Improving Text Simplification Language Modeling Using Unsimplified Text Data

David Kauchak Computer Science Department Middlebury College dkauchak@middlebury.edu

Text simplification

Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius and a lot of courage to move in the opposite direction.

Simpler is better.

Simpler is better

Goal:

Reduce the reading complexity of text by incorporating more accessible vocabulary and structure while maintaining the content.

I find forest colored chicken ovum and smoked pork thigh to be dietarily disturbing.

model

I find forest colored chicken ovum and smoked pork thigh to be dietarily disturbing.

I do not like green eggs and ham.

I find forest colored chicken ovum and smoked pork thigh to be dietarily disturbing.

translation model

language model

length model

model

I do not like green eggs and ham.

I find forest colored chicken ovum and smoked pork thigh to be dietarily disturbing.

model

Data availability

How much data is available to train a *simple* English language model?

~0.5 millions sentences

Data availability

How much data is available to train an English language model?

A lot more.

simple n-grams found in normal Wikipedia

n-grams	simple → normal % overlap
1	96%
2	80%
3	68%
4	61%
5	55%

Sentence aligned corpus (137K sentence pairs)

Sentence aligned corpus (137K sentence pairs)

simple n-grams found in normal Wikipedia

n-grams	simple → normal % overlap
1	96%
2	80%
3	68%
4	61%
5	55%

Good news:

- some reasonable overlap
- It's English

96%

80%

68%

61%

55%

simple n-grams found in normal Wikipedia

Sentence aligned corpus (137K sentence pairs)

Possibly bad news: a lot of missing data!

WIKIPEDIA The Free Encyclopedia	Simple English WIKIPEDIA			
(normal)	(simple)	n-grams	simple - ≯normal	normal - ≯simple
		1	96%	87%
		2	80%	68%
		3	68%	58%
		4	61%	51%
		5	55%	46%

Sentence aligned corpus (137K sentence pairs)

Bad news: different distributions over English!

How do these distribution differences affect language modeling performance?

Is unsimplified data useful for simple language modeling?

What is the best way to utilize unsimplified data?

Document Aligned Corpus

en.wikipedia.org/wiki/England

simple.wikipedia.org/wiki/England

Simple English WIKIPEDIA

simple-only: simple English Wikipedia sentences

normal-only: English Wikipedia sentences

simple-X+normal: X simple sentences combined with varying amounts of normal sentences

23% improvement in perplexity by adding normal data to simple data

normal data helps even more if the simple data is limited

Language model adaptation

Linearly interpolated language model:

$$p_{\text{interpolated}}(W_i \mid W_{i-2}W_{i-1}) = \lambda p_{\text{normal}}(W_i \mid W_{i-2}W_{i-1}) + (1-\lambda)p_{\text{simple}}(W_i \mid W_{i-2}W_{i-1})$$

normal-only

simple-only

~24% improvement in perplexity over models trained with ALL available simple data by using normal data

Task 2: Lexical simplification

SemEval 2012 task:

With the physical market as *tight* as it has been in memory, silver could fly at any time.

Candidates

constricted pressurised low high-strung tight

Task: ranker

Human simplicity ranking
tight

low constricted pressurised high-strung

Task 2: Lexical simplification

With the physical market as *constricted* as it has been ... With the physical market as *pressurised* as it has been ... With the physical market as *low* as it has been ... With the physical market as *high-strung* as it has been ...

With the physical market as *tight* as it has been ...

Task 2: Evaluation

Lexical simplification results

Less simple data

number of additional normal sentences

23% improvement over simple-only model!

Why does normal data help?

Our guess: more *n*-grams

How many more *n*-grams are seen in normal data compared to simple?

Why does normal data help?

How many more *n*-grams are seen in normal data compared to simple?

Perplexity test data

Lexical simplification data

re

normal contains:

I

unigrams	9.4% more	6.2% more
bigrams	24% more	56% more
trigrams	46% more	117% more

Application matters

Optimal λ (weighting between simple and normal) for linearly interpolated models:

Perplexity task

 $\lambda = 0.5$

An equal balance between simple and normal models Lexical simplification task

 $\lambda = 0.98$

A very strong bias towards the simple model

Unsimplified data **is** useful for simple English language modeling

>23% improvement on both perplexity and lexical simplification tasks over model using *ALL simple data* available

LM domain adaption techniques are important, but are application specific

Data available:

http://www.cs.middlebury.edu/~dkauchak/simplification/

Open questions

How much unsimplified data can we utilize?

How does source/domain affect perfomance?

How does the LM quality affect other simplification applications (e.g. full sentence simplification)?

Better LM domain adaptation techniques.