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Problem

We would like to learn how people value a product or service in
terms of its features
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E.g: Value restaurants in terms of their features




Problem

Assumption: the way people rate restaurants is related —
Multitask learning
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Problem

Food
Service

Multitask learning Overall
(MTL) scenario in
which tasks can be
referenced by multiple
indices Weight5<
E.g: ( . Food)

.

Multi-dimensional indexing information would be lost in a
traditional MTL approach



Transfer Learning

Advantage: It can learn tasks even in the absence of training data
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Proposed solution: Multilinear Multitask Learning (MLMTL)

Multilinear models are a natural underpinning to represent this

structural information:
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W(p) is the n-th matricization of the tensor. E.g:
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Non-convex approach: Tucker decomposition

We rely on the Tucker
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decomposition to look
for low rank - B ’
representations of the

tensor
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Convex approach

The trace norm is a widely used convex surrogate for the rank.
Therefore, we can consider the following convex relaxation:
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Regularizer previously employed for Tensor Completion (Liu et al,
2009), (Gandy et al, 2011), (Signoretto et al, 2012)



Alternating Direction Method of Multipliers (ADMM)

» We want to minimize
N
N
~F W
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» Decouple the regularization term
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» Augmented Lagrangian:
L(W,B,C) =
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Alternating Direction Method of Multipliers (ADMM)

L(W,B,C) =
N
NEwW) + zz:l (HB Wl — (€ W = Bi) + +4 ||W_Bn||§)

Updating equations:
» Wt « argmin £ (W, B[i],C[i]>
w

> BE{H] < argmin £ (W[i+1], B,C[i]>
B,
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2nd step involves the computation of proximity operator of ||-||,.



Experiments

Restaurant dataset
(All tasks have training
instances)
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Shoulder Pain dataset
(Some tasks have no training

instances)
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Remarks

» When tasks are referenced by multiple indices, MLMTL
methods outperform other approaches.

» The MLMTL non-convex approach obtains slightly better
results than the convex counterpart.



Rethinking the convex approach

Convex envelope of a function f on a set S is the largest convex
function £** majorized by f for all pointsin S
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E.g: cardinality of a 15 M 1
vector:
» f(v) = card(v) 1
> S={v:|vlle <M}
0.5
> o (v) = llvlli/M
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In practise M is unknown and tuned by cross validation.
Trade off: the smaller S, the tighter the convex envelope.



Rethinking the convex approach

> In the regular MTL case, W is a matrix and we want to use
the regularizer rank(W)

» (Fazel 2001) ||W/||, /M is the convex envelope of rank(W) in
the set

W W, < M
{ J

> In the MLMTL case, by using the regularizer Z HW HT
implicitly assume the same M for the dlfFerent matr|C|zat|ons

» However:
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Rethinking the convex approach

» We are interested in convex functions over matrices invariant
to matricizations of a tensor.

» The Frobenius norm is very appealing:
> Wl = W o = - = [IWow [l
» It is also a spectral function
> Therefore, we consider the set S = {W : [|W||y,, < M}

Fro

» In that set, calculating the convex envelope of the rank can be
reduced to calculate the convex envelope of card (v) on the

set {v : [|v|, < M}, where v is the vector of singular values
of W.



Rethinking the convex approach

» Convex envelope of ‘
card (v) on the set ‘
{v v, < M} : 1 |

> Property:
if||vl, =M —
card(v) = card™(v)

» The resultant function is difficult to compute explicitly.

» However, it is feasible to compute its proximal operator
(Romera-Paredes & Pontil, 2013).

» That is all we need to solve the problem via ADMM!
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Experiments on tensor completion

Video compression Exam score prediction
(160 x 112 x 32 x 3 tensor) (139 x 11 x 3 x 3 x 2 tensor)
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Conclusions

» MLMTL approaches account for the scenario where tasks are
described by multiple indices
» They get a significant improvement over conventional
approaches

» In the convex approach, we have found out that the trace
norm is not the best option for tensor regularization
» We have proposed an alternative based on the convex envelope
of the rank on the Frobenius ball



