Automated Selection of Social Media Responses to News

Tadej Štajner¹, Bart Thomee ², Ana-Maria Popescu³, Marco Pennachiotti⁴, Alejandro Jaimes²

¹Jožef Stefan Institute

²Yahoo! Research Barcelona

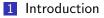
³Research Consulting

³eBay, Inc.

KDD 2013, Chicago, Illinois, USA August 12, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline



- 2 Proposed method
- 3 Related work

4 Evaluation

5 Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Motivation

- While news is produced through traditional channels, a lot of content related to these news events is produced through social media
- People post messages to share a particular news article, to express an opinion about the ongoing events, or to add or refute information about the topic or the mentioned article.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Displaying social responses near a news article for an enhanced reading experience.

Motivation

- While news is produced through traditional channels, a lot of content related to these news events is produced through social media
- People post messages to share a particular news article, to express an opinion about the ongoing events, or to add or refute information about the topic or the mentioned article.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Displaying social responses near a news article for an enhanced reading experience.

Motivation

- While news is produced through traditional channels, a lot of content related to these news events is produced through social media
- People post messages to share a particular news article, to express an opinion about the ongoing events, or to add or refute information about the topic or the mentioned article.

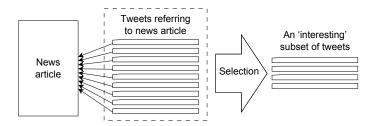
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Displaying social responses near a news article for an enhanced reading experience.

Situation

Given:

- a news article
- a set of tweets, responding to that news article



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hypothesis

Our hypothesis is that an interesting subset consists of diverse, informative, opinionated and popular messages composed by users with authority.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problems

There is a huge volume of tweets, but few actual distinct messages;

- Many tweets are repetitions of the title of the news article, having no additional information;
- Some of them have different content, but are nevertheless redundant;
- Yet, some people actually contribute novel facts or insightful remarks;

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problems

- There is a huge volume of tweets, but few actual distinct messages;
- Many tweets are repetitions of the title of the news article, having no additional information;
- Some of them have different content, but are nevertheless redundant;
- Yet, some people actually contribute novel facts or insightful remarks;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Problems

- There is a huge volume of tweets, but few actual distinct messages;
- Many tweets are repetitions of the title of the news article, having no additional information;
- Some of them have different content, but are nevertheless redundant;
- Yet, some people actually contribute novel facts or insightful remarks;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problems

- There is a huge volume of tweets, but few actual distinct messages;
- Many tweets are repetitions of the title of the news article, having no additional information;
- Some of them have different content, but are nevertheless redundant;
- Yet, some people actually contribute novel facts or insightful remarks;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

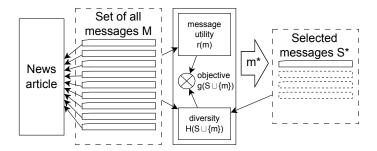
Problem statement

Given a news article and a set of related messages M, we seek a subset S of M, of size k, which are the most "interesting" to a typical reader in the context of the article

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposed solution

We computationally model the four message-level indicators using an utility function r and the set-level diversity indicator using a normalized entropy function H_0 , combined into a common objective function g(S)



▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Objective function

The solution to the social message selection problem is to optimize this objective function:

$$S^* = \arg\max_{S \subset M, |S|=k} (g(S)) \tag{1}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$g(S) = \lambda \sum_{m \in S} r(m) + (1 - \lambda)H_0(S)$$
(2)

We consider the properties of our objective function to find a fast approximation to the problem.

Objective function

The solution to the social message selection problem is to optimize this objective function:

$$S^* = \arg\max_{S \subset M, |S|=k} (g(S))$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$g(S) = \lambda \sum_{m \in S} r(m) + (1 - \lambda)H_0(S)$$
(2)

We consider the properties of our objective function to find a fast approximation to the problem.

Objective function

To this end, we demonstrate that g(S) is a submodular set function, meaning that the difference of the value of the function that a single element addition makes decreases as the size of the input set increases.

Objective function

•
$$r(S) = \sum_{m \in S} r(m)$$
 - submodular, since
 $\forall X, Y \subseteq \Omega, X \subseteq Y, \forall x \in \Omega \setminus Y :$
 $f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $H_0(S)$ entropy is also known to be submodular
- A linear combination of submodular set functions is also submodular, which is why a greedy approach is at most 1 - ¹/_e times worse than the optimal set of examples.

Objective function

•
$$r(S) = \sum_{m \in S} r(m)$$
 - submodular, since

$$\forall X, Y \subseteq \Omega, X \subseteq Y, \forall x \in \Omega \setminus Y : f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)$$
(3)

• $H_0(S)$ - entropy is also known to be submodular

 A linear combination of submodular set functions is also submodular, which is why a greedy approach is at most 1 - ¹/_e times worse than the optimal set of examples.

Objective function

•
$$r(S) = \sum_{m \in S} r(m)$$
 - submodular, since

$$\forall X, Y \subseteq \Omega, X \subseteq Y, \forall x \in \Omega \setminus Y : f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)$$

$$(3)$$

- $H_0(S)$ entropy is also known to be submodular
- A linear combination of submodular set functions is also submodular, which is why a greedy approach is at most 1 - ¹/_e times worse than the optimal set of examples.

Objective function - scoring

- Let *r* be a function, modeled by θ , that outputs a real value for a given tweet $t : y_i = r(t_i | \Theta), y_i \in \Re$
- We obtain Θ by training a support vector regression model on individual tweet judgments: (τ, y_{gold})

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Objective function - scoring

- Let r be a function, modeled by θ , that outputs a real value for a given tweet $t : y_i = r(t_i | \Theta), y_i \in \Re$
- We obtain Θ by training a support vector regression model on individual tweet judgments: (τ, y_{gold})

Algorithm

 $\begin{array}{l} \textbf{Algorithm 1: Greedy iterative sampling algorithm} \\ \hline \textbf{Input} & : A collection of messages M, the sample size k \\ \textbf{Output: A sample set of messages S^*} \\ S \leftarrow \{ \arg\max(r(m_i)) \} \\ & \underset{m_i \in M}{\min\{|S| < k \text{ do} \\ & \\ & \\ m^* \leftarrow \arg\max(g(S \cup \{m_i\})) \\ & \\ S \leftarrow S \cup \{m^*\} \\ \textbf{end} \\ & \\ S^* \leftarrow S \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Features

Both components of g(S) have distinct features sets: features for r(S) are scoring features, while features for $H_0(S)$ are selection features.

Selection features: n-grams, location, retweet, reply **Scoring features:** average TF-IDF score, log-likelihood given a language model, length, me-information, question, quotation, quality, sentiment, intensity, controversy, retweet, reply, friends, followers, follower-friend ratio, number of retweets, tweet-retweet ratio, user is verified, user is spam, user authority, user topic authority

Features

Both components of g(S) have distinct features sets: features for r(S) are scoring features, while features for $H_0(S)$ are selection features.

Selection features: n-grams, location, retweet, reply

Scoring features: average TF-IDF score, log-likelihood given a language model, length, me-information, question, quotation, quality, sentiment, intensity, controversy, retweet, reply, friends, followers, follower-friend ratio, number of retweets, tweet-retweet ratio, user is verified, user is spam, user authority, user topic authority

Features

Both components of g(S) have distinct features sets: features for r(S) are scoring features, while features for $H_0(S)$ are selection features.

Selection features: n-grams, location, retweet, reply **Scoring features:** average TF-IDF score, log-likelihood given a language model, length, me-information, question, quotation, quality, sentiment, intensity, controversy, retweet, reply, friends, followers, follower-friend ratio, number of retweets, tweet-retweet ratio, user is verified, user is spam, user authority, user topic authority Related work

Related work: Diversity-based sampling¹

Goal: sample tweets with respect to the desired diversity level

Method: greedy approach that iteratively picks tweets that minimize the distortion of entropy of the current subset using a probabilistic model of tweets given their diversity using social, content and network features.

Label: diversity

¹M. De Choudhury, et al., Find me the right content! Diversity-based sampling of social media spaces for topic-centric search. ICWSM 2011

Related work

Related work: Social context summarization ²

Goal: Joint summarization of news and tweets; Method: based on conditional random fields that simultaneously addresses message and document summarization by modeling messages and sentences as connected 'wings' in a factor graph Label: LR+, DWFG

²Zi Yang et al.: Social Context Summarization, SIGIR 2011 () () ()

Related work

Our contribution

- We focus on a comprehensive notion of interestingness instead of solely optimizing for message diversity;
- We detect and avoid redundancy between the content of messages by including a richer set of textual features;
- We model the importance of messages beyond their literal content by including features that capture the wider social, conversational and linguistic context;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• We provide a theoretic guarantee of the sample quality.

Methods

DIVERSITY: de Choudhury et al, 2011 LR+: Yang et al, 2011 DWFG: Yang et al, 2011 SVR: message scoring only ENTROPY: entropy selection only SVR_ENTROPY: scoring, combined with entropy selection

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Methods

DIVERSITY: de Choudhury et al, 2011 LR+: Yang et al, 2011 DWFG: Yang et al, 2011 SVR: message scoring only ENTROPY: entropy selection only SVR_ENTROPY: scoring, combined with entropy selection

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Scenario 1: individual message labeling

Given a news article and a set of messages, judge each tweet on $\{-1,0,+1\}$ on each of the following criteria:

- Informative: the message brings new information to the news article and sample.
- Opinionated: the message expresses a strong/controversial opinion or emotions.
 - Interesting: the message would serve as a good example of presenting the essence of the people's response to news.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Popularity and authority are computed mechanically.

Scenario 1: individual message labeling

Given a news article and a set of messages, judge each tweet on $\{-1,0,+1\}$ on each of the following criteria:

- Informative: the message brings new information to the news article and sample.
- Opinionated: the message expresses a strong/controversial opinion or emotions.
 - Interesting: the message would serve as a good example of presenting the essence of the people's response to news.

Popularity and authority are computed mechanically.

Dataset

28,055 messages, gathered from Twitter, referring to **45 news** articles annotated with **3 indicators** by **14 professional editors**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Individual message labeling - evaluation

We evaluate the individual message labeling modeling using F_1 and ROUGE, a widely used metric in text summarization.

These scores measure how closely the output of a method on a single tweet is to the "ideal" output, i.e. those scored positively by the annotators.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Individual message labeling - evaluation

We evaluate the individual message labeling modeling using F_1 and ROUGE, a widely used metric in text summarization. These scores measure how closely the output of a method on a single tweet is to the "ideal" output, i.e. those scored positively by the annotators.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Individual message labeling

Table : Comparison of the tweet sets generated by the various methods in terms of their informativeness, opinionatedness and interestingness as measured by ROUGE-2 and F_1 at k = 10

	Informative		Opinionated		Interesting	
	R-2	F_1	R-2	F_1	R-2	F_1
DIVERSITY	0.178	0.050	0.270	0.108	0.280	0.109
DWFG	0.170	0.048	0.259	0.056	0.235	0.051
LR+	0.175	0.032	0.355	0.132	0.264	0.054
ENTROPY	0.246*	0.124*	0.345	0.184*	0.357*	0.216*
SVR	0.212*	0.132*	0.326	0.217*	0.336*	0.239*
SVR_ENTROPY	0.232*	0.123*	0.343	0.211^{*}	0.346*	0.224*

Decomposing interestingness of individual messages

We fitted a least-squares linear model to the indicators and obtained the following linear combination, supported by a coefficient of determination R^2 of 0.38:

$$int = 0.60 \cdot inf + 0.29 \cdot opi + 0.03 \cdot pop + 0.10 \cdot aut$$
 (4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pairwise sample comparison

Given a news article and the associated tweets, we let evaluators choose between two message selections, generated by different approaches.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Combining diversity and scoring?
- Comparison against baselines?

Pairwise sample comparison

Given a news article and the associated tweets, we let evaluators choose between two message selections, generated by different approaches.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Combining diversity and scoring?
- Comparison against baselines?

Pairwise sample comparison

Table : Comparison of tweet selection methods based on annotator preference votes.

Method A	Method B	Votes A	Votes B	None	<i>p</i> -value			
Combining entropy with scoring								
SVR	SVR_ENTROPY	151	194	16	0.02			
SVR	ENTROPY	193	155	9	0.04			
ENTROPY	SVR_ENTROPY	114	147	13	0.04			
Comparison against baselines								
DIVERSITY	SVR_ENTROPY	79	158	3	0.00			
DWFG	SVR_ENTROPY	99	149	5	0.00			
DWFG	DIVERSITY	118	94	10	0.10			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Distribution of preference reasons

Method A	Method B	inf.	opi.	aut.	pop.
SVR	SVR_ENTROPY	163	197	59	49
ENTROPY	SVR	139	226	43	54
ENTROPY	SVR_ENTROPY	160	125	24	13
DIVERSITY	SVR_ENTROPY	147	122	66	68
DIVERSITY	DWFG	166	109	66	50
DWFG	SVR_ENTROPY	146	134	85	68

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Conclusion

We show that SVR_ENTROPY, a near-optimal solution to the message selection optimization problem outperforms other baselines in a head-to-head comparison scenario.

We show how various indicators affect interestingness: informativeness being most important, followed by opinionatedness and user authority.

Conclusion

We show that SVR_ENTROPY, a near-optimal solution to the message selection optimization problem outperforms other baselines in a head-to-head comparison scenario.

We show how various indicators affect interestingness: informativeness being most important, followed by opinionatedness and user authority.

Conclusion

Interestingness of a message and a message set:

 For individual messages, *informativeness* is most important but simultaneously the most difficult to judge, followed by *opinionatedness* and *popularity*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Message set interestingness was tied most strongly to opinionatedness and then to informativeness.

Future work

Incporporating additional message- and author- level indicators

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Personalizing interestingness models
- Abstractive summarization
- Online sampling

Future work

Incporporating additional message- and author- level indicators

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Personalizing interestingness models
- Abstractive summarization
- Online sampling

Future work

Incporporating additional message- and author- level indicators

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Personalizing interestingness models
- Abstractive summarization
- Online sampling

Future work

Incporporating additional message- and author- level indicators

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Personalizing interestingness models
- Abstractive summarization
- Online sampling

Questions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで