Neural Coding

John Hertz Niels Bohr Institute and Nordita

NETADIS Summer School Hillerød, 13 September 2013

Outline

- a little about neurons
- a little about point processes
- examples of rate coding
- populations of neurons:
 - correlations
 - population coding and decoding

Neurons

ca 10^{11} neurons/human brain $10^4/mm^3$ soma $10\text{-}50~\mu\text{m}$ axon length ~ 4 cm total axon length/mm³ ~ 400 m

Cell membrane, ion channels, action potentials

Membrane potential: rest at ca -70 mv Na-K pump maintains excess K inside, Na outside Na in: *V* rises, more channels open → "spike"

Communication: synapses

Integrating synaptic input:

Neuronal communication: noisy spike trains

Motion-sensitive neuron in visual area MT: spike trains evoked by multiple presentations of moving random-dot patterns

Intracellular recordings of membrane potential: Isolated neurons fire regularly; neurons *in vivo* do not:

Spike trains: Poisson process model

Homogeneous Poisson process: r = rate = prob of firing per unit time, i.e., $r\Delta t = \text{prob of spike in interval}$ $[t, t + \Delta t)$ $(\Delta t \rightarrow 0)$

Survivor function: probability of not firing in [0,t): S(t)

$$r = \frac{-dS(t)/dt}{S(t)}$$
 \Rightarrow $S(t) = e^{-rt}$

Probability of firing for the first time in $[t, t + \Delta t)/\Delta t$:

$$P(t) = -\frac{dS(t)}{dt} = re^{-rt}$$
 (interspike interval distribution)

Homogeneous Poisson process (2)

Probability of exactly 1 spike in [0,T):

$$P_T(1) = \int_0^T dt \ r e^{-rt} \cdot e^{-r(T-t)} = r T e^{-rT}$$

Probability of exactly 2 spikes in [0,T):

$$P_T(2) = \int_0^T dt_2 \int_0^{t_2} dt_1 r e^{-rt_1} \cdot r e^{-r(t_2 - t_1)} \cdot e^{-r(T - t_2)} = \frac{1}{2} (rT)^2 e^{-rT}$$

... Probability of exactly n spikes in [0,T):

$$P_T(n) = \frac{1}{n!} (rT)^n e^{-rT}$$
 Poisson distribution

Poisson distribution

Probability of *n* spikes in interval of duration *T*:

$$P_T(n) = \frac{(rT)^n}{n!} e^{-rT}$$

Mean count:
$$\overline{n} = rT$$

variance:
$$\overline{(n-\overline{n})^2} = rT = \overline{n}$$
 i.e., $\overline{n} \pm \sqrt{\overline{n}}$ spikes

large $rT: \rightarrow$ Gaussian

Poisson process (3): correlation function

Spike train:
$$S(t) = \sum_{f} \delta(t - t_f)$$

mean:
$$\langle S(t) \rangle = r$$

Correlation function:

$$C(\tau) = \langle (S(t) - r)(S(t + \tau) - r) \rangle = r\delta(\tau)$$

Stationary renewal process

Defined by ISI distribution P(t)

Relation between P(t) and C(t): define $C_{+}(t) = \frac{1}{r}(C(t) + r^{2})\Theta(t)$

$$C_{+}(t) = P(t) + \int_{0}^{t} dt' P(t') P(t - t') + \cdots$$

$$= P(t) + \int_{0}^{t} dt' P(t') C_{+}(t - t')$$

Laplace transform: $C_{+}(\lambda) = P(\lambda) + P(\lambda)C_{+}(\lambda)$

Solve:
$$C_{+}(\lambda) = \frac{P(\lambda)}{1 - P(\lambda)}$$

Fano factor

$$F = \frac{\overline{(n - \overline{n})^2}}{\overline{n}}$$
 spike count variance / mean spike count

F = 1 for stationary Poisson process

$$\overline{n} = \int_{0}^{T} \langle S(t) \rangle dt = rT$$

$$\overline{(\delta n)^{2}} = \int_{0}^{T} dt \int_{0}^{T} dt' \langle \delta S(t) \delta S(t') \rangle = T \int_{-\infty}^{\infty} C(\tau) d\tau \quad \Rightarrow \quad F = \frac{\int_{-\infty}^{\infty} C(\tau) d\tau}{r}$$

 $F = CV^2$ for stationary renewal process (exercise: prove this)

Nonstationary point processes

Nonstationary Poisson process: time-dependent rate r(t)

Still have Poisson count distribution, F=1

Nonstationary renewal process: time-dependent ISI distribution

$$P(t) \rightarrow P_{t_0}(t)$$
 = ISI probability starting at t_0

Experimental results (1)

Correlation functions

A +80

time (ms)

Count variance vs mean

Experimental results (2)

ISI distribution

CV's for many neurons

Neuronal firing is not exactly Poisson, but it is (surprisingly) close to it. (~10% effects)

Rate coding: examples

Visual cortical neuron: variation of rate with orientation of stimulus

Motor cortical neuron: variation of rate with direction of movement

Quantifying the response of sensory neurons

spike-triggered average stimulus ("reverse correlation")

Examples of reverse correlation

Electric sensory neuron in electric fish: s(t) = electric field

Motion-sensitive neuron in blowfly Visual system: s(t) = velocity of moving pattern in visual field

Note: non-additive effect for spikes very close in time ($\Delta t < 5 \text{ ms}$)

Populations of neurons

How independent are different neurons?

Two kinds of correlations: "signal correlations" and "noise correlations": notation: stimuli s, responses r (e.g., spike counts if we use Poisson model), trials α

signal correlation: ~ How similar are mean responses? (I.e., how similar are tuning curves):

$$C_{signal}^{12} = \left\langle \left(\left\langle r_{s\alpha}^{1} \right\rangle_{\alpha} - \left\langle r_{s\alpha}^{1} \right\rangle_{s\alpha} \right) \left(\left\langle r_{s\alpha}^{2} \right\rangle_{\alpha} - \left\langle r_{s\alpha}^{2} \right\rangle_{s\alpha} \right) \right\rangle_{s}$$

$$= \left\langle \left(m_{s}^{1} - \left\langle m_{s}^{1} \right\rangle_{s} \right) \left(m_{s}^{2} - \left\langle m_{s}^{2} \right\rangle_{s} \right) \right\rangle_{s}, \quad m_{s}^{1} = \left\langle r_{s\alpha}^{1} \right\rangle_{\alpha}$$

noise correlation: how similar across trials are fluctuations of responses of 1 and 2 to a stimulus?

$$C_{noise}^{12} = \left\langle \left(r_{s\alpha}^{1} - \left\langle r_{s\alpha}^{1} \right\rangle_{\alpha} \right) \left(r_{s\alpha}^{2} - \left\langle r_{s\alpha}^{2} \right\rangle_{\alpha} \right) \right\rangle_{s\alpha}$$
$$= \left\langle \left(r_{s\alpha}^{1} - m_{s}^{1} \right) \left(r_{s\alpha}^{2} - m_{s}^{2} \right) \right\rangle_{s\alpha},$$

Signal and noise correlation

Effects of noise correlation on information transmission

Transmitted (mutual) information:

$$I(s,r) = H(s) - \left\langle H(s \mid r) \right\rangle_r = -\sum_s p(s) \log p(s) + \sum_r p(r) \sum_s p(s \mid r) \log p(s \mid r)$$
reduction in entropy of stimulus set from knowing response

$$= H(r) - \left\langle H(r \mid s) \right\rangle_s = -\sum_r p(r) \log p(r) + \sum_s p(s) \sum_r p(r \mid s) \log p(r \mid s)$$
reduction in entropy of responses from knowing stimulus

$$= \sum_{rs} p(r,s) \log \frac{p(r,s)}{p(r)p(s)}$$
Symmetric in s and r!

2-neuron, 2-stimulus examples:

Encoding perspective: look at

$$\Delta I_{shuffled} = I - I_{shuffled responses}$$

Information (I) in unshuffled responses

α Δ1 مراهد <0

Information ((),,,,)
in shuffled responses

Decoding perspective:

Decoding \Leftrightarrow drawing a line to separate responses to the two stimuli optimally

 I_{diag} : Find this line using the shuffled data and use it on the unshuffled data.

Look at $\Delta I_{diag} = I - I_{diag}$

More neurons?

encoding perspective:

decoding perspective:

all the above material from Averbeck et al Nature Rev Neurosci **7** 358-366 (2006)

Population coding and Bayesian inference

Key idea about "noisy neurons":

Neurons don't just encode the mean of some quantity badly. The variability in the response encodes the distribution of that quantity.

Here: how this can work in a simple example with independent Poisson neurons (Ma et al, Nat Neurosci 2006)

firing of neurons: conditional spike count distribution

$$p(\mathbf{r} \mid s) = \prod_{i} \frac{e^{-f_i(s)} f_i(s)^{r_i}}{r_i!}$$
 $f_i(s) = \text{tuning curve of neuron } i$

Use Bayes's theorem to decode responses:

$$p(s \mid \mathbf{r}) \propto \prod_{i} \frac{e^{-f_i(s)} f_i(s)^{r_i}}{r_i!} p(s)$$
 $p(s) = \text{prior on } s \text{ (assumed flat here)}$

Example: Gaussian tuning curves

$$\log p(s \mid \mathbf{r}) = \sum_{i} \left[r_{i} \log f_{i}(s) - f_{i}(s) \right] + \operatorname{const} \approx \sum_{i} r_{i} \log f_{i}(s) + \operatorname{const'}$$
tuning curve of neuron *i*:
$$f_{i}(s) = g \exp \left[-\frac{(s-i)^{2}}{2\sigma^{2}} \right]$$

$$f_i(s) = g \exp\left[-\frac{(s-i)^2}{2\sigma^2}\right]$$

maximize
$$\log p(s|\mathbf{r})$$
:
$$0 = \sum_{i} r_i f_i'(s) / f_i(s) = -\frac{1}{\sigma^2} \sum_{i} r_i(s-i) \Rightarrow s = \frac{\sum_{i} i r_i}{\sum_{i} r_i}$$

2nd derivative:
$$-\frac{\partial^2 \log p(s \mid \mathbf{r})}{\partial s^2} = -\frac{\partial}{\partial s} \left[-\frac{1}{\sigma^2} \sum_i r_i(s - i) \right] = \frac{\sum_i r_i}{\sigma^2}$$
 = 1/variance

i.e., gain =
$$\Sigma_i r_i \sim 1/\text{variance}$$