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Stochastic multi-armed bandits

Classic model to capture Explore-Exploit conflict

Applications to clinical trials, online advertising, web search, multi-agent systems, queuing and

scheduling

N arms, unknown reward distributions

* Expected reward often assumed to be parameterized by some unknown parameter u

Pull arms to maximize total reward / minimize regret

* Minimize regret in expectation or high probability



Thompson Sampling

[W. R. Thompson. Biometrika, 1933] Also known as posterior sampling

A simple natural Bayesian heuristic

* Maintain a belief (distribution) for the unknown parameters
* Every time you play an arm and observe a reward, update the belief in Bayesian manner
* Attimet, play an arm with its probability of being the best arm, according to the current belief
distribution
e Sample the parameters from the belief distribution.

* Play the best arm according to these sample parameters



History

The general principle proposed in [Thompson 1933]

Rediscovered numerous times independently in the context of reinforcement learning [Wyatt 1997;
Ortega & Braun 2010; Strens 2000]

UCB based algorithms provide good theoretical bounds for many versions of MAB [Auer et al. 2002, ...]

Thompson Sampling has revived interest
* Promising empirical performance (e.g., robust to delayed feedback)
[Kaufmann et al. ALT 2012][Chapelle, Li, NIPS 2011],...
e Used in industrial application [Graepel et al. ICML 2010]

* Easy to implement: Posterior updates are simple and efficient
* More on this later



New theoretical guarantees

Thompson Sampling matches the best available guarantees for
* Classic MAB
* 1-of-N MAB [Agrawal, Goyal COLT 2012], [Kaufmann et al. ALT 2012], [Agrawal, Goyal AISTATS 2013]
* K-of-N MAB with sub modular rewards [unpublished]
 MAB with side observations [unpublished]
 MAB with Delayed feedback [unpublished]
* Contextual MAB
* Linear Contextual MAB [Agrawal Goyal ICML 2013] [New Improvements to match UCB]
* Sparse Linear Contextual MAB [unpublished joint work with Purushottam Kar]

* Kernelized Contextual MAB [unpublished joint work with Purushottam Kar]



Linear contextual bandits

* Parameters of the problem:

* A;:setof d — dimensional contexts at time't

e Can be chosen in an adaptive adversarial manner
* Each context/feature vector in A; corresponds to an arm (possibly infinite N)

* u € R? (unknown), ||u|| < 1

If arm corresponding to context b(t) € A; is played at time t then there is a reward r(t):

* E[r®] =u"b(®), r(®) —E[r(O]l <R

Arm with maximum expected reward: b*(t) = argmaxpes, 4’ b

Regret for playing arm b(t) is uTb*(t) — uTb(¢t)

Total regretintime T, R(T) = X¢( bgry ()" 1t — bary ()" 1)



Thompson Sampling
using Gaussian belief distribution

Start with N(0,4, v21,;) prior belief for unknown parameter u

For Gaussian likelihood of rewards, Pr(ry|b(t)Tn) ~ N(b(t)"u, v?)

At time t, Bayesian posterior is N(fi(t + 1),v?B(t + 1)~ 1)

Least square estimate

 [i(t), B(t) given by regularized least square estimate on (b(1),r(1), ...,b(t — 1), r(t — 1))

* B(t) =13+ X1 b(@b(@)T, 4(t) = B() NI b(Dr(7)

Gaussian assumption made only for Bayesian interpretation of the algorithm, regret bounds will hold
irrespective of actual reward distribution.



Thompson Sampling

ALGO

At time t,
* Sample fi(t) from N(fi(t), gf¢B(t)™1)

e Pi| bT~ t
ay arm arg {)ré% fi(t)

INITIALIZATION

« 0(1) =0, B(1) =1, gt = \/9Rd ln(g)



Thompson Sampling vs. UCB based algorithms

THOMPSON SAMPLING
At time t,

 Sample fi(t) from N(fi(t), gtB(t)™1)

[ ] T~
Play arm arg {)ré%f b [i(t) mm=) Randomized version of UCB

UCB based algorithms [Dani et al 2008, Abbasi-Yadkori et al 2011]
At time t,

« Consider ellipsoid C, = (fi(t), g?B(t)™1)

* Play arm arg max max b fi mm=) Difficult optimization problem even
beA; UEC: .
when A; is convex



Thompson sampling for linear contextual
bandits

Cy C, C3 Cy
by (1) L R \T
b,(1)

N@(),viB(D™)  N@E(2),viB(2)™") N@B),v3B(3)™) N(a(4),viB(4)™)



Regret bounds

With probability 1 — §, regret

R(T) <0 <d\/T In(T) 1n§)

Improvement by a factor d from[Agrawal and Goyal 2013]

Lower bound is Q(dﬁ)

For UCB based algorithms best bound is O (dﬁ\/ln(T) In g) [Abbasi-Yadkori et al 2011]



Proof outline

* Regretattime t= Apy = b*(®) 'u—b(t)
* Key Inequality: With high probability (for most histories F;_)
E[Apee [Fe-1] < 2VInT g; E[sp(ey (O)|F-1]

* Filtration F;_q: includes history until t — 1 and context set A;

o su(t) = \/bTB(t)‘lb : Can be interpreted as standard deviation in the direction of context b

+ g: = J9R dIn(t/5)

* Yi-1Spe)(0) = 0(/dT In(T)) [Auer 2002, Chu et al 2011]

* Using Azuma-Hoeffding bounds for super-martingales: with probability 1 — 6

+ TeBpe <0 (geVdT In(1)) = O(dVT)



Proof techniques C. = ), gPBO)
U
"a(t)

* Lemma: With high prob. the following events happen (for most F;_4), u € C;

Vb € A, ()b —u"b| < g, VBTB()TIh = g¢ sp (1)
* From upper confidence bounds for least square estimate in UCB based algorithms
[Rusmevichientong-Tsitkilis 2010, Abbasi-Yadkori et al 2011]

* Lemma: Forall F;_4,Vb € A,

[@(®)"b — A(©)"b| </ In(T) gy sp(t)

* Variance of Gaussian fi along context b = g?Z s, (t)? = g2 (bTB(t)"1b)

* From now on, assume forall F;_{,Vb € A;

[Z()"b — u"b| < 2{/In(T) g¢ sp(t)



Proof of key inequality

E[Ab(t) |Ft—1] <0 E[Sb(t)(t)|Ft—1]
* Regretattime t,Apy = b* () 'u—b®) " u

< (b*®T {®) = b@®TEE®) +VInT g; spry(t) + VINT gy sp) (t)

< lnTg VInT g; sp (£)

Does not go down fast enough unless
ASIDE optimal arm is played often!

* Easy to prove this for UCB.
Apy = b* () ' u—b(®)
< B u—b®)" 1) + ge Spy (B)

< 9t Sp) (t)



Proof of key inequality

E[Ape |Fe-1] < E[spe) (O)|Fr-1]
Class of Unsaturated (high-variance, low regret) arms at time t
beA;: Ay < (\/lnTgt) sp(t)
Lemma: Pr(playing unsaturated arm at timet |F;_{) = p (constant)

e Variance is high, mean reward is high -- anti-concentration of posterior ensures that bTji(t) is

sufficiently large

E[Sb(t)(t)|Ft—1] = P Spe)(t)

 b(t) is the arm with smallest sp(t) among high variance arms

What remains to show is that Ay ) < (\/ln T gt)(slg(t) (t)+sp(t))



Summary: proof of regret bound

Apy = b* () 'u—b(®)" u
< Appy t+ b)) —b(®) Concentration
<VInT g; Sp)(£) + VInT g¢ 551 (0) +VInT g¢ spe) (L)

Definition of high-variance arms

1
E[Ab(t)lFt—l] < (3V1nTgt Z)E[Sb(t)(t)lFt—l]

z Apey < O(Wgt)ZSb(t)(t) < O(W Jt - \/dTln(T))
t t



Conclusion

e Strong modular techniques for analysis of TS

* Thompson Sampling is an attractive option to consider when designing algorithms for new

versions of this problem

* Attractive both theoretically and empirically



Thank you.



Online Learning to Thompson Sampling

[Inspired by Abbasi-Yadkori et al. 2012]

Given: online linear programming algorithm that
« Attimet, Inputs (Xq,Yq, ..., Xi—1, Y1, X;), predicts ¥,

e Regret guarantees: with probability 1 — §

T
> of) - ) < he
t

+ £() = (v — 1" Xe)?



Online Learning to Thompson Sampling

 Start with N(0g4, I;) belief distribution
* Attime ¢, belief is N(fi(t), gt B~1(t)) _ _
n Y1
 [i(t), B(t) given by least square estimate on (b(1), b (t — 1), v&t—1)
» Y,_, is the predictor given by online algo for input (b(1),7(1), ..., b(t — 1),7(t — 1), b(t))
* gt =My
ALGO: At time t,

 Sample fi(t) from N(ji(t), gt B~1(t))

° T
Play arm arg {)rgl)f b [i(t)



Regret bounds

With probability 1 — §, regret
R(T) < 0(heVdT In(T))

VdT represents the bandit cost over and above the online learning regret

hy =0( |[dIn (g)) for regularized least square estimate/Follow the regularized leader, to get é(dﬁ)

regret

hy =0( [s]n (g)) for sparse online learning with sparsity s, to get é(VSdT ) regret

[For UCB based algorithm OFUL this regret bound was proven in Abbasi-Yadkori et al. 2011]



