
Thompson Sampling:
a provably good heuristic for multi-armed 

bandits

Shipra Agrawal
Microsoft Research

Contributors: Navin Goyal, Purushottam Kar



Stochastic multi-armed bandits

• Classic model to capture Explore-Exploit conflict

• Applications to clinical trials, online advertising, web search, multi-agent systems, queuing and 

scheduling

• N arms, unknown reward distributions

• Expected reward often assumed to be parameterized by some unknown parameter 𝜇

• Pull arms to maximize total reward / minimize regret

• Minimize regret in expectation or high probability



Thompson Sampling

[W. R. Thompson. Biometrika, 1933] Also known as posterior sampling

A simple natural Bayesian heuristic 

• Maintain a belief (distribution) for the unknown parameters

• Every time you play an arm and observe a reward, update the belief in Bayesian manner

• At time t, play an arm with its probability of being the best arm, according to the current belief 

distribution

• Sample the parameters from the belief distribution.

• Play the best arm according to these sample parameters



History

• The general principle proposed in [Thompson 1933]

• Rediscovered numerous times independently in the context of reinforcement learning [Wyatt 1997; 

Ortega & Braun 2010; Strens 2000]

• UCB based algorithms provide good theoretical bounds for many versions of MAB [Auer et al. 2002, …]

• Thompson Sampling has revived interest

• Promising empirical performance (e.g., robust to delayed feedback)

[Kaufmann et al. ALT 2012][Chapelle, Li, NIPS 2011],… 

• Used in industrial application [Graepel et al. ICML 2010]

• Easy to implement: Posterior updates are simple and efficient

• More on this later



New theoretical guarantees

Thompson Sampling matches the best available guarantees for 

• Classic MAB

• 1-of-N MAB   [Agrawal, Goyal COLT 2012], [Kaufmann et al. ALT 2012], [Agrawal, Goyal AISTATS 2013]

• K-of-N MAB with sub modular rewards [unpublished]

• MAB with side observations [unpublished]

• MAB with Delayed feedback [unpublished]

• Contextual MAB

• Linear Contextual MAB [Agrawal Goyal ICML 2013] [New Improvements to match UCB]

• Sparse Linear Contextual MAB [unpublished joint work with Purushottam Kar]

• Kernelized Contextual MAB  [unpublished joint work with Purushottam Kar]



Linear contextual bandits
• Parameters of the problem:

• 𝐴𝑡: 𝑠𝑒𝑡 𝑜𝑓 𝑑 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

• Can be chosen in an adaptive adversarial manner

• Each context/feature vector in 𝐴𝑡 corresponds to an arm (possibly infinite 𝑁)

• 𝜇 ∈ 𝑅𝑑 (unknown), 𝜇 ≤ 1

• If arm corresponding to context b 𝑡 ∈ 𝐴𝑡 is played at time 𝑡 then there is a reward 𝑟(𝑡):

• 𝐸 𝑟 𝑡 = 𝜇𝑇𝑏 𝑡 , 𝑟 𝑡 − 𝐸 𝑟 𝑡 ≤ 𝑅

• Arm with maximum expected reward: 𝑏∗ 𝑡 = argmax𝑏∈𝐴𝑡
𝜇𝑇𝑏

• Regret for playing arm 𝑏(𝑡) is 𝜇𝑇𝑏∗(𝑡) − 𝜇𝑇𝑏(𝑡)

• Total regret in time 𝑇 , 𝑅 𝑇 =  𝑡( 𝑏𝑎∗(𝑡) 𝑡 𝑇𝜇 − 𝑏𝑎(𝑡) 𝑡 𝑇𝜇)



Thompson Sampling
using Gaussian belief distribution

• Start with 𝑁(0𝑑 , 𝑣
2𝐼𝑑) prior belief for unknown parameter 𝜇

• For Gaussian likelihood of rewards,  Pr 𝑟𝑡 𝑏 𝑡 𝑇𝜇 ~ 𝑁 𝑏 𝑡 𝑇𝜇, 𝑣2

• At time 𝑡, Bayesian posterior is 𝑁(  𝜇(𝑡 + 1), 𝑣2𝐵 𝑡 + 1 −1)

• Least square estimate 

•  𝜇 𝑡 , 𝐵 𝑡 given by regularized least square estimate on 𝑏(1), 𝑟(1), … , 𝑏(𝑡 − 1), 𝑟(𝑡 − 1)

• 𝐵 𝑡 = 𝐼𝑑 +  𝜏=1
𝑡−1 𝑏 𝜏 𝑏 𝜏 𝑇 ,  𝜇 𝑡 = 𝐵 𝑡 −1  𝜏=1

𝑡−1 𝑏 𝜏 𝑟(𝜏)

Gaussian assumption made only for Bayesian interpretation of the algorithm, regret bounds will hold 

irrespective of actual reward distribution. 



Thompson Sampling

ALGO

At time t,

• Sample  𝜇(𝑡) from 𝑁( 𝜇(𝑡), 𝑔𝑡
2𝐵 𝑡 −1)

• Play arm  arg max
b∈𝐴𝑡

𝑏𝑇  𝜇(𝑡)

INITIALIZATION

•  𝜇 1 = 0, 𝐵 1 = 𝐼𝑑 , 𝑔𝑡 = 9𝑅𝑑 ln(
𝑡

𝛿
)



THOMPSON SAMPLING

At time t,

• Sample  𝜇(𝑡) from 𝑁  𝜇 𝑡 , 𝑔𝑡
2𝐵 𝑡 −1

• Play arm  arg max
b∈𝐴𝑡

𝑏𝑇  𝜇(𝑡)

UCB based algorithms [Dani et al 2008, Abbasi-Yadkori et al 2011]

At time t,

• Consider ellipsoid Ct = ( 𝜇(𝑡), 𝑔𝑡
2𝐵 𝑡 −1)

• Play arm  arg max
b∈𝐴𝑡

max
 𝜇∈𝐶𝑡

𝑏𝑇  𝜇

Thompson Sampling vs. UCB based algorithms

Difficult optimization problem even 
when At is convex

Randomized version of UCB



Thompson sampling for linear contextual 
bandits 

𝑁  𝜇 1 , 𝑣1
2𝐵 1 −1 𝑁  𝜇 2 , 𝑣2

2𝐵 2 −1 𝑁  𝜇 3 , 𝑣3
2𝐵 3 −1 𝑁  𝜇 4 , 𝑣4

2𝐵 4 −1

𝐶1 𝐶2 𝐶3 𝐶4

𝑏1 1

𝑏2 1



Regret bounds

• With probability 1 − 𝛿, regret

𝑅 𝑇 ≤ 𝑂 𝑑 𝑇 ln(𝑇) ln
𝑇

𝛿

• Improvement by a factor 𝑑 from[Agrawal and Goyal 2013]

• Lower bound is Ω 𝑑 𝑇

• For UCB based algorithms best bound is 𝑂 𝑑 𝑇 ln(𝑇) ln
𝑇

𝛿
[Abbasi-Yadkori et al 2011]



Proof outline
• Regret at time  t = Δ𝑏(𝑡) = 𝑏∗ 𝑡 𝑇𝜇 − 𝑏 𝑡 𝑇𝜇

• Key Inequality:  With high probability (for most histories 𝐹𝑡−1)

𝐸 Δ𝑏 𝑡 𝐹𝑡−1] ≤ 2 ln𝑇 𝑔𝑡 𝐸 𝑠𝑏 𝑡 𝑡 𝐹𝑡−1]

• Filtration 𝐹𝑡−1: includes history until 𝑡 − 1 and context set A𝑡

• 𝑠𝑏 𝑡 = 𝑏𝑇𝐵 𝑡 −1𝑏 :  Can be interpreted as standard deviation in the direction of context 𝑏

• 𝑔𝑡 = 9𝑅 𝑑 ln(𝑡/𝛿)

•  𝑡=1
𝑇 𝑠𝑏(𝑡) 𝑡 = 𝑂( 𝑑𝑇 ln(𝑇)) [Auer 2002, Chu et al 2011]

• Using Azuma-Hoeffding bounds for super-martingales: with probability 1 − 𝛿

•  𝑡 Δ𝑏(𝑡) ≤ 𝑂 𝑔𝑡 𝑑𝑇 ln 𝑇 =  𝑂(d 𝑇)



Proof techniques

• Lemma: With high prob. the following events happen (for most 𝐹𝑡−1), 𝜇 ∈ 𝐶𝑡

∀𝑏 ∈ 𝐴𝑡 , |  𝜇(𝑡)𝑇𝑏 − 𝜇𝑇𝑏| ≤ 𝑔𝑡 𝑏𝑇𝐵 𝑡 −1𝑏 = 𝑔𝑡 𝑠𝑏(𝑡)

• From upper confidence bounds for least square estimate in UCB based algorithms 

[Rusmevichientong-Tsitkilis 2010, Abbasi-Yadkori et al 2011]

• Lemma: For all 𝐹𝑡−1, ∀𝑏 ∈ 𝐴𝑡,

|  𝜇(𝑡)𝑇𝑏 −  𝜇 𝑡 𝑇𝑏| ≤ ln 𝑇 𝑔𝑡 𝑠𝑏(𝑡)

• Variance of Gaussian  𝜇 along context 𝑏 = 𝑔𝑡
2 𝑠𝑏 𝑡 2 = 𝑔𝑡

2 𝑏𝑇𝐵 𝑡 −1𝑏

• From now on, assume for all 𝐹𝑡−1, ∀𝑏 ∈ 𝐴𝑡

|  𝜇(𝑡)𝑇𝑏 − 𝜇𝑇𝑏| ≤ 2 ln 𝑇 𝑔𝑡 𝑠𝑏(𝑡)

𝜇

 𝜇(𝑡)

𝐶𝑡 = (  𝜇 𝑡 , 𝑔𝑡
2𝐵 𝑡 −1)



Proof of key inequality
𝐸 Δ𝑏 𝑡 𝐹𝑡−1] ≤ 𝑂 ln 𝑇 𝑔𝑡 𝐸 𝑠𝑏 𝑡 𝑡 𝐹𝑡−1

• Regret at time  t, Δ𝑏(𝑡) = 𝑏∗ 𝑡 𝑇𝜇 − 𝑏 𝑡 𝑇𝜇

≤ (𝑏∗ 𝑡 𝑇  𝜇 𝑡 − 𝑏 𝑡 𝑇  𝜇 𝑡 ) + ln 𝑇 𝑔𝑡 𝑠𝑏∗ 𝑡 𝑡 + ln 𝑇 𝑔𝑡 𝑠𝑏 𝑡 (𝑡)

≤ ln 𝑇 𝑔𝑡 𝑠𝑏∗ 𝑡 𝑡 + ln 𝑇 𝑔𝑡 𝑠𝑏 𝑡 𝑡

ASIDE

• Easy to prove this for UCB.

Δ𝑏(𝑡) = 𝑏∗ 𝑡 𝑇𝜇 − 𝑏 𝑡 𝑇𝜇

≤ (𝑏∗ 𝑡 𝑇 𝜇 − 𝑏 𝑡 𝑇  𝜇 𝑡 ) + 𝑔𝑡 𝑠𝑏 𝑡 (𝑡)

≤ 𝑔𝑡 𝑠𝑏 𝑡 (𝑡)

Does not go down fast enough unless 
optimal arm is played often!



Proof of key inequality
𝐸 Δ𝑏 𝑡 𝐹𝑡−1] ≤ 𝑂( ln 𝑇 𝑔𝑡) 𝐸[𝑠𝑏 𝑡 𝑡 |𝐹𝑡−1]

• Class of Unsaturated (high-variance, low regret) arms  at time  𝑡

b ∈ 𝐴𝑡: Δ𝑏 ≤ ln𝑇 𝑔𝑡 𝑠𝑏 𝑡

• Lemma: Pr 𝑝𝑙𝑎𝑦𝑖𝑛𝑔 𝑢𝑛𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑚 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝐹𝑡−1) ≥ p (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

• Variance is high, mean reward is high -- anti-concentration of posterior ensures that bT  𝜇 𝑡 is 

sufficiently large

• 𝐸 𝑠𝑏 𝑡 𝑡 𝐹𝑡−1 ≥ 𝑝 𝑠 𝑏 𝑡 (𝑡)

•  𝑏 t is the arm with smallest 𝑠𝑏(𝑡) among high variance arms

• What remains to show is that Δ𝑏(𝑡) ≤ ln𝑇 𝑔𝑡 (𝑠 𝑏 𝑡 (𝑡)+𝑠𝑏 𝑡 (𝑡))



Summary: proof of regret bound

Δ𝑏(𝑡) = 𝑏∗ 𝑡 𝑇𝜇 − 𝑏 𝑡 𝑇𝜇

≤ Δ 𝑏 𝑡 +  𝑏 𝑡 𝑇𝜇 − 𝑏 𝑡 𝑇𝜇

≤ ln𝑇 𝑔𝑡 𝑠 𝑏 𝑡 𝑡 + ln𝑇 𝑔𝑡 𝑠 𝑏 𝑡 𝑡 + ln𝑇 𝑔𝑡 𝑠𝑏 𝑡 (𝑡)

𝐸[Δ𝑏 𝑡 |𝐹𝑡−1] ≤ 3 ln 𝑇 𝑔𝑡
1

𝑐
𝐸[𝑠𝑏 𝑡 𝑡 |Ft−1]

 

𝑡

Δ𝑏(𝑡) ≤ 𝑂 ln𝑇 𝑔𝑡  

𝑡

𝑠𝑏(𝑡)(𝑡) ≤ 𝑂 ln𝑇 𝑔𝑡 ⋅ 𝑑𝑇ln(𝑇)

Concentration

Definition of high-variance arms



Conclusion

• Strong modular techniques for analysis of TS

• Thompson Sampling is an attractive option to consider when designing algorithms for new 

versions of this problem 

• Attractive both theoretically and empirically



Thank you.



Online Learning to Thompson Sampling

[Inspired by Abbasi-Yadkori et al. 2012]

Given: online linear programming algorithm that 

• At time t, Inputs (𝑋1, 𝑌1, … , 𝑋𝑡−1, 𝑌𝑡−1, 𝑋𝑡), predicts  𝑌𝑡

• Regret guarantees: with probability 1 − 𝛿

 

𝑡

𝑇

ℓ  𝑌𝑡 − ℓ(𝑌𝑡) ≤ ℎ𝑡

• ℓ 𝑦 = 𝑦 − 𝜇𝑇𝑋𝑡
2



Online Learning to Thompson Sampling

• Start with 𝑁(0𝑑 , 𝐼𝑑) belief distribution

• At time 𝑡, belief is 𝑁( 𝜇(𝑡), 𝑔𝑡
2𝐵−1(𝑡))

•  𝜇 𝑡 , 𝐵 𝑡 given by least square estimate on 𝑏(1), 𝑟(1), … , 𝑏(𝑡 − 1), 𝑟(𝑡 − 1)

•  𝑌𝑡−1 is the predictor given by online algo for input 𝑏 1 , 𝑟 1 , … , 𝑏 𝑡 − 1 , 𝑟 𝑡 − 1 , 𝑏(𝑡)

• 𝑔𝑡 = ℎ𝑡

ALGO: At time t,

• Sample  𝜇(𝑡) from 𝑁( 𝜇(𝑡), 𝑔𝑡
2𝐵−1(𝑡))

• Play arm  arg max
b∈𝐴𝑡

𝑏𝑇  𝜇(𝑡)

 𝑌1  𝑌𝑡−1



Regret bounds

• With probability 1 − 𝛿, regret

𝑅 𝑇 ≤ 𝑂 ℎ𝑡 𝑑𝑇 ln(𝑇)

• 𝑑𝑇 represents the bandit cost over and above the online learning regret

• ℎ𝑡 = 𝑂( 𝑑 ln
𝑇

𝛿
) for regularized least square estimate/Follow the regularized leader, to get  𝑂 𝑑 𝑇

regret

• ℎ𝑡 = 𝑂( 𝑠 ln
𝑇

𝛿
) for sparse online learning with sparsity 𝑠, to get  𝑂 𝑠𝑑𝑇 regret

[For UCB based algorithm OFUL this regret bound was proven in Abbasi-Yadkori et al. 2011]


