# Synaptic plasticity

Mark van Rossum

1

### Institute for Adaptive and Neural Computation University of Edinburgh



## Acknowledgements





**Guy Billings** 



### Adam Barrett



Maria Shippi





**EPSRC** Engineering and Physical Sciences Research Council



## Human memory systems

### Psychologists have split up memory in:

#### **Declarative memory**

- \* Episodic memory (personal what, when, where memories)
  - recollection
  - familiarity
  - hippocampus (patient HM)
- \* Semantic memory: General facts about the world (cortex)

Non-declarative memory (cortex, cerebellum,..) Motor skills, sensory processing, ...

Working memory (prefrontal, not discussed here)

## **Testing animal memory**

(Classical) conditioning Pavlov's dog Aplysia gill reflex

Mazes and environments for rodents

- water maze
- place avoidance
- fear
- food location

What is (activity dependent, long term) synaptic plasticity?

## Long term, semi-permanent changes in the synaptic efficacy, induced by neural activity.

In contrast to:

- some aspects of development
- short term changes
- excitability changes

## **Memory systems**

### **Declarative memory**

- \* Episodic memory
  - recollection
  - familiarity
  - hippocampus (patient HM)
- \* Semantic memory: General facts

#### **Non-declarative memory**

Motor skills, sensory processing, ...

Synaptic plasticity









## Why plasticity

Why should a neuron selectively change it inputs?

- Adapt to environment and other neurons
- Store explicit information (episodic and semantic memory)
- Implicit information (sensory statistics, motor learning
- Note, computation and memory share the substrate in neural networks.



Why modelling plasticity

- extrapolate single neuron plasticity to network level
- so we don't need to specify all connections in a model (smarter networks)

## Outline

- Some new and old data
  - neurobiology of LTP
  - relation of LTP to memory
  - long term stability and forgetting

- Recent own work

### **More reading**

Reviews of experimental LTP:

- Kandel and Schwartz book
- Hippocampus book

Theory of Hopfield networks and Backpropagation - Herz, Krogh and Palmer

Neural computation theory

- Dayan & Abbott
- Trappenberg

## Basis of classical conditioning?



For Aplysia see Kandel book

Let us assume that the persistence or repetition of a reverberatory activity (or "trace") tends to induce lasting cellular changes that add to its stability.... When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased.

"What fires together, wires together"

## Hippocampus

- Essential for declarative memory
- cylindrical structure
- longitudinal axis surrounds thalamus





Diagram: Kit Longden



## Schaffer collateral LTP (in vitro)



alternate at 15 sec intervals

tetanic stimulation S1: cooperative S2: input-specific S1+S2: associative





## Synaptic plasticity = memory? Criteria

Detectability

changes in behaviour and synaptic efficacy should be correlated **Yes** 

#### •Mimicry

change synaptic efficacies → new 'apparent' memory Rudimentary

 Anterograde alteration prevent synaptic plasticity → anterograde amnesia
Yes (e.g. NMDA block)

Retrograde alteration
 alter synaptic efficacies → retrograde amnesia

Yes (e.g. PKMz), but...

[Martin, Greenwood, Morris '04]

## Synaptic plasticity=memory?



[Whitlock,.. and Bear '06]



#### Induction:

- Requires pre- and post synaptic activity.
- Mechanism: NMDA and Ca influx

Expression

- Early LTP
- Late LTP

Maintainance



## Model for LTP induction



NMDA requires pre and post activity, hence ideal for Hebbian Learning

## AP5 is a selective blocker



## **AP5 blocks learning**

27



[Morris et al 86]

## Ca hypothesis



Pairing high pre- and post synaptic activity => LTP Pairing with low activity => Long term depression



Induction:

- Requires pre- and postsynaptic activity.
- Mechanism: NMDA and Ca influx



## "Post-" model for expression



## Changes in AMPA receptor phosphorilation





2.0

4.0

6.0

### [Whitlock, .. and Bear '06]

## **Early phase LTP**



Stim.: 1 s @ 100Hz Rapid and local change

## Associativity



- Can be explained with voltage dependence of NMDA

- Associative learning such as Classical conditioning (Pavlov)

## Basis of classical conditioning?



For Aplysia see Kandel book

## **Early phase LTP**



Stim.: 1 s @ 100Hz Rapid and local change

But gone after few hours

## Late LTP requires protein synthesis



#### [Fonseca et al 06]

36
#### Late phase LTP





Induction:

- Requires pre- and post synaptic activity.
- Mechanism: NMDA and Ca influx

Expression: - Early LTP (1 hr): - partly pre-synaptic changes - AMPAR phosphorylation - AMPAR insertion -Late phase LTP -requires protein synthesis

> Postsynaptic membrane

Receptors for re-uptake of transmitter

Glia

#### What determines if LTP lasts?

#### Reward and punishment





#### [Seidenbecher '95]

## Longevity: In vivo physiology



[Abraham '00]

• Strong extracellular stimulation, leads to long lasting strengthening of synapse [Bliss and Lomo '73]

#### What determines if LTP lasts?



Environment



[Abraham '00]

[Abraham '02, Li & Rowan '00] (Dopamine mediated) Does a novel environment 'reset' hippocampal learning?



Induction

Expression

#### Maintainance



#### LTP maintenance as an active process



ZIP disrupts one month old memory

[Pastalkova et al '06]

[movie demo]

### Hypotheses for maintaince / long term stability

#### Slots for AMPA receptors

#### GluR2 trafficking





[Yao & Sacktor '08]

#### [Turrigiano '02]

PKMC mRNA

# Learning models

## Why modelling plasticity

Why modeling plasticity: 2 cross-fertilizing approaches

- 1) Artificial neural networks, engineering approach
  - make a network do something
  - now somewhat superseded by more formal

machine learning

- 2) Insight in biology
  - extrapolate single neuron plasticity to network level
  - how can organisms adapt?

## Models of plasticity and memory

#### **Supervised learning**

- tell network exactly what desired output is
- train network by changing the weights

#### **Reinforcement learning**

- Only give reward/punishment

#### **Unsupervised learning**

 Let the network discover things (statistics) about the input, e.g. Create representations that are useful for further processing (V1)

Animals/humans can do all three presumably

### **Supervised: Perceptron**

#### Categorize inputs into two classes



Perceptron learning rule [Rosenblatt 1952]

- If it can be learned, the rule converges
- Not all classification problems can be learned

## **Linear separability**



Separable Perceptron can classify



Non-separable Perceptron can't classify Need multiple layers

## **Multi-layer perceptron**

Network to approximate any function with arbitrary number of inputs and outputs



#### **Back propagation**

$$E = \sum_{pattern} (out_{actual} - out_{desired})^2$$

$$E(in, out | w_1, w_2, ...)$$
$$\Delta w_i = -\epsilon \frac{\partial E}{\partial w_i}$$

## **Back propagation**

General approach:

- Come up with cost function, (objective function) Examples: #errors, sparseness, invariances
- Take the derivative wrt synaptic weights.
- You have created a learning rule

#### **Hopfield network**

- Model for CA3
- Recurrent network
- Auto-associator (i.e. Pattern completion)





#### **Hopfield network**



## **Unsupervised plasticity**

- Vanilla model:  $\Delta w_i = \epsilon x_i y$
- Covariance rule:  $\Delta w_i = \epsilon (x_i \langle x_i \rangle) \cdot (y \langle y \rangle)$

- Assumptions made:
- w can change sign
- w is unbounded
- dw independent of w
- linear
- dw independent of other synapses
- changes are gradual and small



#### **Unsupervised learning**

$$\Delta w_{i} = \langle \epsilon x_{i} y \rangle$$

$$\Delta w_{i} = \epsilon \langle x_{i} \sum_{j} w_{j} x_{j} \rangle (slow, linear)$$

$$\Delta w_{i} = \epsilon \sum_{j} \langle x_{i} x_{j} \rangle w_{j}$$

$$\Delta w_{i} = \epsilon Q_{ij} w_{j}$$

$$\frac{\partial \vec{w}(t)}{\partial t} = Q. \vec{w}(t)$$
PCA
$$\vec{w}(t) = \sum_{i} c_{i} \vec{w}_{i} e^{\lambda_{i} t}$$
Diverges

)PS

56

1

2

 $u_1, w_1$ 

#### **Constraints and competition**

#### <u>Constraints</u> Keep each weight within bounds



#### **Normalization**

Make sure that  $\sum_{i} w_{i}$  is constant

This leads to competition

- Divisive normalization (weak competition)
- Subtractive normalization (strong competition)

## **Constraints and competition**

The outcome of the learning is strongly determined by the constraints [Miller & Mackay] (Alternatives: BCM, Oja's rule)

#### **Practical tip:**

Use subtractive normalization

## Own Work

## Computational modelling of synaptic plasticity

Ultimate goal:

Quantitative, accurate models in health and disease

Most models are oversimplified

Plasticity is complicated and depends on, for instance:

- pre and post activity,
- reward, modulation, history, other synapses, homoeostasis..
- synaptic weight itself



60

#### Plasticity due to random patterns: random walk 61

Random, independent sequence of LTP and LTD



weight

index

### Synaptic weights divergence



• Diffusion of weights, hence unlimited (Sejnowski '77)

#### Dealing with synaptic weights diveraence 63

Some possible solutions:

- Hard bounds
- BCM (\*)
- Normalization/homoeostasis (\*)

The outcome of the rules depends strongly on the chosen solution...

 $\sum_{i} w_{i} = 1$ 

 $\sum_{i} w_i^2 = 1$ 

• Which is consistent with biology ?

(\*) Competitive

## LTP/LTD is weight dependent



## Simple model



#### Long term depression



#### **Simple description**

Relative change:

$$\frac{\Delta W^{-}}{W} = -c_1; \quad \frac{\Delta W^{+}}{W} = \frac{c_2}{W}$$

Absolute change:

$$\Delta W^{-} = -c_1 W; \quad \Delta W^{+} = c_2$$

### Weight dependent random walk



weight

index

## Weight dependent learning rules



- Weight dependent plasticity prevents run away
- Leads to realistic weights distributions

#### **Table of contents**

68

- Spines and weight dependent plasticity
- Weight dependent STDP in single neurons and networks
- Weight dependence increases information capacity
- Requirements for homeostatic plasticity

## **Biophysics of LTP saturation?** LTP spine MPA-R dendrite

Simple model for weight dependence: biophysical saturation

## Spine morphology is very plastic



a

C



## Synapse growth



## Synapse growth: effect on Calcium


## Synapse growth: effect on Calcium



## Synapse growth: effect on Calcium



Ca only invariant if:

 $\rho_{N\!M\!D\!A}\!\propto r^{(3/2)}$ 

### **Spine** [Ca] after uncaging



### **Modelling plasticity**



[e.g. Shouval et al '02]

#### **Ca-volume scenarios**





#### **Biophysical implementation**



### Weight dependent plasticity curves



- see also [Kalantzis & Shouval '09]
- Might help to explain experimental variability

#### **Meta-stability of large synapses**



# Under-compensation freezes large weights



Note, contrasts with most softbound rules.

#### Large spines are more stable





#### [from Trachtenberg '02 Supp Info]

#### **Relation to disease?**



[Fiala et al. '02]





- Spine volume dynamics has strong effect on plasticity dynamics
- Can explain a number of plasticity phenomena
- Leads to meta-stable states

#### **Table of contents**

- Spines and weight dependent plasticity
- Weight dependent STDP in single neurons and networks
- Weight dependence increases information capacity
- Requirements for homeostatic plasticity

#### Spike Timing Dependent Plasticity: Experimental data



#### **Modelling STDP**



### **Modelling STDP**

#### Poisson trains



## **Modelling STDP**



- Require hard bounds on weights
- Competitive

[Song & Abbott '01]

#### But STDP is weight dependent ('soft bounds') 91



#### Weight dependence leads to observed weight distribution

92



[MvR, Bi, Turrigiano '00]

#### Weight vs correlation



[MvR Turrigiano '01]

[Perin & Markram'11]

## Ongoing background activity leads to weight fluctuations





#### **Fokker-Planck approach**



 $\frac{\partial P(w,t)}{\partial t} = \frac{-\partial}{\partial w} [A(w)P(w,t)] + \frac{1}{2} \frac{\partial^2}{\partial w^2} [DP(w,t)]$ 

 $A(w) = -p_d c_d w + p_p c_p$ 

# Weight dependence leads to volatile memories



- Spontaneous activity leads to memory decay
- Decay is exponential
- Decay is much faster for weight dependent STDP

#### Weight dependence leads to quick forgetting



#### Weight dependence leads to quick forgetting

Langevin equation, dominated by drift

$$w(t + dt) = w(t) + A(w)dt + N(0, c)\sqrt{dt}$$

$$A(w) = \alpha [w_0 - w(t)]$$

 $\langle w(0)w(t + dt) \rangle - \langle w(0)w(t) \rangle = \alpha [\langle w(0) \rangle w_0 - \langle w(0)w(t) \rangle] dt$ 

$$C(t) = \frac{1}{\sigma^2} [\langle w(0)w(t) \rangle - \langle w(0) \rangle^2]$$
  
= exp(-\tau\_ma\_v\_{pre}v\_{post}t)

Fluctuation-dissipation theorem



#### **Calculating the nSTDP autocorrelation**

From statistical mechanics find the potential that goes with the equilibrium distribution:

$$U(w) = \frac{\sigma}{A_{-}} (\epsilon w - \frac{1}{2W_{tot}} w^2) (0 < w < w_m)$$

Approximate with a quartic:

$$U_{a}(w) = \frac{\sigma}{2w_{m}^{2}A_{-}W_{tot}}w^{2}(4w^{2}-6ww_{m}+w_{m}^{2}-4\varepsilon wW_{tot}+6\varepsilon w_{m}W_{tot})$$

Now we can calculate the Kramers escape rate from one well to the other

$$\tau_{\uparrow} = \frac{2\pi}{\sqrt{V_{\text{approx}}''(0) |V_{\text{approx}}''(w_{\rho})|}} \exp\left(\frac{V_{\text{approx}}(w_{\rho}) - V_{\text{approx}}(0)}{\sigma}\right)$$

From this we find the autocorrelation time

$$\tau_{nSTDP} = \frac{T_{CA}T_{AC}}{T_{CA} + T_{AC}}$$





#### Weight dependence leads to quick forgetting

Langevin equation, dominated by drift

$$w(t + dt) = w(t) + A(w)dt + N(0, c)\sqrt{dt}$$

$$A(w) = \alpha [w_0 - w(t)]$$

$$\langle w(0)w(t + \mathrm{d}t) \rangle - \langle w(0)w(t) \rangle = \alpha [\langle w(0) \rangle w_0 - \langle w(0)w(t) \rangle] \mathrm{d}t$$

$$C(t) = \frac{1}{\sigma^2} [\langle w(0)w(t) \rangle - \langle w(0) \rangle^2]$$
  
= exp(-\tau\_prev\_{post}t)



#### **A** vs autocorrelation timescale for nSTDP



#### How weight dependence leads to quick forgetting



#### Experimental data: erasure by spontaneous activity

103



Are memories in *networks* are unstable?

#### Stability of receptive fields in networks

104



#### V1-like network

- Integrate and fire
- Variable lateral inhibition
- Sometimes plastic recurrent connections



nSTDP: Spontaneous symmetry breaking [Song &Abbott '01, Delorme '01]





Weight dependent plasticity requires inhibition for selectivity

## Broad tuning underlies receptive field



### **Stability of receptive fields**

#### Receptive fields



#### **Population vectors**


#### Inhibition rescues network stability



Allows for regulation of retention time

[Billings & MvR 2009]

#### Experimental evidence for effect of inhibition on stability 110

 Reduced inhibition in auditory plasticity



#### Experimental evidence for effect of inhibition on stability 111

# LETTER

doi:10.1038/nature12485

# A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex

Sandra J. Kuhlman<sup>1</sup><sup>+\*</sup>, Nicholas D. Olivas<sup>2\*</sup>, Elaine Tring<sup>1</sup>, Taruna Ikrar<sup>2</sup>, Xiangmin Xu<sup>2,3</sup> & Joshua T. Trachtenberg<sup>1</sup>

#### **Stability of plasticity**

Stability is regulated on many different levels:

- receptor stability
- weight dependence of the learning rule (here)
- synaptic tagging (Barret and MvR 2008)
- network interactions (here)
- systems level consolidation

#### **Table of contents**

- Spines and weight dependent plasticity
- Weight dependent STDP in single neurons and networks
- Weight dependence increases information capacity
- Requirements for homeostatic plasticity

#### Weight dependent learning and information storage



- Binary patterns x
- Ongoing learning, interrupted by recognition test

## **Measuring memory storage capacity**

Separate learned from novel patterns ('lures') Response in test phase:



# Ongoing learning: new memories overwrite old ones

116



Typically, exponential decay

#### **Trade-off: memory strength vs decay**

117



What is better:

• High initial SNR, or slow decay? [Fusi and Abbott '07]

#### Weight dependence is always better



#### Using Shannon information to resolve trade-off

How much **information** about the pattern is gained by inspecting the output?



Always correct  $\sim 1$  bit Chance level  $\sim 0$  bits

[Barrett and MvR' 08]

#### Using Shannon information to resolve trade-off

Use small learning rates to prevent saturation of Information



$$I_S^{SB} = \frac{1}{4\pi \ln 2} \sum_{t=0}^{\infty} S(t)$$
$$= \frac{1}{4\pi \ln 2} \int_0^{\infty} S(t) dt$$

#### Small learning rates, soft-bound

Mean decay of a potentiated synapse



#### Small learning rates, soft-bound

#### Fokker-Planck equation:

 $\frac{\partial P(w,t)}{\partial t} = -\frac{\partial [A(w)P(w,t)]}{\partial w} + \frac{1}{2} \frac{\partial^2 [B(w)P(w,t)]}{\partial w^2}$ Right after potentiation

$$P(w,0) = P_{\infty}(w + v(0)) \approx P_{\infty}(w) + v(0)P'_{\infty}(w).$$

Transport equation:

$$\frac{\partial P(w,t)}{\partial t} = -[A'(w)v(t)]\frac{\partial P(w,t)}{\partial w}.$$
 Weight decays as:

$$v(t) = a \exp(-\frac{1}{2}bt).$$



Synaptic weight

Information

$$I_S^{SB} = \frac{1}{4\pi \ln 2} \int_0^\infty S(t) dt$$
$$= \frac{1}{4\pi \ln 2} .1$$
$$\approx 0.1148 \text{ bits.}$$

#### Small learning rates, hard-bound



#### Small learning rates, hard-bound

$$P(w,t) = P_{\infty}(w) + a \sum_{k=-\infty}^{\infty} G(w,t;w_0 = 1+4k) - G(w,t;w_0 = -1+4k)$$

$$G(w,t;w_0) = \frac{1}{\sqrt{2\pi Bt}} \exp\left[-(w - w_0)^2/(2Bt)\right]$$

$$\frac{\partial \langle w \rangle(t)}{\partial t} = \int_{-1}^{+1} w \frac{\partial P(w,t)}{\partial t} dw$$

$$= \frac{1}{2} B[P(-1,t) - P(1,t)]$$

$$= -a^3 \sum_{k=0}^{\infty} e^{-\lambda_k a^2 t} \qquad I_S^h$$

$$\lambda_k = \frac{1}{8} [\pi (2k+1)]^2$$



$$I_{S}^{HB} = \frac{1}{4\pi \ln 2} \int_{0}^{\infty} S(t) dt$$
$$= \frac{1}{4\pi \ln 2} \sum_{k,l=0}^{\infty} \frac{1}{\lambda_{k} \lambda_{l} (\lambda_{k} + \lambda_{l})}$$
$$\approx 0.096827 \text{ bits}$$

#### Weight dependent learning gives superior Information capacity 125



[MvR et al. '12]

#### **Universality at low learning rates**



#### Weight dependence is always better



#### **High learning rates**



#### **Table of contents**

- Spines and weight dependent plasticity
- Weight dependent STDP in single neurons and networks
- Weight dependence increases information capacity
- Requirements for homeostatic plasticity

## **Homeostatic regulation**



## **Homeostatic regulation**



# **Homeostatic regulation**



Neural homeostasis in reaction to activity change:

- Synaptic scaling
- Intrinsic excitability

# Homeostasis of intrinsic excitability



Rat, hippocampal culture. Manipulation of external K [O'Leary et al 2009]

#### Homeostasis is slow

![](_page_133_Figure_1.jpeg)

## Mechanism: K permeabilty

![](_page_134_Figure_1.jpeg)

# Homeostasis of intrinsic excitability: other pathways

![](_page_135_Figure_1.jpeg)

[Grubb & Burrone 2010

# Homeostatic regulating of excitability

![](_page_136_Picture_1.jpeg)

Theoretical challenge

- Fast restoration of operating point
- Stable

"Integral controller" Threshold

$$\tau_{r} \frac{dr(t)}{dt} = -r(t) + g(I - T)$$
  

$$\tau_{Ca} \frac{dCa(t)}{dt} = -Ca(t) + r(t)$$
  

$$\tau_{T} \frac{dT(t)}{dt} = Ca(t) - const$$

Perfect integrator

# Robust perfect adaptation in bacterial chemotaxis through integral feedback control

Tau-Mu Yi\*<sup>†</sup>, Yun Huang<sup>†‡</sup>, Melvin I. Simon<sup>\*§</sup>, and John Doyle<sup>‡</sup>

# Homeostatic regulation Single neurons

![](_page_138_Figure_1.jpeg)

# Homeostatic regulation Single neurons

![](_page_139_Figure_1.jpeg)

Typically a slow feedback will be stable (but slow..)

# What time-constants to have stable homeostasis?

$$\begin{aligned} \frac{d}{dt} \begin{pmatrix} r_1(t) \\ r_2(t) \\ r_3(t) \end{pmatrix} &= M \begin{pmatrix} r_1(t) \\ r_2(t) \\ r_3(t) \end{pmatrix} + \mathbf{b} \\ M &= \begin{pmatrix} -\frac{1}{\tau_1} & 0 & -\frac{1}{\tau_1} \\ \frac{1}{\tau_2} & -\frac{1}{\tau_2} & 0 \\ 0 & \frac{1}{\tau_3} & 0 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} \frac{1}{\tau_1} u(t) \\ 0 \\ -\frac{1}{\tau_3} r_{goal} \end{pmatrix} \end{aligned}$$

Re(Eigenvalues) <0 & Im(Eigenvalues)=0  $\rightarrow$  Stable Re(Eigenvalues) <0  $\rightarrow$  Stable, damped oscillations

# Homeostatic regulation Single neurons

![](_page_141_Figure_1.jpeg)

Typically a slow feedback will be stable (but slow..)

#### Homeostasis in Networks

![](_page_142_Figure_1.jpeg)

Critical amount of recurrence

### Rate based dynamics

(No homeostasis) N neurons with fast synapses:

$$\tau_1 \frac{d}{dt} \mathbf{r}_1(t) = (W - I)\mathbf{r}_1(t) + \mathbf{u}(t)$$

Decompose into eigen-modes of W (assume W'=W)

$$\frac{\tau_1}{1-w_i}\frac{d\mathbf{e}_i\exp(\lambda t)}{dt} = -\mathbf{e}_i\exp(\lambda t) + \frac{1}{1-w_i}\mathbf{u}\cdot\mathbf{e}_i\exp(\lambda t)$$
# Analysis of homestatic network

3N dimensional system

$$\frac{d}{dt} \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \end{pmatrix} = M \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \end{pmatrix} + \begin{pmatrix} \frac{1}{\tau_1} \mathbf{u}(t) \\ 0 \\ -\frac{1}{\tau_3} r_{goal} \end{pmatrix}$$

$$M = \begin{pmatrix} \frac{1}{\tau_1}(W - I) & 0 & -\frac{1}{\tau_1}I \\ \frac{1}{\tau_2}I & -\frac{1}{\tau_2}I & 0 \\ 0 & \frac{1}{\tau_3}I & 0 \end{pmatrix}$$

Eigenvectors are of the form:

22 333

$$\begin{pmatrix} \mathbf{e}_n \\ \alpha_n \mathbf{e}_n \\ \beta_n \mathbf{e}_n \end{pmatrix}$$

Stability of N 3rd order characteristic polynomials

 $(1 - w_i + \tau_1 \lambda)(1 + \tau_2 \lambda)\tau_3 \lambda + 1 = 0$ 

Observation:

mode with largest e.v. w, de-stabilizes first.

Hence,

network stable iff mode with largest eigenvalue is sta



#### **Numerical examples**

$$\begin{aligned} \tau_1 \frac{dr_1(t)}{dt} &= -r_1(t) + g(I - r_3(t)) \\ \tau_2 \frac{dr_2(t)}{dt} &= -r_2(t) + r_1(t) \\ \tau_3 \frac{dr_3(t)}{dt} &= r_2(t) - const \end{aligned}$$

Assume tau1=1ms, tau2=50 ms, examine tau3

Netw. time-constRecurrenceStable Oscil.Stable1 ms01ms220ms100 ms0.993.2s52s10 s0.9999500s28hrs

## Homeostatic speed vs network recurrence



148

# Spiking network simulation



•Currently researching balanced models

## Homeostatic regulation: How many filters?



Counter-intuitively, adding filters tends to de-stabilize.

# Homeostatic regulation: Adding filters is often bad..



151

### Analysis

#### N x K dimensional system

$$\tau_1 \frac{dr_1(t)}{dt} = -[1-w]r_1(t) + u(t) - r_K(t)$$
  
$$\tau_k \frac{dr_k(t)}{dt} = -r_k(t) + r_{k-1}(t) \qquad k = 2...K - 1$$
  
$$\tau_K \frac{dr_K(t)}{dt} = -r_{goal} + r_{K-1}(t)$$

For each eigenvalue w:

$$1 + \lambda \tau_K (1 - w + \lambda \tau_1) \prod_{k=2}^{K-1} (1 + \lambda \tau_k) = 0$$