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Problem

We would like to learn how people value a product or service in
terms of its features

E.g: Value restaurants in terms of their features



Problem

Assumption: the way people rate restaurants is related −→
Multitask learning

argmin
W

T∑
t=1

‖Xtwt − yt‖22+

γrank (W )

Generalization of
matrix completion
(collaborative
�ltering)



Problem

Multitask learning
(MTL) scenario in
which tasks can be
referenced by multiple
indices

E.g: ( , Food)

Multi-dimensional indexing information would be lost in a
traditional MTL approach



Transfer Learning

Advantage: It can learn tasks even in the absence of training data



Proposed solution: Multilinear Multitask Learning (MLMTL)

Multilinear models are a natural underpinning to represent this
structural information:

argmin
W

F (W) + γ
N

N∑
n=1

rank
(
W(n)

)
W(n) is the n-th matricization of the tensor. E.g:

W(1) W(3)



Non-convex approach: Tucker decomposition

We rely on the Tucker
decomposition to look
for low rank
representations of the
tensor

We attempt to solve
this problem by
alternating
minimization

argmin
G,A(1)...A(N)

F
(
G ×1 A

(1) . . .×N A(N)
)
+

γ

(
‖G‖2Fr +

N∑
n=1

∥∥A(n)
∥∥2
Fr

)



Convex approach

The trace norm is a widely used convex surrogate for the rank.
Therefore, we can consider the following convex relaxation:

argmin
W

F (W) + γ
N

N∑
n=1

∥∥W(n)

∥∥
Tr

Regularizer previously employed for Tensor Completion (Liu et al,
2009), (Gandy et al, 2011), (Signoretto et al, 2012)



Alternating Direction Method of Multipliers (ADMM)

I We want to minimize

min
W

N
γ F (W) +

N∑
n=1

∥∥W(n)

∥∥
Tr

I Decouple the regularization term

min
W,B

{
N
γ F (W) +

N∑
n=1

∥∥Bn(n)

∥∥
Tr

: Bn = W , n = 1, . . . ,N

}
I Augmented Lagrangian:

L (W ,B,C) =
N
γ F (W)+

N∑
n=1

(∥∥Bn(n)

∥∥
Tr
− 〈Cn,W −Bn〉+ β

2
‖W −Bn‖22

)



Alternating Direction Method of Multipliers (ADMM)

L (W ,B,C) =
N
γ F (W) +

N∑
n=1

(∥∥Bn(n)

∥∥
Tr
− 〈Cn,W −Bn〉+ β

2
‖W −Bn‖22

)
Updating equations:

I W [i+1] ← argmin
W

L
(
W ,B[i ],C[i ]

)
I B[i+1]

n ← argmin
Bn

L
(
W [i+1],B,C[i ]

)
I C[i+1]

n ← C[i+1]
n −

(
βW [i+1] −B[i+1]

n

)
2nd step involves the computation of proximity operator of ‖·‖Tr.



Experiments

Restaurant dataset
(All tasks have training

instances)

Shoulder Pain dataset
(Some tasks have no training

instances)



Remarks

I When tasks are referenced by multiple indices, MLMTL
methods outperform other approaches.

I The MLMTL non-convex approach obtains slightly better
results than the convex counterpart.



Rethinking the convex approach

Convex envelope of a function f on a set S is the largest convex
function f ∗∗ majorized by f for all points in S

E.g: cardinality of a
vector:

I f (v) = card(v)

I S = {v : ||v ||∞ ≤ M}
I f ∗∗(v) = ||v ||1/M
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In practise M is unknown and tuned by cross validation.
Trade o�: the smaller S , the tighter the convex envelope.



Rethinking the convex approach

I In the regular MTL case, W is a matrix and we want to use
the regularizer rank(W)

I (Fazel 2001) ‖W ‖Tr /M is the convex envelope of rank(W) in
the set {

W : ‖W ‖Sp ≤ M
}

I In the MLMTL case, by using the regularizer
N∑

n=1

∥∥W(n)

∥∥
Tr

we

implicitly assume the same M for the di�erent matricizations.

I However: ∥∥W(1)

∥∥
Sp
6=
∥∥W(2)

∥∥
Sp
6= . . . 6=

∥∥W(N)

∥∥
Sp



Rethinking the convex approach

I We are interested in convex functions over matrices invariant
to matricizations of a tensor.

I The Frobenius norm is very appealing:
I
∥∥W(1)

∥∥
Fro

=
∥∥W(2)

∥∥
Fro

= . . . =
∥∥W(N)

∥∥
Fro

I It is also a spectral function

I Therefore, we consider the set S = {W : ‖W ‖Fro ≤ M}

I In that set, calculating the convex envelope of the rank can be
reduced to calculate the convex envelope of card (v) on the
set {v : ‖v‖2 ≤ M}, where v is the vector of singular values
of W .



Rethinking the convex approach

I Convex envelope of
card (v) on the set
{v : ‖v‖2 ≤ M}

I Property:
If ‖v‖2 = M →
card(v) = card∗∗(v)

I The resultant function is di�cult to compute explicitly.

I However, it is feasible to compute its proximal operator
(Romera-Paredes & Pontil, 2013).

I That is all we need to solve the problem via ADMM!



Experiments on tensor completion

Video compression
(160× 112× 32× 3 tensor)
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Tensor Trace Norm
Proposed Regularizer

Exam score prediction
(139× 11× 3× 3× 2 tensor)
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Tensor Trace Norm
Proposed Regularizer

Time comparison:
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Conclusions

I MLMTL approaches account for the scenario where tasks are
described by multiple indices

I They get a signi�cant improvement over conventional

approaches

I In the convex approach, we have found out that the trace
norm is not the best option for tensor regularization

I We have proposed an alternative based on the convex envelope

of the rank on the Frobenius ball


