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Neurons

ca 10" neurons/human brain
10*/mm?

soma 10-50 um

axon length ~4 cm

total axon length/mm?3 ~ 400 m




Cell membrane, ion channels, action potentials

Nain: Vrises,
more channels open
- “spike”
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Membrane potential: rest at ca -70 mv
Na-K pump maintains excess K inside,
Na outside



Communication: synapses
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Neuronal communication: noisy spike trains

spikes/s

Motion-sensitive neuron in visual

area MT: spike trains evoked by multiple

presentations of moving random-dot

patterns

Intracellular recordings of
membrane potential:

Isolated neurons fire regularly;
neurons in vivo do not:

in vitro current injection in vive current injection  in vivo visual stimulation
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Spike trains: Poisson process model

Homogeneous Poisson process: F = rate = prob of firing per unit time,
i.e., rAt =prob of spike in interval [f,f+ Af) (At —0)

Survivor function: probability of not firing in [0,7): S(¢)

I 1
S(1)

Probability of firing for the first time in [z, t + A7)/ At :

(interspike interval distribution)



Homogeneous Poisson process (2)

Probability of exactly 1 spike in [0,7):

P.(1) = fOT dtre 7T = pTe™
Probability of exactly 2 spikes in [0,7):
P.(2) = fOT dtzfotz dt, re™" - re ") e T  L(pT)2e 7T
... Probability of exactly n spikes in [0,7):

1
P.(n) = ;(rT)"e_rT Poisson distribution



Poisson distribution

Probability of n spikes in interval of duration T

(i’T)
P.(n) =
I’Z.
Mean count: n=rl
variance: (n — ﬁ)z =7 =n ie.nz= \/%spikes
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Poisson process (3): correlation function

Spike train: S(t) = Eé(t —1,)
f

mean: <S(t)> =7

Correlation function:

C(t) =((S(t) =r)(S(t+T) = 1)) = ré(7)



Stationary renewal process

Defined by ISI distribution P(¢)
1
Relation between P(¢) and C(¢): define C,(¢) = ;(C(r)+ r2)0(1)
C.(1) = P(t)+ [ di'P(t)P(t = 1)+
0

= P(t)+ [dr'P(t)C (1 -1

Laplace transform:  C,(4) = P(A)+ P(A)C,(4)

P(A)

Solve: C.(A) = P




Fano factor

_(n-n)

n

spike count variance / mean spike count

T
I

for stationary Poisson process

} S(t) dt =rT

» jC(r)dr
(6n)* = f di f {386y =T [Cmydr > F ===

r

F =CV?* for stationary renewal process
(exercise: prove this)



Nonstationary point processes

Nonstationary Poisson process: time-dependent rate (%)

Still have Poisson count distribution, F'=1

Nonstationary renewal process: time-dependent ISI distribution

P(1) =P, (1) =13l probability starting at ¢,



Experimental results (1)

Correlation functions Count variance vs mean
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Experimental results (2)

IS| distribution CV’s for many neurons
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Neuronal firing is not exactly Poisson, but it is (surprisingly)
close to it. (~10% effects)



Rate coding: examples

Visual cortical neuron:
variation of rate with
orientation of stimulus

Motor cortical neuron:
variation of rate with
direction of movement
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Quantifying the response of sensory
neurons

spike-triggered average stimulus (“reverse correlation”)
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Examples of reverse correlation

Electric sensory neuron in

electric fish:
s(t) = electric field
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Motion-sensitive neuron in blowfly

Visual system:
s(t) = velocity of moving pattern in

visual field
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Note: non-additive effect for spikes
very close in time (At < 5 ms)



Populations of neurons

How independent are different neurons?

Two kinds of correlations: “signal correlations” and “noise correlations”:

notation: stimuli s, responses r (e.g., spike counts if we use Poisson model),
trials a

signal correlation: ~ How similar are mean responses? (l.e., how similar
are tuning curves):

C12

= (0, - (), 2, - (2)..))
= (=)o =) J) =),

noise correlation: how similar across trials are fluctuations of responses of
1 and 2 to a stimulus?

12 1 1
Cnoise = <(rsa - <rsa >a



Signal and noise correlation

(a) Signal correlation

Positive signal correlation

Neuron 1

Neuron 2

Negative signal correlation

Neuron 1 Neuron 2

Mean response (spikes, m)

Coded variable (s)

(b) Noise correlation

Response (spike count)
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Effects of noise correlation
on information transmission

Transmitted (mutual) information:
I(s,r) = H(s) = (H(s 1)), = 2p<s>logp<s>+2p<r>})p<slr)logp(slr)

reduction in entropy of stlmulus set from knowing response

= H(r) - (H(r19)), = Ep(r)logp(r)+2p<s>§p(rls)logp(rls)

reduction in entropy of responses from knowing stimulus

p(r,s)
p(r)p(s)

= Ep(r,s)log

Symmetric in s and r!

2-neuron, 2-stimulus examples:
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Decoding perspective:

Decoding < drawing a line to separate responses to the two stimuli optimally

1;,,+ Find this line using the shuffled data and use it on the unshuffled data.

Look at Al =1-1,,
Estimate w, _on Apply to unshuffled
shuflled responses responses (measures ! )
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More neurons?

encoding perspective:
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all the above material from Averbeck et al
Nature Rev Neurosci 7 358-366 (2006)



Population coding and
Bayesian inference

Key idea about “noisy neurons”:
Neurons don’t just encode the mean of some quantity badly.
The variability in the response encodes the distribution of that quantity.

Here: how this can work in a simple example with independent
Poisson neurons (Ma et al, Nat Neurosci 2006)

firing of neurons: conditional spike count distribution

1

-fi(5) 7
p(rls) = He ,,j:i(S) fi{(s) =tuning curve of neuron i

Use Bayes’s theorem to decode responses:

- i (s) 7
p(sir) « He ]:"(S) p(s) p(s) = prior on s (assumed flat here)
. r..

l



Example: Gaussian tuning curves

logp(sir) = E[rl log f.(s) - fl.(s)] + const = Erl.log f:(s) + const’

1

o 2
tuning curve of neuron i: fi(s) = gexp[— Szo;) }

2

maximize log p(s|r): 0= Erl.fl.’(s)/fi(s) = —ézri(s —)=s= E
; i 7

o Flogpsity ] 1 N |
2nd derivative: - P = —?En(s—z) = = 1/variance

i.e., gain = 2, ~ 1/variance



