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Centrality and Extraction 
• Centrality—a summary should contain the parts of 

the source text that are most representative of it 
• Explicitly modelled as summarization objective 

• e.g., MMR (Carbonell and Goldstein, 1998) 
 objective = centrality term + non-redundancy term 

• Refined by more sophisticated methods 
• e.g. Term weighting (Lin and Hovy, 2000) 
• Core component of most successful current methods 

(Conroy et al., 2006) 
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Limits of Extraction 
• Compression ratio 

• Text simplification e.g., (Knight and Marcu, 2000) 
• Sentence fusion  e.g., (Barzilay and McKeown, 2005) 

• Coherence 
• Avoid dangling referents 
• Text structuring  e.g., (Christensen et al., 2013) 

• Aggregation and information synthesis 
• Key part of potential utility of automatic summaries 
• Limited work outside of specific genres and domains 
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Message of This Paper 
• Extractive centrality-based summarization systems 

currently dominate summarization shared tasks 
• Advance towards robust abstraction not by better 

optimizing centrality-based measures 
• Require return to more domain knowledge 

 
• Studies on TAC Guided Summarization data 

• Compare characteristics of model summaries vs. state-of-
the-art summarizers 
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Previous Studies on Summarization 
• Best possible extractive system using word-overlap 

measures such as ROUGE 
(Lin and Hovy, 2003; Conroy et al., 2006) 
• Best possible extractive summary as good as humans 
• ROUGE not designed for this purpose 

• Human-created extractive summaries 
(Genest et al., 2009) 
• Score in between current automatic systems and abstracts 

on responsiveness, linguistic quality, and Pyramid 
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More Related Studies 
• Cut-and-paste operations 

(Jing and McKeown, 2000) 
• 19% of analyzed sentences cannot be explained by these 

processes 

• (Saggion and Lapalme, 2002) 
• Definition and analysis of transformations necessary to 

convert source text to summary text 

• (Copeck and Szpakowicz, 2004) 
• 55% of vocabulary items found in model summaries occur 

in source text 
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Novelty of Our Studies 
• Analysis of impact of domain knowledge for multi-

document summarization 
• Made possible by use of recent guided summarization data 

• Developmental approach, not evaluative 
• Distinguish model and peer summaries in a useful way 
• Guide development of future systems 

• Analysis at a shallow semantic level (caseframes) 
• In contrast to previous use of word overlap or syntactic 

measures 
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Overview of Studies 
• Study 1: How to measure aggregation? 

• Quantitative measure of sentence aggregation 

• Study 2: How do humans aggregate information? 
• Not just by centrality—automatic systems are already 

more “central” than human summarizers with respect to 
source text 

• Study 3: How to generate human-like summaries? 
• Domain knowledge as a source of information for 

abstractive summarization systems 
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Unit of Analysis: Caseframes 
• (gov, role) pairs extracted from dependency parse 

• gov: a proposition-bearing unit (verb, event noun, nominal 
or adjectival predicate) 

• role: semantic role derived from grammatical role 
• e.g. (kill, dobj), (hurt, nsubj), (murder, prep_of) 

• Approximation of semantic role structure 
• Distinct from case frames in Case Grammar 

• Can be automatically extracted 
• Well-suited to characterize a domain 

• Abstracts away syntactic alternations, entity realizations, 
etc. 
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Example 
• Cluster: Unabomber trial 

Theodore Kaczynski faces a federal indictment for 4 mail 
bomb attacks attributed to the Unabomber in which two 
people were killed. If found guilty, he faces a death 
penalty. He has pleaded innocent to all charges. District 
Judge Garland Burrel Jr. presides. 

• DEFENDANT (face, nsubj), (plead, nsubj) 
• CHARGES (face, dobj) 
• REASON  (indictment, prep_for) 
• SENTENCE (face, dobj) 
• PLEAD  (plead, dobj) 
• JUDGE  (preside, nsubj) 
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Data Set 
• TAC 2010 Guided Summarization 

• 920 documents 
• 46 topic clusters in 5 domains 
• Templates provided to provide guidance to systems 

• Initial vs. update summarization task 
• Summarizers: 

• 8 human model summary writers (alphabetic: A – H) 
• 43 peer summarization systems (1 – 43) 

• Removed two systems that did not generate summaries for most 
topic clusters 
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Peer Comparison Conditions 
• Peer average 

• Average of 41 peer summarizers 

• Peer 16 
• Best in responsiveness in initial task 
• Best in ROUGE-2, responsiveness, Pyramid in update task 

• Peer 22 
• Best in ROUGE-2, Pyramid in initial task 

• Peer 1 
• NIST’s leading baseline from most recent document 
• Best in linguistic quality in both tasks 
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Study 1: Sentence Aggregation 
• Quantitative measure of degree of aggregation 
• Average sentence cover size 

• Minimum # sentences from the source text needed to 
cover all of the caseframes found in a summary sentence 
(for those that can be found in the source text) 

• Take average of this over all summary sentences 
• Pure extraction = 1.0 
e.g.  Summary sentence: {1,2,3,4,5} 
  Source text:  {{1, 3, 4}, {2,5,6}, {1,4,7}} 
  Cover size = 2:  {{1,3,4}, {2,5,6}} 
• Solved optimally by ILOG CPLEX 
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Study 1: Sentence Aggregation 
• Initial 

 
 
 
 

• Update 
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Study 1: Sentence Aggregation 
Condition Initial Update 
Model average 1.58 1.57 
Peer average 1.06 1.06 
Peer 1 1.00 1.00 
Peer 16 1.04 1.04 
Peer 22 1.08 1.09 

15 



Study 2: Signature Caseframes 
• How do humans aggregate information? 

• Option 1: better compaction, but still based on centrality 
• Option 2: novel sentences that synthesize information 

• Signature caseframes are computed by method of 
Lin and Hovy, (2000), extended to caseframes 
• They appear in source text more often than expected by 

chance, compared to a background corpus 
• Log-likelihood ratio test based on binomial distribution 

• Measure signature caseframe density 
• # signature caseframes in summaries / # words in 

summaries 
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Signature Caseframe Density 
• Initial 

 
 
 
 

• Update 
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Signature Caseframe Density 
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Condition Initial Update 
Model average 0.065 0.052 
Peer average 0.080* 0.072* 
Peer 1 0.066 0.050 
Peer 16 0.083* 0.085* 
Peer 22 0.101* 0.084* 

 
 
 
 
 
 
 

• Automatic systems are already more “central” than 
peer systems! 



Accounting for Paraphrasing 
• Results hold even after merging distributionally 

similar caseframes by agglomerative clustering 
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Condition Initial Update 
Model average 0.062 0.047 
Peer average 0.071* 0.063* 
Peer 1 0.060 0.044 
Peer 16 0.072* 0.077* 
Peer 22 0.084* 0.075* 
Threshold = 0.8 



Consequences 
• How do humans aggregate information? 

• Option 1: better compaction, but still based on centrality 
• Option 2: novel sentences that synthesize information 

• Better optimizing centrality-based measures unlikely 
to result in paradigm advancement 

• Sentence simplification and fusion only part of the 
answer 
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Study 3: Summary Reconstruction 
• How might model summaries be generated 

automatically at all? 
• Want hypothesis space that includes model summaries 

• Caseframe coverage 
• Proportion of caseframes in a summary that is contained 

by some reference set 

• What is the reference set? 
• Source text alone 
• Source text plus articles from the same domain 

• Extends Copeck and Szpakowicz’s (2004) analyses 
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Reconstruction from Source Text 
• Initial 

 
 
 
 

• Update 
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Reconstruction from Source Text 
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Condition Initial Update 
Model average 0.77 0.75 
Peer average 0.99 0.99 
Peer 1 1.00 1.00 
Peer 16 1.00 1.00 
Peer 22 1.00 1.00 



Adding In-domain Articles 
• Include all articles from the same domain in 

reference set 
• Baseline: same # of articles from another domain 
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Reference Set Initial Update 
Source text 0.77 0.75 
+out-of-domain 0.91 0.91 
+in-domain 0.98 0.97 



Conclusions 
• Series of studies on guided summarization data by 

caseframes 
• Can distinguish model vs. state-of-the-art peer 

summarizers by information content 
• Human-written model summaries: 

• contain more aggregation 
• rely less on centrality, even after accounting for 

paraphrasing 
• cannot be reconstructed from source text alone 
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Using Domain Knowledge 
• Aggregate statistics like Lin and Hovy, (2000) have 

been successful 
• Identify salient or topical features 

 
• Future work: more direct use of domain knowledge 

• Mining in-domain documents for caseframes 
• Learning structured representation of a domain to learn 

typical slots and events. e.g., (Cheung and Penn, 2013) 
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