degrees is surprisingly accurate (median is 7)

– Dodds et al (Science, 2003); Goel et al (WWW, 2009)

• But we also learned something else:

– We managed to run an experiment with over 60,000 

participants, on a global scale, at virtually zero cost

– BAWN: Millions of people ready to do social science

• What to do next?

– Small-world experiment not really a “lab” experiment

– Could we create a “virtual lab” on a web scale?



2. Social Influence and 

Cultural Markets

• In markets for books, music, etc., suspect 

– Individuals influence each other‟s choices

– Social influence leads to inequality and unpredictability

• Wanted to conduct lab experiment in which

– Can run same process many times under identical conditions, 

exploring multiple “histories”

– Can carefully control who is exposed to what

• Problem was that each “history” is a whole distribution of 

popularity over some set of objects

• Even in a modest experiment, just one history would require at 

least hundreds of people

– Entire experiment would require many thousands

– Far too many to fit in a physical lab

– What about the web?



The Virtual Lab on The Web



Music Lab: 48 Unknown Bands



Subjects can listen to songs (via 

streaming) and rate them…



At which point they can also 

elect to download song



Experimental Design

• As subjects arrive, they are allocated randomly into one of two conditions

– Independent

• Just see the names of bands, and songs

– Social Influence

• In addition see number of previous downloads

• Weak signal, can choose to ignore it

– In addition, social influence condition is broken into eight (8) “worlds” 

• Arriving subjects in each world can see downloads of previous participants in that 

world only

 



Social Influence at Micro Level:

mi  di dkk1

S


mi = market share for song i

di = downloads of song i



Properties at Macro Level

1. Inequality of Success

– Measure with Gini Coefficient (G)

• Expected difference in market share mi between two randomly 
chosen songs, normalized to the range [0,1]

– G = 0 (all objects have equal market share)

– G = 1 (one object has entire market)

2. Unpredictability of Success

– Quantity (U) defined as average difference in market share 
of songs across R realizations of the world

– Also normalized between [0,1]

– Result is measure of “inherent unpredictability”
• i.e. if you know market share in one world, how much could you 

predict about another?



Four experiments (N = 27,267)

Influence Population 1 Population 2

Weak
Experiment 1

(N = 7,149)

Strong
Experiment 2

(N = 7,192)

Experiment 3

(N = 2,930)

Deception
Experiment 4

(N = 9,996)



Music Lab Results

• Individuals are influenced by their observations of the choices of others

– The stronger the social signal, the more they are influenced

• Collective decisions are also influenced

– The popular songs are more popular (and unpopular songs are less popular)

– However, which particular songs become the popular ones becomes harder 

to predict 

• The paradox of social influence is that

– Individuals have more information on which to base choices

– But the collective choice (i.e. what becomes popular) reveals less and less 

about individual preferences

– Salganik Dodds, and Watts (Science 2006)

• Manipulating social influence not so easy

– Can create self-fulfilling prophecies at level of individual songs, but not for 

entire market 

– Salganik and Watts (SPQ, 2008)



• Small World Experiment explored structure of global social 

networks and Music Lab explored social influence

• But influence in real life diffuses through networks

• In recent years, attention has focused on so-called “influencers,” 

who exert disproportionate influence over others

• Oprah Winfrey and Books

• Sarah Jessica Parker and Shoes

• Jeff Jarvis and Dell Customer Service

• Marketers love this idea:

• Find the influencers and they will do all the work!

• Problem is: influencers generally identified after the fact, when to 

be useful marketers need to identify them ex-ante

• No evidence that they can do this consistently

3. Networks and Diffusion



Influencers on Twitter 

• Twitter is ideally suited to study influencers

• Fully-observable network of “who listens to whom” 

• URL shorteners enable us to track diffusion of 

unique pieces of information

• Millions of diffusion “events”

• Bakshy et al (WSDM, 2011)

• 1B public twitter posts between 9/15/09-11/15/09

• 90M posts containing bit.ly URL‟s from 1.6M users

– We‟ll focus on this subset

• Crawled 56M Twitter users, 1.7B edges



Computing Influence on Twitter

• An individual “seed” user tweets a URL (here we 

consider only bit.ly)

• For every follower who subsequently posts same URL 

(whether explicit “retweet” or not), seed accrues 1 pt

• Repeat for followers-of-followers, etc. to obtain total 

influence score for that “cascade”

• Average individual influence score over all cascades

– Highly conservative measure of influence, as it requires not 

only seeing but acting on a tweet

– Click-through would be good, but not available to us



Cascades on Twitter



Cascade Distribution Highly Skewed

• Almost all cascades are small and shallow 

• Average size = 1.14; Median size = 1

• A tiny fraction reach thousands and propagate up to 8 hops



Predicting Influence 

• Objective is to predict log (influence score) for future 

cascades as function of

– Log # Followers, log # Friends, log # Reciprocated Ties

– log # Tweets, Time of joining

– Log (past influence score)

• Fit data using regression tree
– Recursively partitions feature space

– Piecewise constant function fit to mean of training data in each partition

– Nonlinear, non-parametric
• Better calibrated than ordinary linear regression

– Use five-fold cross-validation

• For each fold, estimate model on training data, then evaluate on test data

• Every user gets included in one test set



Results

• Only two features matter

– Past local influence

– # Followers

• Surprisingly, neither # 

tweets nor # following 

matter

• Model is well calibrated

– average predicted close to 

average actual within 

partitions

• But fit is poor (R2 = 0.34)

– Reflects individual scatter

• Also surprisingly, content 

doesn‟t help



Who are the Influencers?

Circles represent individual seeds (sized by influence)



Necessary but not sufficient

• Seeds of large cascades share certain features (e.g., 

high degree, past influence)

• However, many small cascades share those features, 

making “success” hard to predict at individual level

• Common problem for rare events

– School shootings, Plane crashes, etc.

– Tempting to infer causality from “events,” but causality 

disappears once non-events accounted for

• Lesson for marketers: 

– Individual level predictions are unreliable, even given “perfect” 

information

• Fortunately, can target many seeds, thereby 

harnessing average effects



Should Kim Kardashian Be Paid 

$10,000 per Tweet?

• On average, some types of influencers are more 

influential than others

– Many of them are highly visible celebrities, etc. with millions of 

followers

– But these individuals may also be very expensive (i.e. Kim 

Kardashian)

• Assume the following cost function

– ci = ca +fi*cf, where ca = acquisition cost; cf = per-follower cost

– Also ca = a*cf, where a expresses cost of acquiring individual 

users relative to sponsoring individual tweets

• Should you target:

– A small # of highly influential seeds?

– A large # of ordinary seeds with few followers?

– Somewhere in between?



“Ordinary Influencers” Dominate

• Assume cf = $0.01

– Equivalent to paying $10K 

per tweet for user with 1M 

followers

• When ca = $1,000, (a = 

100,000) highly 

influential users are 

most cost effective

• But for lower ratios, 

most efficient choice 

can be individuals who 

influence at most one 

other

Influence per Follower



4. Networked Experiments

• Twitter study included both networks and influence

– But not an actual experiment; so no causal statements 

possible

• Would like to study impact of network structure in an 

experimental setting, akin to Music Lab

– Kearns et al have studied “networked games” in specially 

equipped labs

• Graph coloring, consensus, exchange, etc.

• In all cases, network structure important

– Can these experiments also be run on the Web?

• Unlike Small World Experiment and Music Lab, 

subjects must play synchronously

• Easy to solve in a lab, but not on the web



Cooperation on Networks

• Question of why presumptively selfish people cooperate one of the 

most studied in all of social science

– Dates back to Hobbes.

– Elinor Ostrom: 2009 Nobel in Economics

• A standard model of problem is “linear public goods” game (also 

common pool resource, voluntary contribution mechanism)

– On each of N “rounds”, each member of a group given an endowment

– Members choose how much of their endowment to contribute

– Contributions multiplied by some constant (hence “linear”)

– Then redistributed equally to all members

• Situation poses a dilemma

– Everyone better off if everyone contributes than if nobody does

– Individuals better off if everyone else contributes and they don‟t



Public Goods Games 

• Public Goods games have been studied 

extensively in experiments (Fehr/Gachter)
– Contributions start out high and end low

– Players will pay to punish non-contributors

– Punishment increases contributions

• But all these experiments are for “groups” in 

which everyone plays everyone (N=4)

– How do these results depend on network 

structure?



Amazon‟s Mechanical Turk

• AMT originally designed for “crowd sourcing” 
– “Requestors” post “HITS” (human intelligence tasks)

– “Turkers” accept HITS for piece rates

• Increasingly used by behavioral scientists as a virtual lab 
for conducting human subjects experiments
– Mason and Suri (2010) recently written a handbook for running 

experiments on AMT

• Solving the synchronous play problem:
– In series of preliminary games, recruited a panel of ~ 100 players

– Notified them in advance of games

• Scheduled up to four sessions per day

• Games of 24 players fill up in ~ 2 mins

• Also used preliminary experiments to calibrate AMT



Comparison with Physical Lab 

Results (F&G, AER, 2000)



Networks (N = 24, k = 6)



Network Stats



Surprisingly (to us) Networks Don‟t Seem 

to Affect Aggregate Contributions



When Do Networks Matter?

• Hypothesized importance of networks comes from 

intuition that cooperation is conditional

– “I‟ll cooperate if at least X of my neighbors do”

– Works better when cooperators interact preferentially

– Cooperation should be contagious

• By introducing fully-contributing agents in various 

configurations, we found that

– Players do cooperate conditionally, but overall bias towards 

swamps everything

– No evidence of positive contagion 

• Raises interesting theoretical question of when 

networks matter and when they don‟t

– Contrast with coordination / anti-coordination games



Advantages of the AMT Lab

• Overall, we have now run 113 experiments with N=24 

players

– Up to 20 experiments per week

• Cost of roughly $1 per player per game

– An order of magnitude cheaper than physical lab

• Greater speed and lower cost allows us to speed up 

hypothesis-testing cycle

• Also allows us try more variations

– Different information conditions (friends of friends etc.)

– Nonlinear production function, rewiring, etc.

– Larger N, more topologies



Where have we come in 8 years?

• Small-World experiment large (global) scale network 

experiment, but no control

• Music Lab medium scale, and no network, but better 

control

• Twitter, large-scale network with diffusion, but not 

experimental

• Public Goods games are genuine controlled, web-based, 

networked games, but scale is still small

– Main constraint is the size of our panel (now about 100).  



Where are we going now?

• Build “virtual labs” on the web for running all 

manner of macro economic and sociological 

experiments

– Hope to construct large standing panel

• Run field experiments, akin to bucket testing of 

ads / search results

– David Reiley at Yahoo! has already done some 

experiments with brand advertising

• Ultimately, combine study of real world 

networks (e.g. Mail/IM) with experimental 

science



Computational Social Science?

• The web promises to dramatically improve

– Our ability to measure individual level behavior and interactions on 

a massive scale in real time

– Our ability to run “macro sociological” lab experiments and field 

experiments

• There is a long way to go to from existing studies to the 

“big” questions of social science

– Systemic risk, economic development, terrorism

• Nevertheless, technological innovations have 

revolutionized science in the past (Telescope, Microscope)

• Could Web/Internet revolutionize social science?

– Will at least provide lots of interesting problems for computer 

scientists!
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