
.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Reinforcement Learning
and multi-armed bandits

Rémi Munos

INRIA Lille - Nord Europe
Currently on leave at MSR-NE

http://researchers.lille.inria.fr/∼munos/

NETADIS Summer School 2013, Hillerod, Denmark

http://researchers.lille.inria.fr/~munos/

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Outline of the course

• Part 1: Introduction to Reinforcement Learning and Dynamic
Programming

• Dynamic programming: value iteration, policy iteration
• Q-learning.

• Part 2: Approximate DP and RL
• L∞-norm performance bounds
• Sample-based algorithms.
• Links with statistical learning

• Part 3: Intro to multi-armed bandits
• The stochastic bandit: UCB
• The adversarial bandit: EXP3
• Approximation of Nash equilibrium
• Monte-Carlo Tree Search

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Part 1: Introduction to Reinforcement Learning and
Dynamic Programming

A few general references:

• Neuro Dynamic Programming, Bertsekas et Tsitsiklis, 1996.

• Introduction to Reinforcement Learning, Sutton and Barto,
1998.

• Markov Decision Problems, Puterman, 1994.

• Algorithms for Reinforcement Learning, Szepesvári, 2009.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Reinforcement Learning (RL)

• Learn to make good decisions in unknown environments

• Learning from experience: success or failures

• Examples: learning to ride a bicycle, play chess, autonomous
robotics, operation research, playing in stochastic market, ...

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

A few applications

• TD-Gammon. [Tesauro 1992-1995]: Backgammon.

• KnightCap [Baxter et al. 1998]: chess (≃2500 ELO)

• Robotics: juggling, acrobots [Schaal and Atkeson, 1994]

• Mobile robot navigation [Thrun et al., 1999]

• Elevator controller [Crites et Barto, 1996],

• Packet Routing [Boyan et Littman, 1993],

• Job-Shop Scheduling [Zhang et Dietterich, 1995],

• Production manufacturing optimization[Mahadevan et al.,
1998],

• Game of poker (Bandit algo for Nash computation)

• Game of go (hierarchical bandits, UCT)

http://www.ualberta.ca/∼szepesva/RESEARCH/RLApplications.html

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Reinforcement Learning

Action

Decision making agent

State

Reinforcement

Environment

Stochastic

Partially observable

Adversarial

• Environment: can be stochastic (Tetris), adversarial (Chess),
partially unknown (bicycle), partially observable (robot)

• Available information: the reinforcement (may be delayed)

• Goal: maximize the expected sum of future rewards.

Problem: How to sacrify a short term small reward to priviledge
larger rewards in the long term?

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Optimal value function

• Gives an evaluation of each state if the agent plays optimally.

• Ex: in a stochastic environment:

actions

0.70.5

Transition probabilities

0.3

0.2

0.1
0.2

V
∗(xt)

V
∗(xt+1)

• Bellman equation:

V ∗(xt) = maxa∈A

[
r(xt , a) +

∑
y p(y |xt , a)V ∗(y)

]
• Temporal difference: δt = V ∗(xt+1) + r(xt , at)− V ∗(xt)

• If V ∗ is known, then when choosing the optimal action at ,
E[δt] = 0 (i.e., in average there is no surprise)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Challenges of RL

• Environment may be stochastic, adversarial, partially
observable...

• The state-dynamics and reward functions are unknown: we
need to combine

• Learning
• Planning

• The curse of dimensionality: We need to rely on
approximations for representing the value function and the
optimal policy.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Dynamic Programming

A Markov Decision Process (X ,A, p, r) defines a discrete-time
process (xt) ∈ X where:

• X : state space

• A: action space (or decisions)

• State dynamics: All relevant information about future is
included in the current state and action (Markov property)

P(xt+1 | xt , xt−1, . . . , x0, at , at−1, . . . , a0) = P(xt+1 | xt , at)

Thus we define the transition probabilities p(y |x , a)
• Reinforcement (or reward): r(x , a) is obtained when
choosing action a in state x .

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Definition of policy

Policy π = (π1, π2, . . .), where at time t,

πt : X → A

maps an action πt(x) to any possible state x .

Given a policy π the process (xt)t≥0 is a Markov chain with
transition probabilities

p(xt+1|xt) = p(xt+1|xt , πt(xt)).

When the policy is independent of time, π = (π, π, . . . , π), the
policy is called stationary (or Markovian).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Performance of a policy

For any policy π, define the value function V π:

Infinite horizon:

• Discounted: V π(x) = E
[∞∑
t=0

γtr(xt , at) | x0 = x ;π
]
,

where 0 ≤ γ < 1 is the discount factor

• Undiscounted: V π(x) = E
[∞∑
t=0

r(xt , at) | x0 = x ;π
]

• Average: V π(x) = lim
T→∞

1

T
E
[T−1∑

t=0

r(xt , at) | x0 = x ;π
]

Finite horizon: V π(x , t) = E
[T−1∑

s=t

r(xs , as) + R(xT) | xt = x ;π
]

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

The dilemma of the Netadis SS student

Sleep

Think
Think

Sleep

Sleep

Think

Think

Sleep

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=1

r=−1000

r=0

r=−10

r=100

r=−10

0.9

0.1

r=−1

1

2

3

4

5

6

7

You try to maximize the sum of rewards!

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Solution of the Netadis SS student

Sleep

Think
Think

Sleep

Think
Sleep

Think

Sleep

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V = 88.31

V = 86.93

r=−10

V = 88.94

r=1
V = 88.32

V = −105

V = 1006

V = −10007

V5 = −10, V6 = 100, V7 = −1000,
V4 = −10 + 0.9V6 + 0.1V4 ≃ 88.9.
V3 = −1 + 0.5V4 + 0.5V3 ≃ 86.9. V2 = 1 + 0.7V3 + 0.3V1 and
V1 = max{0.5V2 + 0.5V1, 0.5V3 + 0.5V1}, thus: V1 = V2 = 88.3.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Infinite horizon, discounted problems

For any stationary policy π, define the value function V π as:

V π(x) = E
[∞∑
t=0

γtr(xt , π(xt)) | x0 = x ;π
]
,

where 0 ≤ γ < 1 a discount factor (which relates rewards in the
future compared to current rewards).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Bellman equation for V π

Proposition 1 (Bellman equation).

For any policy π, V π satisfies:

V π(x) = r(x , π(x)) + γ
∑
y∈X

p(y |x , π(x))V π(y),

Thus V π is the fixed point of the Bellman operator T π (i.e.,
V π = T πV π) where T πW is defined as

T πW (x) = r(x , π(x)) + γ
∑
y

p(y |x , π(x))W (y)

Using matrix notations, T πW = rπ + γPπW , where
rπ(x) = r(x , π(x)) and Pπ(x , y) = p(y |x , π(x)).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 1

V π(x) = E
[∑
t≥0

γtr(xt , π(xt)) | x0 = x ;π
]

= r(x , π(x)) + E
[∑
t≥1

γtr(xt , π(xt)) | x0 = x ;π
]

= r(x , π(x)) + γ
∑
y

P(x1 = y | x0 = x ;π)

E
[∑
t≥1

γt−1r(xt , π(xt)) | x1 = y ;π
]

= r(x , π(x)) + γ
∑
y

p(y |x , π(x))V π(y).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Bellman equation for V ∗

Define the optimal value function: V ∗ = supπ V
π.

Proposition 2 (Dynamic programming equation).

V ∗ satisfies:

V ∗(x) = max
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)V ∗(y)
]
.

Thus V ∗ is the fixed point of the Dynamic programming
operator T (i.e., V ∗ = T V ∗) where T W is defined as

T W (x) = max
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)W (y)
]
.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 2
And for all policy π = (a, π′) (not necessarily stationary),

V ∗(x) = max
π

E
[∑
t≥0

γtr(xt , π(xt)) | x0 = x ;π
]

= max
(a,π′)

[
r(x , a) + γ

∑
y

p(y |x , a)V π′
(y)

]
= max

a

[
r(x , a) + γ

∑
y

p(y |x , a)max
π′

V π′
(y)

]
(1)

= max
a

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

where (1) holds since:

• maxπ′
∑

y p(y |x , a)V π′
(y) ≤

∑
y p(y |x , a)maxπ′ V π′

(y)

• Let π̄ be the policy defined by π̄(y) = argmaxπ′ V π′
(y).

Thus
∑

y p(y |x , a)maxπ′ V π′
(y) =

∑
y p(y |x , a)V π̄(y) ≤

maxπ′
∑

y p(y |x , a)V π′
(y).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Properties of the Bellman operators

• Monotonicity: If W1 ≤ W2 (componentwise) then

T πW1 ≤ T πW2, and T W1 ≤ T W2.

• Contraction in max-norm: For any vectors W1 and W2,

||T πW1 − T πW2||∞ ≤ γ||W1 −W2||∞,

||T W1 − T W2||∞ ≤ γ||W1 −W2||∞.

Indeed, for all x ∈ X ,

|T W1(x)− T W2(x)| =
∣∣max

a

[
r(x , a) + γ

∑
y

p(y |x , a)W1(y)
]

−max
a

[
r(x , a) + γ

∑
y

p(y |x , a)W2(y)
]∣∣

≤ γmax
a

∑
y

p(y |x , a)|W1(y)−W2(y)|

≤ γ||W1 −W2||∞

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Properties of the value functions

Proposition 3.

1. V π is the unique fixed-point of T π

V π = T πV π.

2. V ∗ is the unique fixed-point of T :

V ∗ = T V ∗.

3. For any policy π, we have V π = (I − γPπ)−1rπ

4. The policy defined by

π∗(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]

is optimal (and stationary)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 3

1. From Proposition 1, V π is a fixed point of T π. Uniqueness
comes from the contraction property of T π.

2. Idem for V ∗.

3. V π = T πV π = rπ + γPπV π. Thus (I − γPπ)V π = rπ. Now
Pπ is a stochastic matrix (whose eingenvalues have a modulus
≤ 1), thus the eing. of (I − γPπ) have a modulus
≥ 1− γ > 0, thus is invertible.

4. From the definition of π∗, we have

T π∗
V ∗ = T V ∗ = V ∗

Thus V ∗ is the fixed-point of T π∗
. But, by definition, V π∗

is
the fixed-point of T π∗

and since there is uniqueness of the
fixed-point, V π∗

= V ∗ and π∗ is optimal.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Value Iteration

Proposition 4.

• For any bounded π and V0, define Vk+1 = T πVk . Then
Vk → V π.

• For any bounded V0, define Vk+1 = T Vk . Then Vk → V ∗.

Proof.

||Vk+1−V ∗|| = ||T Vk−T V ∗|| ≤ γ||Vk−V ∗|| ≤ γk+1||V0−V ∗|| → 0

(idem for V π)

Variant: asynchronous iterations

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Policy Iteration

Choose any initial policy π0. Iterate:

1. Policy evaluation: compute V πk .

2. Policy improvement: πk+1 greedy w.r.t. V πk :

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
,

(i.e. πk+1 ∈ argmaxπ T πV πk)

Stop when V πk = V πk+1 .

Proposition 5.

Policy iteration generates a sequence of policies with increasing
performance (V πk+1 ≥ V πk) and (in the case of finite state and
action spaces) terminates in a finite number of steps with the
optimal policy π∗.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 5

From the definition of the operators T , T πk , T πk+1 and from πk+1,

V πk = T πkV πk ≤ T V πk = T πk+1V πk , (2)

and from the monotonicity of T πk+1 , we have

V πk ≤ lim
n→∞

(T πk+1)nV πk = V πk+1 .

Thus (V πk)k is a non-decreasing sequence. Since there is a finite
number of possible policies (finite state and action spaces), the
stopping criterion holds for a finite k; We thus have equality in (2),
thus

V πk = T V πk

so V πk = V ∗ and πk is an optimal policy.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Back to Reinforcement Learning

What if the transition probabilities p(y |x , a) and the reward
functions r(x , a) are unknown?
In DP, we used their knowledge

• in value iteration:

Vk+1(x) = T Vk(x) = max
a

[
r(x , a) + γ

∑
y

p(y |x , a)Vk(y)
]
.

• in policy iteration:
• when computing V πk (which requires iterating T πk)
• when computing the greedy policy:

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
,

RL = introduction of 2 ideas: Q-functions and sampling.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Definition of the Q-value function

Define the Q-value function Qπ : X × A → IR: for a policy π,

Qπ(x , a) = E
[∑
t≥0

γtr(xt , at)|x0 = x , a0 = a, at = π(xt), t ≥ 1
]

and the optimal Q-value function Q∗(x , a) = maxπ Q
π(x , a).

Proposition 6.

Qπ and Q∗ satisfy the Bellman equations:

Qπ(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)Qπ(y , π(y))

Q∗(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)max
b∈A

Qπ(y , b)

Idea: compute Q∗ and then π∗(x) ∈ argmaxa Q
∗(x , a).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Q-learning algorithm [Watkins, 1989]

Builds a sequence of Q-value functions Qk .

Whenever a transition xt , at
rt−→ xt+1 occurs, update the Q-value:

Qk+1(xt , at) = Qk(xt , at)+ηk(xt , at)
[
rt + γmax

b∈A
Qk(xt+1, b)− Qk(xt , at)︸ ︷︷ ︸

temporal difference

]
.

Proposition 7 (Watkins et Dayan, 1992).

Assume that all state-action pairs (x , a) are visited infinitely often
and that the learning steps satisfy for all x , a,∑

k≥0 ηk(x , a) = ∞,
∑

k≥0 η
2
k(x , a) < ∞, then Qk

a.s.−→ Q∗.

The proof relies on Stochastic Approximation for estimating the
fixed-point of a contraction mapping.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Q-learning algorithm

Deterministic case, discount factor γ = 0.9. Take steps η = 1.

1 0

0

0

0.9

After transition x , a
r−→ y update Qk+1(x , a) = r + γmaxb∈A Qk(y , b)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Optimal Q-values

1 0

0

0

0
0

0

0

0

0.53
0.59

0

0 0 0

00.66 0.66

0.660.73

0 0.73
0

0.73

0.73 0.730.66

0

0

0

0
0 0 0 0

0

0

0
0.9

0.81

0.81
0.73

0.73
0.730.66

0.59

0.9

0.81

0.81

0.9

0.810.73

Bellman’s equation: Q∗(x , a) = γmax
b∈A

Q∗(next-state(x , a), b).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

First conclusions

When the state-space is finite and “small”:

• If transition probabilities and rewards are known, then DP
algorithms (value iteration, policy iteration) compute the
optimal solution

• Otherwise, use sampling techniques and RL algorithms
(Q-learning, TD(λ)) apply

2 main issues:

• Usually state-space is large (infinite)! We need to build
approximate solutions.

• We need to design clever exploration strategies.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Introduction to Reinforcement Learning
and multi-armed bandits

Rémi Munos

INRIA Lille - Nord Europe
Currently on leave at MSR-NE

http://researchers.lille.inria.fr/∼munos/

NETADIS Summer School 2013, Hillerod, Denmark

http://researchers.lille.inria.fr/~munos/

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Part 2: Reinforcement Learning and dynamic programming
with function approximation

• Approximate policy iteration

• Approximate value iteration

• Analysis of sample-based algorithms

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Example: Tetris

• State: wall configuration + new piece

• Action: posible positions of the new
piece on the wall,

• Reward: number of lines removed

• Next state: Resulting configuration
of the wall + random new piece.

Size state space: ≈ 1061 states!

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Approximate methods

When the state space is finite and small, use DP or RL techniques.
However in most interesting problems, the state-space X is huge,
possibly infinite:

• Tetris, Backgammon, ...

• Control problems often consider continuous spaces

We need to use function approximation:

• Linear approximation F = {fα =
∑d

i=1 αiϕi , α ∈ IRd}
• Neural networks: F = {fα}, where α is the weight vector

• Non-parametric: k-nearest neighboors, Kernel methods, SVM,
...

Write F the set of representable functions.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Approximate dynamic programming

General approach: build an approximation V ∈ F of the optimal
value function V ∗ (which may not belong to F), and then consider
the policy π greedy policy w.r.t. V , i.e.,

π(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V (y)
]
.

(for the case of infinite horizon with discounted rewards.)

We expect that if V ∈ F is close to V ∗ then the policy π will be
close-to-optimal.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Bound on the performance loss

Proposition 1.

Let V be an approximation of V ∗, and write π the policy greedy
w.r.t. V . Then

||V ∗ − V π||∞ ≤ 2γ

1− γ
||V ∗ − V ||∞.

Proof.
From the contraction properties of the operators T and T π and
that by definition of π we have T V = T πV , we deduce

∥V ∗ − V π∥∞ ≤ ∥V ∗ − T πV ∥∞ + ∥T πV − T πV π∥∞
≤ ∥T V ∗ − T V ∥∞ + γ∥V − V π∥∞
≤ γ∥V ∗ − V ∥∞ + γ(∥V − V ∗∥∞ + ∥V ∗ − V π∥∞)

≤ 2γ

1− γ
∥V ∗ − V ∥∞.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Approximate Value Iteration

Approximate Value Iteration:
builds a sequence of Vk ∈ F :

Vk+1 = ΠT Vk ,

where Π is a projection operator
onto F (under some norm ∥ · ∥).

F

Vk

ΠV ∗

V
∗

T

T Vk

T
Vk+1 = ΠT Vk

Property: the algorithm may not converge.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Performance bound for AVI

Apply AVI for K iterations.

Proposition 2 (Bertsekas & Tsitsiklis, 1996).

The performance loss ∥V ∗ − V πK ∥∞ resulting from using the
policy πK greedy w.r.t. VK is bounded as:

∥V ∗−V πK ∥∞ ≤ 2γ

(1− γ)2
max

0≤k<K
∥T Vk − Vk+1∥∞︸ ︷︷ ︸
projection error

+
2γK+1

1− γ
∥V ∗−V0∥∞.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 2

Write ε = max0≤k<K ∥T Vk −Vk+1∥∞. For all 0 ≤ k < K , we have

∥V ∗ − Vk+1∥∞ ≤ ∥T V ∗ − T Vk∥∞ + ∥T Vk − Vk+1∥∞
≤ γ∥V ∗ − Vk∥∞ + ε,

thus, ∥V ∗ − VK∥∞ ≤ (1 + γ + · · ·+ γK−1)ε+ γK∥V ∗ − V0∥∞

≤ 1

1− γ
ε+ γK∥V ∗ − V0∥∞

and we conclude by using Proposition 1.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

A possible numerical implementation

Makes use of a generative model. At each round k ,

1. Sample n states (xi)1≤i≤n

2. From each state xi , for each action a ∈ A, use the model to
generate a reward r(xi , a) and m next-state samples
(y ji ,a)1≤j≤m ∼ p(·|xi , a)

3. Define

Vk+1 = arg min
V∈F

max
1≤i≤n

∣∣∣V (xi)−max
a∈A

[
r(xi , a) + γ

1

m

m∑
j=1

Vk(y
j
i ,a)

]
︸ ︷︷ ︸

sample estimate of T Vk(xi)

∣∣∣

This is still a numerically hard problem.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Approximate Policy Iteration

Choose an initial policy π0 and iterate:

1. Approximate policy evaluation of πk :
compute an approximation Vk of V πk .

2. Policy improvement: πk+1 is greedy w.r.t. Vk :

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)Vk(y)
]
.

Property: the algorithm may not converge.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Performance bound for API

Proposition 3 (Bertsekas & Tsitsiklis, 1996).

We have

lim sup
k→∞

||V ∗ − V πk ||∞ ≤ 2γ

(1− γ)2
lim sup
k→∞

||Vk − V πk ||∞

Thus if we are able to compute a good approximation of the value
function V πk at each iteration then the performance of the
resulting policies will be good.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 3 [part 1]

Write ek = Vk − V πk the approximation error, gk = V πk+1 − V πk

the performance gain between iterations k and k + 1, and
lk = V ∗ − V πk the loss of using policy πk instead of π∗.
The next policy cannot be much worst that the current one:

gk ≥ −γ(I − γPπk+1)−1(Pπk+1 − Pπk) ek (1)

Indeed, since Tπk+1Vk ≥ T πkVk (as πk+1 is greedy w.r.t. Vk), we
have:

gk = Tπk+1V πk+1 − T πk+1V πk + T πk+1V πk − Tπk+1Vk

+Tπk+1Vk − TπkVk + TπkVk − TπkV πk

≥ γPπk+1gk − γ(Pπk+1 − Pπk) ek

≥ −γ(I − γPπk+1)−1(Pπk+1 − Pπk) ek

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 3 [part 2]

The loss at the next iteration is bounded by the current loss as:

lk+1 ≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(I − γPπk)− Pπ∗

]ek

Indeed, since Tπ∗
Vk ≤ Tπk+1Vk ,

lk+1 = Tπ∗
V ∗ − Tπ∗

V πk + Tπ∗
V πk − Tπ∗

Vk

+T π∗
Vk − Tπk+1Vk + Tπk+1Vk − Tπk+1V πk

+T πk+1V πk − T πk+1V πk+1

≤ γ[Pπ∗
lk − Pπk+1gk + (Pπk+1 − Pπ∗

)ek]

and by using (1),

lk+1 ≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(Pπk+1 − Pπk) + Pπk+1 − Pπ∗

]ek

≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(I − γPπk)− Pπ∗

]ek .

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 3 [part 3]

Writing fk = γ[Pπk+1(I − γPπk+1)−1(I − γPπk)− Pπ∗
]ek , we have:

lk+1 ≤ γPπ∗
lk + fk .

Thus, by taking the limit sup.,

(I − γPπ∗
) lim sup

k→∞
lk ≤ lim sup

k→∞
fk

lim sup
k→∞

lk ≤ (I − γPπ∗
)−1 lim sup

k→∞
fk ,

since I − γPπ∗
is invertible. In L∞-norm, we have

lim sup
k→∞

||lk || ≤
γ

1− γ
lim sup
k→∞

||Pπk+1(I − γPπk+1)−1(I + γPπk) + Pπ∗
|| ||ek ||

≤ γ

1− γ
(
1 + γ

1− γ
+ 1) lim sup

k→∞
||ek || =

2γ

(1− γ)2
lim sup
k→∞

||ek ||.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Case study: TD-Gammon [Tesauro, 1994]

G
am

e
co

nf
ig

ur
at

io
n

198 input 40 hidden units

= prediction of the
probability to win

network
Neural

weight α
TD-erreur Vα(xt+1)− Vα(xt)

weight α

Output Vα(x)

State = game configuration x + player j → N ≃ 1020.
Reward 1 or 0 at the end of the game.

The neural network returns an approximation of V ∗(x , j):
probability that player j wins from position x , assuming that both
players play optimally.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

TD-Gammon algorithm

• At time t, the current game configuration is xt

• Roll dices and select the action that maximizes the value Vα

of the resulting state xt+1

• Set the temporal difference dt = Vα(xt+1, jt+1)− Vα(xt , jt)
(if this is a final position, replace Vα(xt+1, jt+1) by +1 or 0)

• Update αt according to a gradient descent

αt+1 = αt + ηtdt
∑

0≤s≤t

λt−s∇αVα(xs).

After several weeks of self playing → world best player.
According to human experts it developed new strategies, specially
in openings.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Least Squares Temporal Difference (LSTD)
[Bradtke & Barto, 1996] Consider a linear space F .
Let Πµ be the projection onto F defined by a weighted norm L2(µ).
The Least Squares Temporal Difference solution VTD is the
fixed-point of ΠµT

π.

VTD = ΠµT
πVTD

ΠµV π

V π

T π

T πVTD

T π

F

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Performance bound for LSTD

In general, no guarantee that there exists a fixed-point to ΠµT π

(since T π is not a contraction in L2(µ)-norm).
However, when µ is the stationary distribution associated to π (i.e.,
such that µPπ = µ), then there exists a unique LSTD solution.

Proposition 4.

Consider µ to be the stationary distribution associated to π. Then
T π is a contraction mapping in L2(µ)-norm, thus ΠµT π is also a
contraction, and there exists a unique LSTD solution VTD . In
addition, we have the approximation error:

∥V π − VTD∥µ ≤ 1√
1− γ2

inf
V∈F

∥V π − V ∥µ. (2)

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 4 [part 1]

First let us prove that ∥Pπ∥µ = 1. We have:

∥PπV ∥2µ =
∑
x

µ(x)
(∑

y

p(y |x , π(x))V (y)
)2

≤
∑
x

∑
y

µ(x)p(y |x , π(x))V (y)2

=
∑
y

µ(y)V (y)2 = ∥V ∥2µ.

We deduce that T π is a contraction mapping in L2(µ):

∥T πV1 − T πV2∥µ = γ∥Pπ(V1 − V2)∥µ ≤ γ∥V1 − V2∥µ,

and since Πµ is a non-expansion in L2(µ), then ΠµT π is a
contraction in L2(µ). Write VTD its (unique) fixed-point.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 4 [part 2]
We have ∥V π − VTD∥2µ = ∥V π − ΠµV

π∥2µ + ∥ΠµV
π − VTD∥2µ,

but ∥ΠµV
π − VTD∥2µ = ∥ΠµV

π − ΠµT πVTD∥2µ
≤ ∥T πV π − T VTD∥2µ ≤ γ2∥V π − VTD∥2µ.

Thus ∥V π − VTD∥2µ ≤ ∥V π − ΠµV
π∥2µ + γ2∥V π − VTD∥2µ,

from which the result follows.

VTD = ΠµT
πVTD

ΠµV π

V π

T π

T πVTD

T π

F

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Characterization of the LSTD solution

The Bellman residual T πVTD − VTD is orthogonal to the space F ,
thus for all 1 ≤ i ≤ d ,

⟨rπ + γPπVTD − VTD , ϕi ⟩µ = 0

⟨rπ, ϕi ⟩µ +
d∑

j=1

⟨γPπϕj − ϕj , ϕi ⟩µαTD,j = 0,

where αTD is the parameter of VTD . We deduce that αTD is
solution to the linear system (of size d):

Aα = b, with

{
Ai ,j = ⟨ϕi , ϕj − γPπϕj⟩µ
bi = ⟨ϕi , r

π⟩µ

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Empirical LSTD

Consider a trajectory (x1, x2, . . . , xn) generated by following π
Build the matrix Â and the vector b̂ as

Âij =
1

n

n∑
t=1

ϕi (xt)[ϕj(xt)− γϕj(xt+1)],

b̂i =
1

n

n∑
t=1

ϕi (xt)rxt .

and compute the empirical LSTD solution V̂TD whose parameter is
the solution to Âα = b̂.

We have V̂TD
a.s.→ VTD when n → ∞, since Â

a.s.→ A and b̂
a.s.→ b.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Finite-time analysis of LSTD

Define the empirical norm ∥f ∥n =
√

1
n

∑n
t=1 f (xt)

2.

Theorem 1 (Lazaric et al., 2010).
With probability 1− δ (w.r.t. the trajectory),

||V π − V̂TD ||n ≤ 1√
1− γ2

inf
V∈F

||V π − V ||n︸ ︷︷ ︸
Approximation error

+
c

1− γ

√
d log(1/δ)

n︸ ︷︷ ︸
Estimation error

This type of bounds is similar to results in Statistical Learning.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Least-Squares Policy Iteration

[Lagoudakis & Parr, 2003] Consider Q(x , a) =
∑d

i=1 αiϕi (x , a)

• Policy evaluation: At round k, run a trajectory (xt)1≤t≤n by

following policy πk . Build Â and b̂ as

Âij =
1

n

n∑
t=1

ϕi (xt , at)[ϕj(xt , at)− γϕj(xt+1, at+1)],

b̂i =
1

n

n∑
t=1

ϕi (xt , at)r(xt , at).

and Q̂k is the Q-function defined by the solution to Âα = b̂.

• Policy improvement:πk+1(x) ∈ argmaxa∈A Q̂k(x , a).

We would like guarantees on ∥Q∗ − QπK ∥

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Theoretical guarantees so far

Approximate Value Iteration:

∥V ∗ − V πK ∥∞ ≤ 2γ

(1− γ)2
max

0≤k<K
∥T Vk − Vk+1∥∞︸ ︷︷ ︸
projection error

+O(γK).

Approximate Policy Iteration:

∥V ∗ − V πK ∥∞ ≤ 2γ

(1− γ)2
max

0≤k<K
∥V πk − Vk∥∞︸ ︷︷ ︸

approximation error

+O(γK).

Problem: hard to control L∞-norm using samples. We could
minimize an empirical L∞-norm, but

• Numerically intractable

• Hard to relate L∞-norm to empirical L∞-norm.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Instead use empirical L2-norm

• For AVI this is just a linear regression problem:

Vk+1 = arg min
V∈F

n∑
i=1

∣∣T̂ V k(xi)− V (xi)
∣∣2,

• For API this is just LSTD: fixed-point of an empirical Bellman
operator projected onto F using an empirical norm.

In both cases, Vk is solution to a linear problem, which is

• Numerically tractable

• For which generalization bounds exits (using VC theory):

∥T Vk − Vk+1∥22 ≤
1

n

n∑
i=1

∣∣T̂ V k(xi)− V (xi)
∣∣2 + c

√
VC (F)

n

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Lp-norm analysis of ADP

Under smoothness assumptions on the MDP, the propagation error
of all usual ADP algorithms can be analyzed in Lp-norm (p ≥ 1).

Proposition 5 (Munos, 2003, 2007).

• Approximate Value Iteration: Assume there is a constant
C ≥ 1 and a distribution µ such that ∀x ∈ X, ∀a ∈ A,

p(·|x , a) ≤ Cµ(·).

∥V ∗ − V πK ∥∞ ≤ 2γ

(1− γ)2
C 1/p max

0≤k<K
∥T Vk − Vk+1∥p,µ + O(γK).

• Approximate Policy Iteration: Assume p(·|x , a) ≤ Cµπ(·),
for any policy π

∥V ∗ − V πK ∥∞ ≤ 2γ

(1− γ)2
C 1/p max

0≤k<K
∥Vk − V πk∥p,µπ

+ O(γK).

We have all ingredients for a finite-sample analysis of RL/ADP.

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Finite-sample analysis of LSPI

Perform K policy iterations steps. At stage k, run one trajectory of
length n following πk and compute the LSTD solution V̂k (by
solving a linear system).

Proposition 6 (Lazaric et al., 2010).

For any δ > 0, with probability at least 1− δ, we have:

||V ∗ − V πK ||∞ ≤ 2γ

(1− γ)3
C 1/2 sup

k
inf
V∈F

∥V πk − V ∥2,µk

+O
(d log(1/δ)

n

)1/2
+ O(γK)

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Finite-sample analysis of AVI

K iterations of AVI with n samples xi ∼ µ. From each state xi ,
each a ∈ A, generate m next state samples y ji ,a ∼ p(·|xi , a).

Proposition 7 (Munos and Szepesvári, 2007).

For any δ > 0, with probability at least 1− δ, we have:

||V ∗ − V πK ||∞ ≤ 2γ

(1− γ)2
C 1/p d(T F ,F) + O(γK)

+O
(V (F) log(1/δ)

n

)1/4
+ O

(log(1/δ)
m

)1/2
,

where d(T F ,F)
def
= supg∈F inff ∈F ||T g − f ||2,µ is the Bellman

residual of the space F , and V (F) the pseudo-dimension of F .

.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

More works on finite-sample analysis of ADP/RL

This is important to know how many samples n are required to
build an ϵ-approximation of the optimal policy.

• Policy iteration using a single trajectory [Antos et al., 2008]

• BRM [Maillard et al., 2010]

• LSTD with random projections [Ghavamzadeh et al., 2010]

• Lasso-TD [Ghavamzadeh et al., 2011]

Active research topic which links RL and statistical learning
theory.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Introduction to Reinforcement Learning
and multi-armed bandits

Rémi Munos

INRIA Lille - Nord Europe
Currently on leave at MSR-NE

http://researchers.lille.inria.fr/∼munos/

NETADIS Summer School 2013, Hillerod, Denmark

http://researchers.lille.inria.fr/~munos/

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Outline of Part 3

Exploration for sequential decision making:
Application to games, optimization, and planning

• The stochastic bandit: UCB

• The adversarial bandit: EXP3

• Populations of bandits
• Computation of equilibrium in games. Application to Poker
• Hierarchical bandits. MCTS and application to Go.

• Optimism for decision making
• Lipschitz optimization
• Lipschitz bandits
• Optimistic planning in MDPs

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

The stochastic multi-armed bandit problem

Setting:

• Set of K arms, defined by distributions νk
(with support in [0, 1]), whose law is
unknown,

• At each time t, choose an arm kt and

receive reward xt
i .i .d .∼ νkt .

• Goal: find an arm selection policy such as
to maximize the expected sum of rewards.

Exploration-exploitation tradeoff:

• Explore: learn about the environment

• Exploit: act optimally according to our current beliefs

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

The regret

Definitions:

• Let µk = E[νk] be the expected value of arm k,

• Let µ∗ = maxk µk the best expected value,

• The cumulative expected regret:

Rn
def
=

n∑
t=1

µ∗−µkt =
K∑

k=1

(µ∗−µk)
n∑

t=1

1{kt = k} =
K∑

k=1

∆knk ,

where ∆k
def
= µ∗ − µk , and nk the number of times arm k has

been pulled up to time n.

Goal: Find an arm selection policy such as to minimize Rn.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Proposed solutions

This is an old problem! [Robbins, 1952] Maybe surprisingly, not
fully solved yet!
Many proposed strategies:

• ϵ-greedy exploration: choose apparent best action with
proba 1− ϵ, or random action with proba ϵ,

• Bayesian exploration: assign prior to the arm distributions
and select arm according to the posterior distributions (Gittins
index, Thompson strategy, ...)

• Softmax exploration: choose arm k with proba ∝ exp(βX̂k)
(ex: EXP3 algo)

• Follow the perturbed leader: choose best perturbed arm

• Optimistic exploration: select arm with highest upper bound

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

The UCB algorithm

Upper Confidence Bound algorithm [Auer, Cesa-Bianchi,
Fischer, 2002]: at each time n, select the arm k with highest
Bk,nk ,n value:

Bk,nk ,n
def
=

1

nk

nk∑
s=1

xk,s︸ ︷︷ ︸
X̂k,nk

+

√
3 log(n)

2nk︸ ︷︷ ︸
cnk ,n

,

with:

• nk is the number of times arm k has been pulled up to time n

• xk,s is the s-th reward received when pulling arm k.

Note that

• Sum of an exploitation term and an exploration term.

• cnk ,n is a confidence interval term, so Bk,nk ,n is a UCB.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Intuition of the UCB algorithm

Idea:

• ”Optimism in the face of uncertainty” principle

• Select the arm with highest upper bound (on the true value of
the arm, given what has been observed so far).

• The B-values Bk,s,t are UCBs on µk . Indeed:

P(X̂k,s − µk ≥
√

3 log(t)

2s
) ≤ 1

t3
,

P(X̂k,s − µk ≤ −
√

3 log(t)

2s
) ≤ 1

t3

Reminder of Chernoff-Hoeffding inequality:

P(X̂k,s − µk ≥ ϵ) ≤ e−2sϵ2

P(X̂k,s − µk ≤ −ϵ) ≤ e−2sϵ2

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Regret bound for UCB

Proposition 1.

Each sub-optimal arm k is visited in average, at most:

Enk(n) ≤ 6
log n

∆2
k

+ 1 +
π2

3

times (where ∆k
def
= µ∗ − µk > 0).

Thus the expected regret is bounded by:

ERn =
∑
k

E[nk]∆k ≤ 6
∑

k:∆k>0

log n

∆k
+ K (1 +

π2

3
).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Intuition of the proof

Let k be a sub-optimal arm, and k∗ be an optimal arm. At time n,
if arm k is selected, this means that

Bk,nk ,n ≥ Bk∗,nk∗ ,n

X̂k,nk +

√
3 log(n)

2nk
≥ X̂k∗,nk∗ +

√
3 log(n)

2nk∗

µk + 2

√
3 log(n)

2nk
≥ µ∗, with high proba

nk ≤ 6 log(n)

∆2
k

Thus, if nk > 6 log(n)
∆2

k
, then there is only a small probability that

arm k be selected.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Proof of Proposition 1

Write u = 6 log(n)
∆2

k
+ 1. We have:

nk(n) ≤ u +
n∑

t=u+1

1{kt = k; nk(t) > u}

≤ u +
n∑

t=u+1

[t∑
s=u+1

1{X̂k,s − µk ≥ ct,s}+
t∑

s=1

1{X̂k∗,s∗ − µk ≤ −ct,s∗}
]

Now, taking the expectation of both sides,

E[nk(n)] ≤ u +
n∑

t=u+1

[t∑
s=u+1

P
(
X̂k,s − µk ≥ ct,s

)
+

t∑
s=1

P
(
X̂k∗,s∗ − µk ≤ −ct,s∗

)]
≤ u +

n∑
t=u+1

[t∑
s=u+1

t−3 +
t∑

s=1

t−3
]
≤ 6 log(n)

∆2
k

+ 1 +
π2

3

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Variants of UCB

• UCB-V [Audibert et al., 2007] uses empirical variance:

Bk,t
def
= µ̂k,t +

√
2
σ̂k,t

2 log(1.2t)

Tk(t)
+

3 log(1.2t)

Tk(t)
.

Then the expected regret is bounded as:

ERn ≤ 10
(∑

k:∆k>0

σ2
k

∆k
+ 2

)
log(n).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

KL-UCB
[Garivier & Cappé, 2011] and [Maillard et al., 2011].
For Bernoulli distributions, define the kl-UCB

Bk,t
def
= sup

{
x ∈ [0, 1], kl(µ̂k(t), x) ≤

log t

Tk(t)

}

Bk,t

kl(µ̂k(t), x)

µ̂k(t)

log t

Tk(t)

(non-asymptotic version of Sanov’s theorem)

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

KL-UCB

The regret of KL-UCB is then bounded as

ERn =
∑

k:∆k>0

∆k

kl(νk , ν∗)
log n + o(log n).

This extends to several classes of distributions (one-dimensional
exponential family, finitely supported, ...)
See also DMED [Honda, Takemura, 2010, 2011] and other related
algorithms.

Idea: Use the full empirical distribution to get a refined UCB.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Lower bounds

For single-dimensional distributions [Lai, Robbins, 1985]:

lim inf
n→∞

ERn

log n
≥

∑
k:∆k>0

∆k

KL(νk , ν∗)

For larger class of distributions D [Burnetas, Katehakis, 1996]:

lim inf
n→∞

ERn

log n
≥

∑
k:∆k>0

∆k

Kinf(νk , µ∗)
,

where

Kinf(ν, µ)
def
= inf

{
KL(ν, ν ′) : ν ′ ∈ D and EX∼ν′ [X] > µ

}
.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

The adversarial bandit
The rewards are no more i.i.d., but arbitrary!
At time t, simultaneously

• The adversary assigns a reward xk,t ∈ [0, 1] to each arm
k ∈ {1, . . . ,K}

• The player chooses an arm kt

The player receives the corresponding reward xkt . His goal is to
maximize the sum of rewards.

Can we expect to do almost as good as the best (constant) arm?

Time 1 2 3 4 5 6 7 8 ...

Arm pulled 1 2 1 1 2 1 1 1

Reward arm 1 1 0.7 0.9 1 1 1 0.8 1
Reward arm 2 0.9 0 1 0 0.4 0 0.6 0

Reward obtained: 6.1. Arm 1: 7.4, Arm 2: 2.9.
Regret w.r.t. best constant strategy: 7.4− 6.1 = 1.3.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Notion of regret

Define the regret:

Rn = max
k∈{1,...,K}

n∑
t=1

xk,t −
n∑

t=1

xkt .

• Performance assessed in terms of the best constant strategy.

• Can we expect
sup

rewards
ERn/n → 0?

• If the policy of the player is deterministic, there exists a
reward sequence such that the performance is arbitrarily poor
−→ Need internal randomization.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

EXP3 algorithm

EXP3 algorithm (Explore-Exploit using Exponential weights)
[Auer et al, 2002]:

• η > 0 and β > 0 are two parameters of the algorithm.

• Initialize w1(k) = 1 for all k = 1, . . . ,K .

• At each round t = 1, . . . , n, player selects arm kt ∼ pt(·),
where

pt(k) = (1− β)
wt(k)∑K
i=1 wt(i)

+
β

K
,

with
wt(k) = eη

∑t−1
s=1 x̃s(k),

where

x̃s(k) =
xs(k)

ps(k)
1{ks = k}.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Performance of EXP3

Proposition 2.

Let η ≤ 1 and β = ηK. We have ERn ≤ logK
η + (e − 1)ηnK . Thus,

by choosing η =
√

logK
(e−1)nK , it comes

sup
rewards

ERn ≤ 2.63
√

nK logK .

Properties:

• If all rewards are provided to the learner, with a similar
algorithms we have [Lugosi and Cesa-Bianchi, 2006]

sup
rewards

ERn = O(
√

n logK).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Proof of Proposition 2 [part 1]

Write Wt =
∑K

k=1 wk(t). Notice that

Eks∼ps [x̃s(k)] =
K∑
i=1

ps(i)
xs(k)

ps(k)
1{i = k} = xs(k),

and Eks∼ps [x̃s(ks)] =
K∑
i=1

ps(i)
xs(i)

ps(i)
≤ K .

We thus have

Wt+1

Wt
=

K∑
k=1

wk(t)e
ηx̃t(k)

Wt
=

K∑
k=1

pk(t)− β/K

1− β
eηx̃t(k)

≤
K∑

k=1

pk(t)− β/K

1− β
(1 + ηx̃t(k) + (e − 2)η2x̃t(k)

2),

since ηx̃t(k) ≤ ηK/β = 1, and ex ≤ 1 + x + (e − 2)x2 for x ≤ 1.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Proof of Proposition 2 [part 2]

Thus

Wt+1

Wt
≤ 1 +

1

1− β

K∑
k=1

pk(t)(ηx̃t(k) + (e − 2)η2x̃t(k)
2),

log
Wt+1

Wt
≤ 1

1− β

K∑
k=1

pk(t)(ηx̃t(k) + (e − 2)η2x̃t(k)
2),

log
Wn+1

W1
≤ 1

1− β

n∑
t=1

K∑
k=1

pk(t)(ηx̃t(k) + (e − 2)η2x̃t(k)
2).

But we also have

log
Wn+1

W1
= log

K∑
k=1

eη
∑n

t=1 x̃t(k) − logK ≥ η

n∑
t=1

x̃t(k)− logK ,

for any k = 1, . . . , n.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Proof of Proposition 2 [part 3]

Take expectation w.r.t. internal randomization of the algo, thus for
all k,

E
[
(1− β)

n∑
t=1

x̃t(k)−
n∑

t=1

K∑
i=1

pi (t)x̃t(i)
]

≤ (1− β)
logK

η

+ (e − 2)ηE
[n∑

t=1

K∑
k=1

pk(t)x̃t(k)
2
]

E
[n∑

t=1

xt(k)−
n∑

t=1

xt(kt)
]

≤ βn +
logK

η
+ (e − 2)ηnK

E[Rn(k)] ≤ logK

η
+ (e − 1)ηnK

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Population of bandits

• Bandit (or regret minimization) algorithms = tool for rapidly
selecting the best action.

• Basic building block for solving more complex problems

• We now consider a population of bandits:

Adversarial bandits Collaborative bandits

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Game between bandits

Consider a 2-players zero-sum repeated game:
A and B play actions: 1 or 2 simultaneously, and receive the
reward (for A):

A \ B 1 2

1 2 0

2 -1 1
(A likes consensus, B likes conflicts)

Now, let A and B be bandit algorithms, aiming at minimizing their
regret, i.e. for player A:

Rn(A)
def
= max

a∈{1,2}

n∑
t=1

rA(a,Bt)−
n∑

t=1

rA(At ,Bt).

What happens?

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Nash equilibrium

Nash equilibrium: (mixed) strategy for both players, such that no
player has incentive for changing unilaterally his own strategy.

A \ B 1 2

1 2 0

2 -1 1

Here: A plays 1 with probability
pA = 1/2, B plays 1 with proba-
bility pB = 1/4.

1 A

B=1

B=2

2

Ar

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Regret minimization → Nash equilibrium

Define the regret of A:

Rn(A)
def
= max

a∈{1,2}

n∑
t=1

rA(a,Bt)−
n∑

t=1

rA(At ,Bt).

and that of B accordingly.

Proposition 3.

If both players perform a (Hannan) consistent regret-minimization
strategy (i.e. Rn(A)/n → 0 and Rn(B)/n → 0), then the empirical
frequencies of chosen actions of both players converge to a Nash
equilibrium.

(Remember that EXP3 is consistent!)
Note that in general, we have convergence towards correlated
equilibrium [Foster and Vohra, 1997].

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Sketch of proof:
Write pnA

def
= 1

n

∑n
t=1 1At=1 and pnB

def
= 1

n

∑n
t=1 1Bt=1 and

rA(p, q)
def
= ErA(A ∼ p,B ∼ q).

Regret-minimization algorithm: Rn(A)/n → 0 means that: ∀ε > 0,
for n large enough,

max
a∈{1,2}

1

n

n∑
t=1

rA(a,Bt)−
1

n

n∑
t=1

rA(At ,Bt) ≤ ε

max
a∈{1,2}

rA(a, p
n
B)− rA(p

n
A, p

n
B) ≤ ε

rA(p, p
n
B)− rA(p

n
A, p

n
B) ≤ ε,

for all p ∈ [0, 1]. Now, using Rn(B)/n → 0 we deduce that:

rA(p, p
n
B)− ε ≤ rA(p

n
A, p

n
B) ≤ rA(p

n
A, q) + ε, ∀p, q ∈ [0, 1]

Thus the empirical frequencies of actions played by both players is
arbitrarily close to a Nash strategy.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Texas Hold’em Poker

• In the 2-players Poker game, the
Nash equilibrium is interesting
(zero-sum game)

• A policy:
information set (my cards + board
+ pot) → probabilities over
decisions (check, raise, fold)

• Space of policies is huge!

Idea: Approximate the Nash equilibrium by using bandit
algorithms assigned to each information set.

• This provides the world best Texas Hold’em Poker program
for 2-player with pot-limit [Zinkevich et al., 2007]

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Monte Carlo Tree Search

MCTS in Crazy-Stone (Rémi Coulom, 2005)

Idea: use bandits at each node.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

UCB applied to Trees

Upper Confidence Bound
(UCB) algo at each node

Bj
def
= Xj ,nj +

√
2 log(ni)

nj
.

Intuition:
- Explore first the most
promising branches
- Average converges to max

Node i: Bi

Bj

• Adaptive Multistage Sampling (AMS) algorithm [Chang, Fu,
Hu, Marcus, 2005]

• UCB applied to Trees (UCT) [Kocsis and Szepesvári, 2006]

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

The MoGo program

[Gelly et al., 2006] + collaborative work with many others.

Features:

• Explore-Exploit with UCT

• Monte-Carlo evaluation

• Asymmetric tree
expansion

• Anytime algo

• Use of features

Among world best programs!

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

No finite-time guarantee for UCT

Problem: at each node, the rewards are not i.i.d.
Consider the tree:

The left branches seem better
than right branches, thus are ex-
plored for a very long time be-
fore the optimal leaf is eventually
reached.
The expected regret is disastrous:

ERn = Ω(exp(exp(. . . exp(︸ ︷︷ ︸
D times

1) . . .)))+O(log(n)).

See [Coquelin and Munos, 2007]

D−1

D

D−2

D

D−3

D

1

D

10

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Optimism for decision making

Outline:

• Optimization of deterministic Lipschitz functions

• Extension to locally smooth functions,
• when the metric is known,
• and when it’s not

• Extension to the stochastic case

• Application to planning in MDPs

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Optimization of a deterministic Lipschitz function

Problem: Find online the maximum of f : X → IR, assumed to be
Lipschitz:

|f (x)− f (y)| ≤ ℓ(x , y).

Protocol:

• For each time step t = 1, 2, . . . , n select a state xt ∈ X

• Observe f (xt)

• Return a state x(n)

Performance assessed in terms of the loss

rn = f ∗ − f (x(n)),

where f ∗ = supx∈X f (x).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example in 1d

f(x)t

xt

f

f *

Lipschitz property → the evaluation of f at xt provides a first
upper-bound on f .

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example in 1d (continued)

New point → refined upper-bound on f .

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example in 1d (continued)

Question: where should one sample the next point?
Answer: select the point with highest upper bound!
“Optimism in the face of (partial observation) uncertainty”

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Several issues

1. Lipschitz assumption is too strong

2. Finding the optimum of the upper-bounding function may be
hard!

3. What if we don’t know the metric ℓ?

4. How to handle noise?

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Local smoothness property

Assumption: f is “locally smooth” around its max. w.r.t. ℓ
where ℓ is a semi-metric (symmetric, and ℓ(x , y) = 0 ⇔ x = y):
For all x ∈ X ,

f (x∗)− f (x) ≤ ℓ(x , x∗).

x
∗ X

f(x∗) f

f(x∗)− ℓ(x, x∗)

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Local smoothness is enough!

x
∗

f(x∗)

f

Optimistic principle only requires:

• a true bound at the maximum

• the bounds gets refined when adding more points

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Efficient implementation

Deterministic Optimistic Optimization (DOO) builds a
hierarchical partitioning of the space where cells are refined
according to their upper bounds.

• For t = 1 to n,
• Define an upper bound for each cell:

Bi = f (xi) + diamℓ(Xi)

• Select the cell with highest bound

It = argmax
i

Bi .

• Expand It : refine the grid and evaluate f in children cells

• Return x(n)
def
= argmax{xt}1≤t≤n

f (xt)

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Near-optimality dimension

Define the near-optimality dimension of f as the smallest d ≥ 0
such that ∃C , ∀ϵ, the set of ε-optimal states

Xε
def
= {x ∈ X , f (x) ≥ f ∗ − ε}

can be covered by Cε−d ℓ-balls of radius ε.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example 1:

Assume the function is piecewise linear at its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||).

ε

ε

Using ℓ(x , y) = ∥x − y∥, it takes O(ϵ0) balls of radius ϵ to cover
Xε. Thus d = 0.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example 2:

Assume the function is locally quadratic around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||2).

ε

ε
f

f(x∗)− ‖x− x
∗‖

For ℓ(x , y) = ||x − y ||, it takes O(ϵ−D/2) balls of radius ϵ to cover
Xε (of size O(ϵD/2)). Thus d = D/2.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example 2:

Assume the function is locally quadratic around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||2)

ε

ε

f

f(x∗)− ‖x− x
∗‖2

For ℓ(x , y) = ||x − y ||2, it takes O(ϵ0) ℓ-balls of radius ϵ to cover
Xε. Thus d = 0.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example 3:

Assume the function has a square-root behavior around its
maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||1/2)

ε

ε

f

f(x∗)− ‖x− x
∗‖1/2

For ℓ(x , y) = ∥x − y∥1/2 we have d = 0.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example 4:

Assume X = [0, 1]D and f is locally equivalent to a polynomial of
degree α > 0 around its maximum (i.e. f is α-smooth):

f (x∗)− f (x) = Θ(||x∗ − x ||α)

Consider the semi-metric ℓ(x , y) = ∥x − y∥β, for some β > 0.

• If α = β, then d = 0.

• If α > β, then d = D(1β − 1
α) > 0.

• If α < β, then the function is not locally smooth wrt ℓ.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Analysis of DOO (deterministic case)

Assume that the ℓ-diameters of the nodes of depth h decrease
exponentially fast with h (i.e., diam(h) = cγh, for some c > 0 and
γ < 1).
This is true for example when X = [0, 1]D and ℓ(x , y) = ∥x − y∥β
for some β > 0.

Theorem 1.
The loss of DOO is

rn =

(

C
1−γd

)1/d
n−1/d for d > 0,

cγn/C−1 for d = 0.

(Remember that rn
def
= f (x∗)− f (x(n))).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

About the local smoothness assumption

Assume f satisfies f (x∗)− f (x) = Θ(||x∗ − x ||α).

Use DOO with the semi-metric ℓ(x , y) = ∥x − y∥β:
• If α = β, then d = 0: the true “local smoothness” of the
function is known, and exponential rate is achieved.

• If α > β, then d = D(1β − 1
α) > 0: we under-estimate the

smoothness, which causes more exploration than needed.

• If α < β: We over-estimate the true smoothness and DOO
may fail to find the global optimum.

The performance of DOO heavilly relies on our knowledge of the
true local smoothness.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Experiments [1]
f (x) = 1

2(sin(13x) sin(27x) + 1) satisfies the local smoothness
assumption f (x) ≥ f (x∗)− ℓ(x , x∗) with

• ℓ1(x , y) = 14|x − y | (i.e., f is globally Lipschitz),

• ℓ2(x , y) = 222|x − y |2 (i.e., f is locally quadratic).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Experiments [2]
Using ℓ1(x , y) = 14|x − y | (i.e., f is globally Lipschitz). n = 150.

The trees Tn built by DOO after n = 150 evaluations.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Experiments [3]
Using ℓ2(x , y) = 222|x − y |2 (i.e., f is locally quadratic). n = 150.

The trees Tn built by DOO after n = 150 evaluations.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Experiments [4]

n uniform grid DOO with ℓ1 (d = 1/2) DOO with ℓ2 (d = 0)

50 1.25× 10−2 2.53× 10−5 1.20× 10−2

100 8.31× 10−3 2.53× 10−5 1.67× 10−7

150 9.72× 10−3 4.93× 10−6 4.44× 10−16

Loss rn for different values of n for a uniform grid and DOO with
the two semi-metric ℓ1 and ℓ2.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

What if the smoothness is unknown?

Previous algorithms heavily rely on the knowledge or the local
smoothness of the function (i.e. knowledge of the best metric).

Question: When the smoothness is unknown, is it possible to
implement the optimistic principle for function optimization?

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

DIRECT algorithm [Jones et al., 1993]

Assumes f is Lipschitz but the Lipschitz constant L is unknown.

The DIRECT algorithm expands simultaneously all nodes that may
potentially contain the maximum for some value of L.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Illustration of DIRECT
The sin function and its upper bound for L = 2.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Illustration of DIRECT
The sin function and its upper bound for L = 1/2.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Simultaneous Optimistic Optimization (SOO)

Extends DIRECT to any semi-metric ℓ and for any function locally
smooth w.r.t. ℓ.

[Munos, 2011]

• Expand several leaves simultaneously

• SOO expands at most one leaf per depth

• SOO expands a leaf only if its value is larger that the value of
all leaves of same or lower depths.

• At round t, SOO does not expand leaves with depth larger
than hmax(t)

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

SOO algorithm

Input: the maximum depth function t 7→ hmax(t)
Initialization: T1 = {(0, 0)} (root node). Set t = 1.
while True do
Set vmax = −∞.
for h = 0 to min(depth(Tt), hmax(t)) do

Select the leaf (h, j) ∈ Lt of depth h with max f (xh,j) value
if f (xh,i) > vmax then

Expand the node (h, i), Set vmax = f (xh,i), Set t = t + 1
if t = n then return x(n) = argmax(h,i)∈Tn xh,i

end if
end for

end while.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Performance of SOO

Theorem 2.
For any semi-metric ℓ such that

• f is locally smooth w.r.t. ℓ

• The ℓ-diameter of cells of depth h is cγh

• The near-optimality dimension of f w.r.t. ℓ is d = 0,

by choosing hmax(n) =
√
n, the expected loss of SOO is

rn ≤ cγ
√
n/C−1

In the case d > 0 a similar statement holds with Ern = Õ(n−1/d).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Performance of SOO

Remarks:

• Since the algorithm does not depend on ℓ, the analysis holds
for the best possible choice of the semi-metric ℓ satisfying the
assumptions.

• SOO does almost as well as DOO optimally fitted (thus
“adapts” to the unknown local smoothness of f).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Numerical experiments

Again for the function f (x) = (sin(13x) sin(27x) + 1)/2 we have:

n SOO uniform grid DOO with ℓ1 DOO with ℓ2
50 3.56× 10−4 1.25× 10−2 2.53× 10−5 1.20× 10−2

100 5.90× 10−7 8.31× 10−3 2.53× 10−5 1.67× 10−7

150 1.92× 10−10 9.72× 10−3 4.93× 10−6 4.44× 10−16

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

The case d = 0 is non-trivial!

Example:

• f is locally α-smooth around its maximum:

f (x∗)− f (x) = Θ(∥x∗ − x∥α),

for some α > 0.

• SOO algorithm does not require the knowledge of ℓ,

• Using ℓ(x , y) = ∥x − y∥α in the analysis, all assumptions are
satisfied (with γ = 3−α/D and d = 0, thus the loss of SOO is
rn = O(3−

√
nα/(CD)) (stretched-exponential loss),

• This is almost as good as DOO optimally fitted!

(Extends to the case f (x∗)− f (x) ≈
∑D

i=1 ci |x∗i − xi |αi)

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

The case d = 0

More generally, any function whose upper- and lower envelopes
around x∗ have the same shape: ∃c > 0 and η > 0, such that

min(η, cℓ(x , x∗)) ≤ f (x∗)− f (x) ≤ ℓ(x , x∗), for all x ∈ X .

has a near-optimality d = 0 (w.r.t. the metric ℓ).

x
∗

f(x∗) f(x∗)− cℓ(x, x∗)

f(x∗)− ℓ(x, x∗)

f(x∗)− η

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example of functions for which d = 0

ℓ(x , y) = c∥x − y∥2

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Example of functions with d = 0

ℓ(x , y) = c∥x − y∥1/2

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

d = 0?

ℓ(x , y) = c∥x − y∥1/2

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

d > 0

f (x) = 1−
√
x + (−x2 +

√
x) ∗ (sin(1/x2) + 1)/2

The lower-envelope is of order 1/2 whereas the upper one is of
order 2. We deduce that d = 3/2 and rn = O(n−2/3).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Comparison SOO versus DIRECT algorithms

• SOO is much more general than DIRECT: the function is
only locally smooth and the space is semi-metric.

• Finite-time analysis of SOO (whereas only a consistency
property limn→∞ rn = 0 is available for DIRECT in [Finkel and
Kelley, 2004])

• SOO is a rank-based algorithm: any transformation of the
values while preserving their rank will not change anything in
the algorithm. Thus extends to the optimization of function
givens pair-wise comparisons.

• SOO is easier to implement...

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

How to handle noise?

The evaluation of f at xt is perturbed by noise:

rt = f (xt) + ϵt , with E[ϵt |xt] = 0.

f(x)t

xt

f

f *

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Where should one sample next?

x

How to define a high probability upper bound at any state x?

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

UCB in a given cell

xt

f(xt)

rt

x

For a fixed domain Xi ∋ x containing Ti points {xt} ∈ Xi , we have

that
∑Ti

t=1 rt − f (xt) is a Martingale. Thus by Azuma’s inequality,
with 1/n-confidence,

1

Ti

Ti∑
t=1

rt +

√
log n

2Ti
≥ 1

Ti

Ti∑
t=1

f (xt).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Stochastic SOO (StoSOO)

A simple way to extends SOO to the case of stochastic rewards is
the following:

• Select a cell i (and sample f at xi) according to SOO based
on the values

µ̂i ,t + c

√
log n

Ti (t)
,

• Expand the cell Xi only if Ti (t) ≥ k, where k is a parameter.

Remark: This really looks like UCT, except that

• several cells are selected at each round,

• a cell is refined only when we received k samples.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Performance of StoSOO

Theorem 3 (Valko et al., 2013).

For any semi-metric ℓ such that

• f is locally smooth w.r.t. ℓ

• The ℓ-diameters of the cells decrease exponentially fast with
their depth,

• The near-optimality dimension of f w.r.t. ℓ is d = 0,

by choosing k = n
(log n)3

, hmax(n) = (log n)3/2, the expected loss of

StoSOO is

Ern = O
((log n)2√

n

)
.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Online planning in a MDP

Setting:

• Assume we have a model of the MDP.

• The state space is large: no way to approximate the value
function

• Search for the best policy given an initial state, using a finite
numerical budget (number of calls to the model)

Protocol:

• From current state sk , perform planning using n calls to the
model and recommend action a(n),

• Play a(n), observe next state sk+1, and repeat

Loss: rn
def
= max

a∈A
Q∗(sk , a)− Q∗(sk , a(n)).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Deterministic transitions and rewards

(infinite time horizon and discounted setting)

• A policy x is an infinite path

• Value f (x) =
∑

s≥0 γ
srs(x), where

the rewards are in [0, 1]

• Metric: ℓ(x , y) = γh(x,y)

1−γ

• Prop: f (x) is Lipschitz w.r.t. ℓ

• → Use optimistic search

Initial state

xy

h(x, y) = 2

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

OPD algorithm

Optimistic Planning in Deterministic systems:

• Define the B-values:

Bi
def
=

d(i)∑
s=0

γsrs +
γd(i)+1

1− γ

• We have Bi ≥ maxx∋i f (x)

• For each round t = 1 to n,
expand the node with
highest B-value

• Observe reward, update
B-values

Optimal path

Expanded
nodes

Node i

Recommend the first action a(n) of the best policy.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Performance of OPD

Define β such that P(Random path is ϵ-optimal) = O(ϵβ).

Define κ
def
= Kγβ ∈ [1,K]. Then κ is the branching factor of the

set of near-optimal sequences:

I =
{
sequences of length h such that

h∑
s=0

γs rs ≥ V ∗ − γh+1

1− γ

}
.

Property: κ relates to the near-opt. dimension d = log κ
log 1/γ (the set

of ϵ-optimal paths is covered by O(ϵ−d) ℓ-balls of radius ϵ)

Loss of OPD [Hren and Munos, 2008]:

rn = O(n−
1
d) = O

(
n−

log 1/γ
log κ

)
.

Performance depends on the quantity of near-optimal policies

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

κ-minimax lower bounds

Let Mκ the set of problems with coefficient κ.
Upper-bound of OPD uniformly over Mκ

sup
M∈Mκ

rn(AOPD ,M) = O

(
n−

log 1/γ
log κ

)
.

We can prove that we have a κ-minimax lower-bound:

sup
A

inf
M∈Mκ

rn(A,M) ≥ Ω

(
n−

log 1/γ
log κ

)
.

Sketch of proof:
OPD only expands nodes in I . Reciproquely, I is the set of nodes
that need to be expanded in order to find the optimal path.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Extension to stochastic rewards

Dynamics are still deterministic thus the space of policies is still
the set of sequences of actions.

Stochastic rewards:

• Reward along a path x :∑
s≥0γ

sYs ,

where Ys ∼ νs(x) where νs(x) is
the reward distribution (∈ [0, 1])
after s actions along path x .

• Write rs(x) = EX∼νs(x)[X] and
f (x) =

∑
s≥0 γ

srs(x)
x

Y2 ∼ ν2(x)

Y1 ∼ ν1(x)

Y0 ∼ ν0(x)

Then f (x) is Lipschitz w.r.t. ℓ(x , y) = γh(x,y)

1−γ and one can think of
applying HOO.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Using HOO for planning

Apply HOO to the search space X :

• Assign a B-value to each finite sequence

• At each round t, select a finite sequence xt maximizing the
B-value.

• Observe sample reward
∑

s≥0 γ
sYs(xt) of the path xt and use

it to update the B-values.

• The loss is
O(n−

1
d+2).

Problem: HOO does not make full use of the tree structure:
It uses the sample reward of the whole path x but not the
individual reward samples Ys(x) collected along the path x .

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Optimistic sampling using the tree structure

Open Loop Optimistic Planning (OLOP) [Bubeck, Munos,
2010]:

• At round t, play path xt (up to depth h = 1
2

log n
log 1/γ)

• Observe sample rewards Ys(xt) of each node along the path xt

• Compute empirical rewards µ̂t(x1:s) for each node x1:s of
depth s ≤ h

• Define bound for each path x :

Bt(x) = min
1≤j≤h

[j∑
s=0

γs
(
µ̂t(x1:s) +

√
2 log n

Tx1:s (t)

)
+

γj+1

1− γ

]
• Select path xt+1 = argmaxx Bt(x)

This algorithm fully uses the tree structure of the rewards.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Performance of OLOP

Define

• β ≥ 0 such that P(Random path is ϵ-optimal) = O(ϵβ).

• or κ
def
= Kγβ ∈ [1,K] the branching factor of the set of

near-optimal sequences.

• or the near-optimality dimension, d = log κ
log 1/γ .

Theorem 4 (Loss of OLOP).

After n calls to the generative model,

Ern = f (x∗)− Ef (x(n)) =

{
Õ
(
n−1/d

)
if d ≥ 2

Õ
(
1/

√
n
)

if d < 2

Much better than HOO! As good as OPD for d ≥ 2.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Comparison: OLOP, HOO, Zooming, UCB-AIR

Many good armsFew good arms

logK

log 1/γ

logK

log 1/γ
d

β

0 2

1 0

Exponent

0
HOO, Zooming:

OLOP:

UCB-AIR:

− 1
d+2

−1
d

− 1
β+1

−1/2

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Optimistic Planning in MDPs

Stochastic transitions, but assume that the number of next states
is finite.

Here a policy is no more a sequence of actions

OP-MDP [Buşoniu and Munos, 2012]:

• The root = current state.

• For t = 1 to n:
• Compute the B-value of all nodes of the current sub-tree
• Compute the optimistic policy
• Select a leaf of the optimistic sub-tree and expand it

(generates transitions to next states using the model)

• Return first action of the best policy

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Illustration of OP-MDP

B-values: upper-bounds on the optimal value function V ∗(s):

B(s) =
1

1− γ
for leaves

B(s) = max
a

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γB(s ′)

]
Compute the optimistic policy π+.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Optimistic Planning in MDPs

Expand leaf in π+ with largest contribution: argmaxs∈L P(s)γ
d(s)

1−γ ,

where P(s) is the probability to reach s when following π+.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Performance analysis of OP-MDP

Define Xϵ the set of states

• whose “contribution” is at least ϵ

• and that belong to an ϵ-optimal policy

Near-optimality planning dimension: Define the measure of
complexity of planning in the MDP as the smallest d ≥ 0 such
that |Xϵ| = O(ϵ−d).

Theorem 5.
The performance of OP-MDP is rn = O(n−1/d).

The performance depends on the quantity of states that
contribute significantly to near-optimal policies

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Illustration of the performance

Reminder: rn = O(n−1/d).

Uniform rewards and probabilities d = logK+logN
log 1/γ (uniform

planning)

Structured rewards, uniform probabilities d = logN
log 1/γ (uniform

planning for a single policy)

Uniform rewards, concentrated probabilities d → logK
log 1/γ

(planning in deterministic systems)

Structured rewards, concentrated probabilities d → 0
(exponential rate)

Remarks: d is small when

• Structured rewards

• Heterogeneous transition probabilities

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Towards d-minimax lower bounds

Let Md the set of MDPs with near-optimality planning dim. d
Upper-bound of OP-MDP uniformly over Mβ

sup
M∈Md

rn(AOP−MDP ,M) ≤ O(n−1/d).

We conjecture that we have a d-minimax lower-bound:

sup
A

inf
M∈Md

Ern(A,M) ≥ Ω(n−1/d).

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Conclusions on optimistic planning

• Perform optimistic search in policy space.

• In deterministic dynamics, deterministic rewards, can be seen
as a direct application of optimistic optimization

• In stochastic rewards, the structure of the reward function can
help estimation of paths given samples from other paths

• In MDPs the near-optimality planning dimension is a new
measure of the quantity of states that need to be expanded
(the set of states that significantly contribute to near-optimal
policies)

• Fast rates when the MDP has structured rewards and
heterogeneous transition probabilities.

• Applications to Bayesian Reinforcement learning and planning
in POMDPs.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Conclusions

The “optimism in the face of uncertainty” principle:

• applies in a large class of decision making problems in
stochastic and deterministic environments (in unstructured
and structured problems)

• provides an efficient exploration of the search space by
exploring the most promising areas first

• provides a natural transition from global to local search

• Performance depends on the “smoothness” of the function
around the maximum w.r.t. some metric,

• a measure of the quantity of near-optimal solutions,
• and our knowledge or not of this metric.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

About optimism

Optimists and pessimists inhabit different worlds, reacting to the
same circumstances in completely different ways.

Learning to Hope, Daisaku Ikeda.

Habits of thinking need not be forever. One of the most significant
findings in psychology in the last twenty years is that individuals
can choose the way they think.

Learned Optimism, Martin Seligman.

Humans do not hold a positivity bias on account of having read
too many self-help books. Rather, optimism may be so essential to
our survival that it is hardwired into our most complex organ, the
brain.

The Optimism Bias:
A Tour of the Irrationally Positive Brain, Tali Sharot.

.

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Thanks !!!

See the review paper

From bandits to Monte-Carlo Tree Search: The
optimistic principle applied to optimization and planning.

are available from my web page:

http://chercheurs.lille.inria.fr/∼munos/

	Munos_part1
	Munos_part2

