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Human memory systems

Psychologists have split up memory in:
Declarative memory 
* Episodic memory (personal what, when, where memories)

- recollection
- familiarity
- hippocampus (patient HM)

* Semantic memory: General facts about the world (cortex)

Non-declarative memory (cortex, cerebellum,..)
Motor skills, sensory processing, ... 

Working memory (prefrontal, not discussed here)
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Testing animal memory

(Classical) conditioning 
Pavlov's dog
Aplysia gill reflex

Mazes and environments for rodents 
● water maze
● place avoidance
● fear
● food location
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Long term synaptic plasticity

What is (activity dependent, long term) synaptic plasticity?

Long term, semi-permanent changes in the synaptic
efficacy, induced by neural activity.

In contrast to:
- some aspects of development
- short term changes 
- excitability changes
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Memory systems

Declarative memory 
* Episodic memory 

- recollection
- familiarity
- hippocampus (patient HM)

* Semantic memory: General facts 

Non-declarative memory 
Motor skills, sensory processing, ... 

Synaptic
plasticity 



Long term synaptic plasticity

Inputs x

Outputs y y j=Φ(∑i
w ji xi)



Long term synaptic plasticity



Long term synaptic plasticity



Long term synaptic plasticity
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Why plasticity 

Why should a neuron selectively change it inputs?

- Adapt to environment and other neurons

- Store explicit information (episodic and semantic

memory)

- Implicit information (sensory statistics, motor 

learning

- Note, computation and memory share the substrate in 

neural networks.
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Why plasticity 

Why modelling plasticity

- extrapolate single neuron plasticity to network level 

- so we don't need to specify all connections in 

a model (smarter networks)
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Outline

- Some new and old data
- neurobiology of LTP
- relation of LTP to memory
- long term stability and forgetting

- Recent own work
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More reading

Reviews of experimental LTP:
- Kandel and Schwartz book
- Hippocampus book

Theory of Hopfield networks and Backpropagation
- Herz, Krogh and Palmer

Neural computation theory
- Dayan & Abbott
- Trappenberg



Bell

Saliva

Food

For Aplysia see Kandel book

NB: just a 
cartoon!



“What fires together, wires together”





Diagram: Kit Longden
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Synaptic plasticity = memory?
Criteria

●Detectability
changes in behaviour and synaptic efficacy should be correlated
Yes

●Mimicry
change synaptic efficacies → new ‘apparent’ memory
Rudimentary

●Anterograde alteration 
prevent synaptic plasticity → anterograde amnesia
Yes (e.g. NMDA block)

●Retrograde alteration 
alter synaptic efficacies → retrograde amnesia
Yes (e.g. PKMz), but...

[Martin, Greenwood, Morris '04]
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Synaptic plasticity=memory?

[Whitlock,.. and Bear '06]
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LTP stages

Induction:
- Requires pre- and post synaptic activity.
- Mechanism: NMDA and Ca influx

Expression 
- Early LTP
- Late LTP

Maintainance 

 



NMDA requires pre and post activity, hence ideal for Hebbian
Learning
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AP5 blocks learning

[Morris et al 86]

NMDA- blockNMDA- block
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Ca hypothesis

LTP LTD

Pairing high pre- and post synaptic activity => LTP
Pairing with low activity =>  Long term depression

[O'Connor & Wang '05][Bliss & Lomo '73]



29

  

LTP stages

Induction:
- Requires pre- and postsynaptic activity.
- Mechanism: NMDA and Ca influx

Expression:
- Early LTP (1 hr): 

- partly pre-synaptic changes
- AMPAR phosphorylation
- AMPAR insertion

-Late LTP 
-? (requires protein synthesis)
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Changes in AMPA 
receptor phosphorilation

[Whitlock,
.. and Bear '06]



32

  

Early phase LTP

Rapid and local
change

Stim.:
1 s @ 100Hz

CaMKII
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Associativity

Too 
weak

LTP
inducing

Weak stim.
no LTP

Weak stim.
paired with strong

Associative LTP

- Can be explained with voltage dependence of NMDA

- Associative learning such as Classical conditioning (Pavlov)



Bell

Saliva

Food

For Aplysia see Kandel book

NB: just a 
cartoon!
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Early phase LTP

But gone
after few hours

Rapid and local
change

Stim.:
1 s @ 100Hz
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Late LTP 
requires protein synthesis

[Fonseca et al 06]
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Late phase LTP

PRPs

)

Dopa
mine

Stim:
3x 1s @100Hz

Start protein
synthesis

LTP lastsShip PRPs to 
tagged synapses
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LTP stages

Induction:
- Requires pre- and post synaptic activity.
- Mechanism: NMDA and Ca influx

Expression:
- Early LTP (1 hr): 

- partly pre-synaptic changes
- AMPAR phosphorylation
- AMPAR insertion

-Late phase LTP 
-requires protein synthesis
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What determines if LTP lasts?

[Seidenbecher '95]

Reward and punishment
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Longevity: In vivo physiology

● Strong extracellular stimulation, leads to long lasting 
strengthening of synapse [Bliss and Lomo '73]

[Abraham '00]
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What determines if LTP lasts?

[Abraham '02, Li & Rowan '00]
(Dopamine mediated)
Does a novel environment 
'reset'  hippocampal learning?

[Abraham '00]

Stimulus protocol Environment
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LTP stages

Induction

Expression
 

Maintainance



43

  

LTP maintenance 
as an active process

ZIP disrupts one month old memory [Pastalkova et al '06]

[movie demo]
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Hypotheses for maintaince /
long term stability

[Yao & Sacktor '08]

GluR2 traffickingSlots for AMPA receptors

[Turrigiano  '02]
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Learning
models
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Why modelling plasticity 

Why modeling plasticity: 2 cross-fertilizing approaches

1) Artificial neural networks, engineering approach

- make a network do something

- now somewhat superseded by more formal

   machine learning

2) Insight in biology

- extrapolate single neuron plasticity to network level 

- how can organisms adapt?
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Models of plasticity and memory

Supervised learning
- tell network exactly what desired output is
- train network by changing the weights

Reinforcement learning
- Only give reward/punishment 

Unsupervised learning
- Let the network discover things (statistics) 
  about the input, e.g. Create representations that are
  useful for further processing (V1)

Animals/humans can do all three presumably
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Supervised: Perceptron

Categorize inputs into two classes

Perceptron learning rule [Rosenblatt 1952]
- If it can be learned, the rule converges
- Not all classification problems can be learned

y= ∑w
i
x
i
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Linear separability

Separable
Perceptron can classify 

Non-separable
Perceptron can't classify 
Need multiple layers

Extra
chair
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Multi-layer perceptron

Network to approximate any function with arbitrary 
number of inputs and outputs
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Back propagation
E in ,out∣w1 ,w2 , ...

 w
i
=−

∂ E
∂w

i

E=∑pattern
out

actual
−out

desired

2

E in ,out∣w
1
,w

2
, ...

 w
i
=−

∂ E
∂w

i

E=∑pattern
out

actual
−out

desired

2
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Back propagation

General approach: 

- Come up with cost function, (objective function)
  Examples: #errors, sparseness, invariances

- Take the derivative wrt synaptic weights.

- You have created a learning rule
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Hopfield network

- Model for CA3
- Recurrent network
- Auto-associator (i.e. Pattern completion)
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Hopfield network

One shot learning: wij
=∑ patterns

x
i
 x

j
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Unsupervised plasticity 

 w
i
= x

i
yVanilla model:

Covariance rule: 

Assumptions made:
- w can change sign
- w is unbounded
- dw independent of w
- linear
- dw independent of other synapses
- changes are gradual and small

w i= x i−〈x i〉 .y−〈y 〉 
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Unsupervised learning

 w
i
=〈 x

i
y〉

 w
i
=〈 x

i∑ j w j
x
j
〉slow , linear

 w
i
=∑ j

〈 x
i
x
j
〉w

j
 w

i
=Q

ij
w

j
∂ w t 
∂ t

=Q. w t 

Diverges
OOPS...

w t =∑i ci wi
e

i
t

PCA
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Constraints and competition

Normalization

Make sure that                is constant

This leads to competition

- Divisive normalization (weak competition)

- Subtractive normalization (strong competition)

∑i
w
i

Constraints
Keep each weight within bounds
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Constraints and competition

The outcome of the learning is strongly determined by 
the constraints [Miller & Mackay]
(Alternatives: BCM, Oja's rule)

Practical tip:

Use subtractive normalization
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Own Work
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Ultimate goal:
Quantitative, accurate models in health and disease

Most models are oversimplified

Plasticity is complicated and depends on, for instance:
  - pre and post activity,
  - reward, modulation, history, other synapses, homoeostasis..
  - synaptic weight itself

Computational modelling of synaptic 
plasticity
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Plasticity due to 
random patterns: random walk

index

w
e
ig

h
t

Random, independent sequence of LTP and LTD
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Synaptic weights divergence

Time (steps)

w
e
ig

h
t

● Diffusion of weights, hence unlimited (Sejnowski '77)
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Dealing with synaptic weights diver-
gence

● Hard bounds
● BCM (*) 
● Normalization/homoeostasis (*) ∑i

w i=1

∑i
w i

2
=1

Some possible solutions:

● The outcome of the rules depends strongly on the chosen
solution...
● Which is consistent with biology ?

(*) Competitive



LTP/LTD is weight dependent 
Long term depression

[Debanne '96][Debanne '99]

[Montgomery '01]

Long term potentiation

[Loebel '13]
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Simple model

Long term depression

[Debanne '96]
[Debanne '99]

Simple description

W−

W
=−c1 ;

W

W
=

c2

W

Long term potentiation

W −=−c1W ; W =c2

Relative change: Absolute change:
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Weight dependent random walk

index

w
e
ig

h
t
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Weight dependent learning rules 

Time (steps) P(w)

w
e
ig

h
t

● Weight dependent plasticity prevents run away
● Leads to realistic weights distributions 
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Table of contents

● Spines and weight dependent plasticity 

● Weight dependent STDP in single neurons and networks

● Weight dependence increases information capacity

● Requirements for homeostatic plasticity
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Spine morphology is very plastic

[Matsuzaki '04, Glu uncaging]
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Spine [Ca] after uncaging

[Sobczyk '05] [Noguchi'05]
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Modelling plasticity

[e.g. Shouval et al '02]
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 Ca-volume scenarios

[O'Donnell,
 Nolan & 
 MvR,
 2011]
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Calcium scenarios
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Biophysical implementation
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Weight dependent plasticity curves 

- see also [Kalantzis & Shouval '09]
- Might help to explain experimental variability
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Meta-stability of large synapses  
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Under-compensation freezes large 
weights

Note, contrasts with most softbound rules.
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Large spines are more stable

[from Trachtenberg '02 Supp Info]
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Relation to disease?

[Fiala et al. '02] [Pan et al. '10]
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Spine plasticity

● Spine volume dynamics has strong effect on
      plasticity dynamics
● Can explain a number of plasticity phenomena
● Leads to meta-stable states
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Table of contents

● Spines and weight dependent plasticity 

● Weight dependent STDP in single neurons and networks

● Weight dependence increases information capacity

● Requirements for homeostatic plasticity
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Spike Timing Dependent Plasticity: 
Experimental data

[Bi & Poo 1998] 
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Modelling STDP

Poisson
trains

Integrate & fire

Plastic

Δ w=−A−e
−(t post−t pre)/ τ−

Δ w=A+ e
−(t pre−t post)/ τ+
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Modelling STDP

Poisson
trains
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Modelling STDP

● Require hard bounds on weights
● Competitive

Correlated
Poisson trains

[Song & Abbott '01]

{ {
{
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But STDP is weight dependent ('soft 
bounds') 
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Weight dependence leads to ob-
served weight distribution

[Song et al '05]
[MvR, Bi, Turrigiano '00]

P (w)∝
eatanw

√1+ w2
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Weight vs correlation

[Perin & Markram'11][MvR Turrigiano '01]
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Ongoing background activity leads 
to weight fluctuations
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Fokker-Planck approach

∂ P w ,t 
∂ t

=
−∂

∂w
[Aw P w ,t ]

1
2
∂2

∂w2 [D P w , t ]

A w =− pd cdw p p c p

drift diffusion
p p= pd 1w /w 
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Weight dependence leads to 
volatile memories 

●Spontaneous activity leads to memory decay
●Decay is exponential
●Decay is much faster for weight dependent STDP 

   



97

  

Weight dependence leads to 
quick forgetting
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Weight dependence leads to 
quick forgetting

Langevin equation, dominated by drift

Fluctuation-dissipation theorem 
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Calculating the nSTDP autocorrelation

From statistical mechanics find the potential 
that goes with the equilibrium distribution:

Uaw =


2wm
2 A−Wtot

w2
4w2

−6wwmwm
2
−4wW tot6 wmW tot 

Approximate with a quartic:

U(w)= σ
A−

(ϵ w−
1

2Wtot

w2
)(0<w<wm)

Now we can calculate the Kramers escape 
rate  from one well to the other

From this we find the autocorrelation time

U(w)

     w

wm

nSTDP =
TCAT AC

TCAT AC

AA CC

BB
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Weight dependence leads to 
quick forgetting

Langevin equation, dominated by drift



A- vs autocorrelation timescale for nSTDP
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How weight dependence leads to 
quick forgetting
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Experimental data: erasure by 
spontaneous activity

Xenopus tectum [Zhou & Poo, '03]

V-clamp

Are memories in networks are unstable?
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Stability of receptive fields
 in networks

V1-like network 
● Integrate and fire 
● Variable lateral inhibition
● Sometimes plastic recurrent connections

“LGN”

“V1”



nSTDP: Spontaneous symmetry breaking 
[Song &Abbott '01, Delorme '01]



Weight dependent plasticity requires inhibition for selectivity
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Broad tuning underlies 
receptive field

nSTDP wSTDP



108

  

Receptive fields Population vectors

Stability of receptive fields
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Inhibition rescues network stability

[Billings & MvR 2009]

Allows for regulation of retention time
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Experimental evidence for effect of 
inhibition on stability

● Reduced inhibition
 in auditory plasticity

[Froemke et al 07]
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Experimental evidence for effect of 
inhibition on stability
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Stability of plasticity

Stability is regulated on many different levels:

● receptor stability 
● weight dependence of the learning rule (here)
● synaptic tagging (Barret and MvR 2008)
● network interactions (here)
● systems level consolidation
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Table of contents

● Spines and weight dependent plasticity 

● Weight dependent STDP in single neurons and networks

● Weight dependence increases information capacity

● Requirements for homeostatic plasticity
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Weight dependent learning
and information storage

x1

x2

x3

.

.

.
xn

w1

w2

w3

.

.

.
wn

Inputs

y=∑a=1

n
wa x

a

Output

Weights

● Binary patterns x
● Ongoing learning, interrupted by recognition test

0
1
1
.
.
.
0

0
0
1
.
.
.

0

1
0
1
.
.
.
1
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Measuring memory storage capacity

SNR=
2[〈 yu〉−〈 yl〉]

2

Var  yuVar  yl

Separate learned from novel patterns ('lures')
Response in test phase:

Characterize with
Signal-to-Noise Ratio:

Neuron's output y

P(y)
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Ongoing learning: new memories 
overwrite old ones   

       age of the pattern   

Typically, exponential decay 
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Trade-off: memory strength vs decay   

What is better:
●   High initial SNR, or slow decay? [Fusi and Abbott '07]

       age of the pattern   
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Weight dependence is 
always better

Softbound/
Weight dep

w=w+a
w=b.w

Hardbound/
Weight indep.

w=w+a
w=w-a
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Using Shannon information 
to resolve trade-off

test pattern response

new

old old

new

How much information about the pattern is gained 
by inspecting the output?

I=∑
s ,r

P r∣sP s log
2
P r∣s
P r 

Always correct ~  1 bit
Chance level    ~  0 bits

[Barrett and MvR' 08]
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Using Shannon information 
to resolve trade-off

Use small learning rates to prevent saturation of Information
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Small learning rates, soft-bound

Mean decay of a potentiated synapse
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Small learning rates, soft-bound

Transport equation:

Fokker-Planck equation:

Right after potentiation

Weight decays as:

Information
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Small learning rates, hard-bound
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Small learning rates, hard-bound
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Weight dependent learning gives 
superior Information capacity

[MvR et al. '12]
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Universality at low learning rates

[MvR et al. '12]
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Weight dependence is 
always better

Softbound/
Weight dep

w=w+a
w=b.w

Hardbound/
Weight indep.

w=w+a
w=w-a
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High learning rates
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Table of contents

● Spines and weight dependent plasticity 

● Weight dependent STDP in single neurons and networks

● Weight dependence increases information capacity

●  Requirements for homeostatic plasticity
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Homeostatic regulation

[Prinz '02]
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Homeostatic regulation

* Synaptic homeostasis
(leads to competition)

[Prinz '02]
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Homeostatic regulation

Neural homeostasis in reac-
tion to activity change:
● Synaptic scaling
● Intrinsic excitability

[Prinz '02]
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Homeostasis of intrinsic 
excitability

Rat, hippocampal culture.
Manipulation of external K
[O'Leary et al 2009]
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Homeostasis is slow
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Mechanism: K permeabilty

●Dependent on L-type Ca-channels
●Not dependent on NMDA
●K permeability
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Homeostasis of intrinsic 
excitability: other pathways

[Grubb & Burrone 2010]
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Homeostatic regulating of 
excitability

Theoretical challenge
● Fast restoration of operating point 
● Stable

“Integral controller”

τr

dr (t )
dt

=−r (t )+g ( I−T )

τCa
dCa(t )

dt
=−Ca (t )+r (t)

τT
dT (t )
dt

=Ca(t)−const

Threshold

Perfect integrator
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Homeostatic regulation
Single neurons 
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Homeostatic regulation
Single neurons 

Typically a slow feedback will be stable (but slow..) 
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What time-constants to have 
stable homeostasis?

Re(Eigenvalues) <0 & Im(Eigenvalues)=0  → Stable

Re(Eigenvalues) <0 → Stable, damped oscillations
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Homeostatic regulation
Single neurons 

Typically a slow feedback will be stable (but slow..) 

Oscillation

Unstable

Stable

Stable
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Homeostasis in Networks

● Homeostasis destabilizes network
● Critical amount of recurrence
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Rate based dynamics

Decompose into eigen-modes of W  (assume W'=W)

(No homeostasis)
N neurons with fast synapses:
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Analysis of homestatic network

Eigenvectors are of the 
form:

3N dimensional system
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Network stability

Stability of N  3rd order characteristic polynomials 

Observation:
mode with largest e.v. w

i
 de-stabilizes first.

Hence, 
network stable iff mode with largest eigenvalue is stable.
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Numerical examples

Assume tau1=1ms,  tau2=50 ms, examine tau3

Netw. time-const Recurrence Stable Oscil. Stable

1 ms 0 1ms 220ms
100 ms 0.99 3.2s 52s
10 s 0.9999 500s 28hrs

τ1

dr1(t )

dt
=−r1(t )+g ( I−r3(t ))

τ2

dr2(t )

dt
=−r2(t )+r1(t )

τ3

dr3(t )

dt
=r2(t )−const
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Homeostatic speed vs 
network recurrence
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Spiking network simulation

MIHA's

●Asychronous spiking network 
●Interaction between 
●Currently researching balanced models



150Homeostatic regulation:
How many filters?

Counter-intuitively, adding filters tends to de-stabilize.
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Homeostatic regulation:
Adding filters is often bad..

1,50,50,...500

1,10,20,30,....

1,2,4,8, ...
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Analysis

N x K dimensional system

For each eigenvalue w:
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