Towards Robust Abstractive Multi-Document Summarization: A Caseframe Analysis of Centrality and Domain

Jackie CK Cheung and Gerald Penn {jcheung,gpenn}@cs.toronto.edu
Aug 6, 2013

Centrality and Extraction

- Centrality—a summary should contain the parts of the source text that are most representative of it
- Explicitly modelled as summarization objective
 - e.g., MMR (Carbonell and Goldstein, 1998)
 objective = centrality term + non-redundancy term
- Refined by more sophisticated methods
 - e.g. Term weighting (Lin and Hovy, 2000)
 - Core component of most successful current methods (Conroy et al., 2006)

Limits of Extraction

- Compression ratio
 - Text simplification e.g., (Knight and Marcu, 2000)
 - Sentence fusion e.g., (Barzilay and McKeown, 2005)
- Coherence
 - Avoid dangling referents
 - Text structuring
 e.g., (Christensen et al., 2013)
- Aggregation and information synthesis
 - Key part of potential utility of automatic summaries
 - Limited work outside of specific genres and domains

Message of This Paper

- Extractive centrality-based summarization systems currently dominate summarization shared tasks
- Advance towards robust abstraction **not** by better optimizing centrality-based measures
- Require return to more domain knowledge

- Studies on TAC Guided Summarization data
 - Compare characteristics of model summaries vs. state-ofthe-art summarizers

Previous Studies on Summarization

Best possible extractive system using word-overlap measures such as ROUGE

(Lin and Hovy, 2003; Conroy et al., 2006)

- Best possible extractive summary as good as humans
- ROUGE not designed for this purpose
- Human-created extractive summaries (Genest et al., 2009)
 - Score in between current automatic systems and abstracts on responsiveness, linguistic quality, and Pyramid

More Related Studies

Cut-and-paste operations

(Jing and McKeown, 2000)

- 19% of analyzed sentences cannot be explained by these processes
- (Saggion and Lapalme, 2002)
 - Definition and analysis of transformations necessary to convert source text to summary text
- (Copeck and Szpakowicz, 2004)
 - 55% of vocabulary items found in model summaries occur in source text

Novelty of Our Studies

- Analysis of impact of domain knowledge for multidocument summarization
 - Made possible by use of recent guided summarization data
- Developmental approach, not evaluative
 - Distinguish model and peer summaries in a useful way
 - Guide development of future systems
- Analysis at a shallow semantic level (caseframes)
 - In contrast to previous use of word overlap or syntactic measures

Overview of Studies

- Study 1: How to measure aggregation?
 - Quantitative measure of sentence aggregation
- Study 2: How do humans aggregate information?
 - Not just by centrality—automatic systems are already more "central" than human summarizers with respect to source text
- Study 3: How to generate human-like summaries?
 - Domain knowledge as a source of information for abstractive summarization systems

Unit of Analysis: Caseframes

- (gov, role) pairs extracted from dependency parse
 - gov: a proposition-bearing unit (verb, event noun, nominal or adjectival predicate)
 - role: semantic role derived from grammatical role
 - e.g. (kill, dobj), (hurt, nsubj), (murder, prep_of)
- Approximation of semantic role structure
 - Distinct from case frames in Case Grammar
- Can be automatically extracted
- Well-suited to characterize a domain
 - Abstracts away syntactic alternations, entity realizations, etc.

Example

Cluster: Unabomber trial

Theodore Kaczynski faces a federal indictment for 4 mail bomb attacks attributed to the Unabomber in which two people were killed. If found guilty, he faces a death penalty. He has pleaded innocent to all charges. District Judge Garland Burrel Jr. presides

```
    DEFENDANT (face, nsubj), (plead, nsubj)
```

```
    CHARGES (face, dobj)
```

REASON (indictment, prep_for)

```
• SENTENCE (face, dobj)
```

PLEAD (plead, dobj)

JUDGE (preside, nsubj)

Data Set

- TAC 2010 Guided Summarization
 - 920 documents
 - 46 topic clusters in 5 domains
 - Templates provided to provide guidance to systems
- Initial vs. update summarization task
- Summarizers:
 - 8 human model summary writers (alphabetic: A − H)
 - 43 peer summarization systems (1 43)
 - Removed two systems that did not generate summaries for most topic clusters

Peer Comparison Conditions

Peer average

Average of 41 peer summarizers

Peer 16

- Best in responsiveness in initial task
- Best in ROUGE-2, responsiveness, Pyramid in update task

Peer 22

Best in ROUGE-2, Pyramid in initial task

Peer 1

- NIST's leading baseline from most recent document
- Best in linguistic quality in both tasks

Study 1: Sentence Aggregation

- Quantitative measure of degree of aggregation
- Average sentence cover size
 - Minimum # sentences from the source text needed to cover all of the caseframes found in a summary sentence (for those that can be found in the source text)
 - Take average of this over all summary sentences
 - Pure extraction = 1.0

```
e.g. Summary sentence: \{1,2,3,4,5\}
Source text: \{\{1,3,4\},\{2,5,6\},\{1,4,7\}\}
Cover size = 2: \{\{1,3,4\},\{2,5,6\}\}
```

Solved optimally by ILOG CPLEX

Study 1: Sentence Aggregation

Initial

Update

Study 1: Sentence Aggregation

Condition	Initial	Update
Model average	1.58	1.57
Peer average	1.06	1.06
Peer 1	1.00	1.00
Peer 16	1.04	1.04
Peer 22	1.08	1.09

Study 2: Signature Caseframes

- How do humans aggregate information?
 - Option 1: better compaction, but still based on centrality
 - Option 2: novel sentences that synthesize information
- **Signature caseframes** are computed by method of Lin and Hovy, (2000), extended to caseframes
 - They appear in source text more often than expected by chance, compared to a background corpus
 - Log-likelihood ratio test based on binomial distribution
- Measure signature caseframe density
 - # signature caseframes in summaries / # words in summaries

Signature Caseframe Density

Initial

Signature Caseframe Density

Condition	Initial	Update
Model average	0.065	0.052
Peer average	0.080*	0.072*
Peer 1	0.066	0.050
Peer 16	0.083*	0.085*
Peer 22	0.101*	0.084*

 Automatic systems are already more "central" than peer systems!

Accounting for Paraphrasing

 Results hold even after merging distributionally similar caseframes by agglomerative clustering

Condition	Initial	Update
Model average	0.062	0.047
Peer average	0.071*	0.063*
Peer 1	0.060	0.044
Peer 16	0.072*	0.077*
Peer 22	0.084*	0.075*

Threshold = 0.8

Consequences

- How do humans aggregate information?
 - Option 1: better compaction, but still based on centrality
 - Option 2: novel sentences that synthesize information
- Better optimizing centrality-based measures unlikely to result in paradigm advancement
- Sentence simplification and fusion only part of the answer

Study 3: Summary Reconstruction

- How might model summaries be generated automatically at all?
 - Want hypothesis space that includes model summaries
- Caseframe coverage
 - Proportion of caseframes in a summary that is contained by some reference set
- What is the reference set?
 - Source text alone
 - Source text plus articles from the same domain
- Extends Copeck and Szpakowicz's (2004) analyses

Reconstruction from Source Text

Reconstruction from Source Text

Condition	Initial	Update
Model average	0.77	0.75
Peer average	0.99	0.99
Peer 1	1.00	1.00
Peer 16	1.00	1.00
Peer 22	1.00	1.00

Adding In-domain Articles

- Include all articles from the same domain in reference set
- Baseline: same # of articles from another domain

Reference Set	Initial	Update
Source text	0.77	0.75
+out-of-domain	0.91	0.91
+in-domain	0.98	0.97

Conclusions

- Series of studies on guided summarization data by caseframes
- Can distinguish model vs. state-of-the-art peer summarizers by information content
- Human-written model summaries:
 - contain more aggregation
 - rely less on centrality, even after accounting for paraphrasing
 - cannot be reconstructed from source text alone

Using Domain Knowledge

- Aggregate statistics like Lin and Hovy, (2000) have been successful
 - Identify salient or topical features

- Future work: more direct use of domain knowledge
 - Mining in-domain documents for caseframes
 - Learning structured representation of a domain to learn typical slots and events. e.g., (Cheung and Penn, 2013)