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Initial motivation

Monte-Carlo Tree Search in computer-go

MCTS in Crazy-Stone (Rémi Coulom, 2005)

Idea: use bandits at each node of the tree search.
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UCB applied to Trees

Uses Upper Confidence Bound (UCB) algorithm [Auer et al., 2002]
at each node of the tree

Bj
def
= Xj ,nj +

√
2 log(ni )

nj
.

Intuition:
- Explore first the most
promising branches
- Average converges to max

Node i: Bi

Bj

• Adaptive Multistage Sampling (AMS) algorithm [Chang, Fu,
Hu, Marcus, 2005]

• UCB applied to Trees (UCT) [Kocsis and Szepesvári, 2006]
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The MoGo program [Gelly et al., 2006]

Use hierarchy of UCB bandits (UCT) [Kocsis and Szepesvári, 2006]

Features:

• Monte-Carlo evaluation

• Asymmetric tree
expansion

• Anytime algo

• Use of features

Very strong program!

MCTS and UCT very success-
ful
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No finite-time guarantee for UCT

Problem: at each node, the rewards are not i.i.d.
Consider the tree:

The left branches seem better
than right branches, thus are ex-
plored for a very long time be-
fore the optimal leaf is eventually
reached.
The regret is disastrous:

ERn = Ω(exp(exp(. . . exp(︸ ︷︷ ︸
D times

1) . . . )))+O(log(n)).

See [Coquelin and Munos, 2007]
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Optimism in the face of uncertainty

“Numerical exploration-exploitation tradeoff”: perform search in
simulation using finite numerical resources.

Outline:

• Optimistic optimization of a deterministic Lipschitz functions

• 4 extensions:
• Locally smooth functions,
• Tractable algorithm
• Unknown smoothness,
• Noisy evaluations
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Optimization of a deterministic Lipschitz function

Problem: Find online the maximum of f : X → IR, assumed to be
Lipschitz:

|f (x)− f (y)| ≤ ℓ(x , y).

Protocol:

• For each time step t = 1, 2, . . . , n select a state xt ∈ X

• Observe f (xt)

• Return a state x(n)

Loss:
rn = f ∗ − f (x(n)),

where f ∗ = supx∈X f (x).
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Example in 1d

f(x )t

xt

f

f *

Lipschitz property → the evaluation of f at xt provides a first
upper-bound on f .
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Example in 1d (continued)

New point → refined upper-bound on f .
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Example in 1d (continued)

Question: where should one sample the next point?
Answer: select the point with highest upper bound!
“Optimism in the face of (partial observation) uncertainty”
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Several issues

1. Lipschitz assumption is too strong

2. Finding the optimum of the upper-bounding function may be
hard!

3. What if we don’t know the metric ℓ?

4. How to handle noise?
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Local smoothness property

Assumption: f is “locally smooth” around its max. w.r.t. ℓ
where ℓ is a semi-metric (symmetric, and ℓ(x , y) = 0 ⇔ x = y):
For all x ∈ X ,

f (x∗)− f (x) ≤ ℓ(x , x∗).

x∗ X

f(x∗) f

f(x∗)− ℓ(x, x∗)
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Local smoothness is enough!

x∗

f(x∗)

f

Optimistic principle only requires:

• a true bound at the maximum

• the bounds gets refined when adding more points



. . . . . .

Lipschitz optimization Local smoothness Hierarchical partitioning Unknown smoothness Noisy evaluations

Efficient implementation

Deterministic Optimistic Optimization (DOO) builds a
hierarchical partitioning of the space where cells are refined
according to their upper bounds.

• For t = 1 to n,
• Define an upper bound for each cell:

Bi = f (xi ) + diamℓ(Xi )

• Select the cell with highest bound

It = argmax
i

Bi .

• Expand It : refine the grid and evaluate f in children cells

• Return x(n)
def
= argmax{xt}1≤t≤n

f (xt)
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Near-optimality dimension

Define the near-optimality dimension of f as the smallest d ≥ 0
such that ∃C , ∀ϵ, the set of ε-optimal states

Xε
def
= {x ∈ X , f (x) ≥ f ∗ − ε}

can be covered by Cε−d ℓ-balls of radius ε.
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Example 1:

Assume the function is piecewise linear at its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||).

ε

ε

Using ℓ(x , y) = ∥x − y∥, it takes O(ϵ0) balls of radius ϵ to cover
Xε. Thus d = 0.
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Example 2:

Assume the function is locally quadratic around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||2).

ε

ε
f

f(x∗)− ‖x− x∗‖

For ℓ(x , y) = ||x − y ||, it takes O(ϵ−D/2) balls of radius ϵ to cover
Xε (of size O(ϵD/2)). Thus d = D/2.
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Example 2:

Assume the function is locally quadratic around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||2)

ε

ε

f

f(x∗)− ‖x− x∗‖2

For ℓ(x , y) = ||x − y ||2, it takes O(ϵ0) ℓ-balls of radius ϵ to cover
Xε. Thus d = 0.
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Example 3:

Assume the function has a square-root behavior around its
maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||1/2)

ε

ε

f

f(x∗)− ‖x− x∗‖1/2

For ℓ(x , y) = ∥x − y∥1/2 we have d = 0.



. . . . . .

Lipschitz optimization Local smoothness Hierarchical partitioning Unknown smoothness Noisy evaluations

Example 4:

Assume X = [0, 1]D and f is locally equivalent to a polynomial of
degree α > 0 around its maximum (i.e. f is α-smooth):

f (x∗)− f (x) = Θ(||x∗ − x ||α)

Consider the semi-metric ℓ(x , y) = ∥x − y∥β, for some β > 0.

• If α = β, then d = 0.

• If α > β, then d = D( 1β − 1
α) > 0.

• If α < β, then the function is not locally smooth wrt ℓ.
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Analysis of DOO (deterministic case)

Assume that the ℓ-diameters of the nodes of depth h decrease
exponentially fast with h (i.e., diam(h) = cγh, for c > 0 γ < 1).

Example: X = [0, 1]D and ℓ(x , y) = ∥x − y∥β for some β > 0.

Theorem 1.
The loss of DOO is

rn =


(

C
1−γd

)1/d
n−1/d for d > 0,

cγn/C−1 for d = 0.

(Remember that rn
def
= f (x∗)− f (x(n))).
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About the local smoothness assumption

Assume f satisfies f (x∗)− f (x) = Θ(||x∗ − x ||α).

Use DOO with the semi-metric ℓ(x , y) = ∥x − y∥β:
• If α = β, then d = 0: the true “local smoothness” of the
function is known, and exponential rate is achieved.

• If α > β, then d = D( 1β − 1
α) > 0: we under-estimate the

smoothness, which causes more exploration than needed.

• If α < β: We over-estimate the true smoothness and DOO
may fail to find the global optimum.

DOO heavilly depends on our knowledge of the true local
smoothness.
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Experiments [1]
f (x) = 1

2(sin(13x) sin(27x) + 1) satisfies the local smoothness
assumption with

• ℓ1(x , y) = 14|x − y | (i.e., f is globally Lipschitz), d = 1/2

• ℓ2(x , y) = 222|x − y |2 (i.e., f is locally quadratic), d = 0
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Experiments [2]
Using ℓ1(x , y) = 14|x − y | (i.e., f is globally Lipschitz). n = 150.

The trees Tn built by DOO after n = 150 evaluations.
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Experiments [3]
Using ℓ2(x , y) = 222|x − y |2 (i.e., f is locally quadratic). n = 150.

The trees Tn built by DOO after n = 150 evaluations.
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Experiments [4]

n uniform grid DOO with ℓ1 (d = 1/2) DOO with ℓ2 (d = 0)

50 1.25× 10−2 2.53× 10−5 1.20× 10−2

100 8.31× 10−3 2.53× 10−5 1.67× 10−7

150 9.72× 10−3 4.93× 10−6 4.44× 10−16

Loss rn for different values of n for a uniform grid and DOO with
the two semi-metric ℓ1 and ℓ2.
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What if the smoothness is unknown?

Previous algorithms heavily rely on the knowledge or the local
smoothness of the function (i.e. knowledge of the best metric).

Question: When the smoothness is unknown, is it possible to
implement the optimistic principle for function optimization?
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DIRECT algorithm [Jones et al., 1993]

Assumes f is Lipschitz but the Lipschitz constant L is unknown.

The DIRECT algorithm expands simultaneously all nodes that may
potentially contain the maximum for some value of L.

Be optimistic for all L
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Illustration of DIRECT
The sin function and its upper bound for L = 2.
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Illustration of DIRECT
The sin function and its upper bound for L = 1/2.
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Limitations of DIRECT

• No finite-time analysis (only the consistency property
limn→∞ rn = 0 in [Finkel and Kelley, 2004])

• Global Lipschitz assumption is too strong!

We want to extend to

• any function locally smooth w.r.t. ℓ,

• for any semi-metric ℓ

• and provide performance guarantees.
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Simultaneous Optimistic Optimization (SOO)

[Munos, 2011]

• Expand several leaves simultaneously

• SOO expands at most one leaf per depth

• SOO expands a leaf only if its value is larger that the value of
all leaves of same or lower depths.

• At round t, SOO does not expand leaves with depth larger
than hmax(t)

Be optimistic at all scales
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SOO algorithm

Input: the maximum depth function t 7→ hmax(t)
Initialization: T1 = {(0, 0)} (root node). Set t = 1.
while True do
Set vmax = −∞.
for h = 0 to min(depth(Tt), hmax(t)) do

Select the leaf (h, j) ∈ Lt of depth h with max f (xh,j) value
if f (xh,i ) > vmax then

Expand the node (h, i), Set vmax = f (xh,i ), Set t = t + 1
if t = n then return x(n) = argmax(h,i)∈Tn xh,i

end if
end for

end while.
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Performance of SOO

Theorem 2.
For any semi-metric ℓ such that

• f is locally smooth w.r.t. ℓ

• The ℓ-diameter of cells of depth h is cγh

• The near-optimality dimension of f w.r.t. ℓ is d = 0,

by choosing hmax(n) =
√
n, the expected loss of SOO is

rn ≤ cγ
√
n/C−1

In the case d > 0 a similar statement holds with Ern = Õ(n−1/d).
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Performance of SOO

Remarks:

• Since the algorithm does not depend on ℓ, the analysis holds
for the best possible choice of the semi-metric ℓ satisfying the
assumptions.

• SOO does almost as well as DOO optimally fitted (thus
“adapts” to the unknown local smoothness of f ).
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Numerical experiments

Again for the function f (x) = (sin(13x) sin(27x) + 1)/2 we have:

n uniform grid DOO with ℓ1 DOO with ℓ2 SOO

50 1.25× 10−2 2.53× 10−5 1.20× 10−2 3.56× 10−4

100 8.31× 10−3 2.53× 10−5 1.67× 10−7 5.90× 10−7

150 9.72× 10−3 4.93× 10−6 4.44× 10−16 1.92× 10−10
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The case d = 0 is non-trivial!

Example:

• f is locally α-smooth around its maximum:

f (x∗)− f (x) = Θ(∥x∗ − x∥α),

for some α > 0.

• SOO algorithm does not require the knowledge of ℓ,

• Using ℓ(x , y) = ∥x − y∥α in the analysis, all assumptions are
satisfied (with γ = 3−α/D and d = 0, thus the loss of SOO is
rn = O(3−

√
nα/(CD)) (stretched-exponential loss),

• This is almost as good as DOO optimally fitted!

(Extends to the case f (x∗)− f (x) ≈
∑D

i=1 ci |x∗i − xi |αi )
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The case d = 0

More generally, any function whose upper- and lower envelopes
around x∗ have the same shape: ∃c > 0 and η > 0, such that

min(η, cℓ(x , x∗)) ≤ f (x∗)− f (x) ≤ ℓ(x , x∗), for all x ∈ X .

has a near-optimality d = 0 (w.r.t. the metric ℓ).

x∗

f(x∗) f(x∗)− cℓ(x, x∗)

f(x∗)− ℓ(x, x∗)

f(x∗)− η
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Example of functions for which d = 0

ℓ(x , y) = c∥x − y∥2
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Example of functions with d = 0

ℓ(x , y) = c∥x − y∥1/2
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d = 0?

ℓ(x , y) = c∥x − y∥1/2
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d > 0

f (x) = 1−
√
x + (−x2 +

√
x) ∗ (sin(1/x2) + 1)/2

The lower-envelope is of order 1/2 whereas the upper one is of
order 2. We deduce that d = 3/2 and rn = O(n−2/3).
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SOO versus DIRECT

• SOO is much more general than DIRECT: the function is
only locally smooth and the space is semi-metric.

• Finite-time analysis of SOO

• SOO is a rank-based algorithm: any transformation of the
values while preserving their rank will not change anything in
the algorithm. Thus extends to the optimization of function
givens pair-wise comparisons.
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How to handle noise?

The evaluation of f at xt is perturbed by noise:

yt = f (xt) + ϵt , with E[ϵt |xt ] = 0.

f(x )t

xt

f

f *
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Stochastic SOO (StoSOO)

Extends SOO to stochastic evaluations:

• Select the cells Xi (at most one per depth) according to SOO
based on the UCBs:

µ̂i ,t + c

√
log n

Ti (t)
,

and get one more value yt = f (xi ) + ϵt of f at xi ,

• If Ti (t) ≥ k , then split the cell Xi .

Remark: This really looks like UCT, except that

• several cells are selected at each round,

• a cell is split only after observing k values.
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Performance of StoSOO

Theorem 3 (Valko et al., 2013).

For any semi-metric ℓ such that

• f is locally smooth w.r.t. ℓ

• The ℓ-diameters of the cells decrease exponentially fast with
their depth,

• The near-optimality dimension of f w.r.t. ℓ is d = 0,

by choosing k = n
(log n)3

, hmax(n) = (log n)3/2, the expected loss of

StoSOO is

Ern = O
((log n)2√

n

)
.

This is almost as good as HOO [Bubeck et al., 2011] and Zooming
[Kleinberg et al., 2008] optimally fitted! Complementary to the
adaptive-treed bandits of [Bull, 2013].
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Range of application

All illustrations are in Euclidean spaces [0, 1]D only.

But there are many other semi-metric spaces...

• Trees (games, ...)

• Graphs (social networks, ...),

• Combinatorial spaces (shortest paths problems, ...)

• Other structured spaces (policies in MDPs, ...)

We only require:

• the search space X to be equipped with a semi-metric ℓ,

• a nested (hierarchical) partitioning of the space,

• f to satisfy a local smoothness property w.r.t. ℓ,

• ℓ may or may not be known.
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Conclusions

Provide a measure of the complexity of optimization.

This multi-scale optimistic optimization

• provides an efficient exploration of the search space by
exploring the most promising areas first

• provides a natural transition from global to local search

• Performance depends on the “smoothness” of the function
around the maximum w.r.t. some metric,

• and a measure of the quantity of near-optimal solutions,
• and our knowledge or not of this smoothness.
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Thanks !!!

See the review paper

From bandits to Monte-Carlo Tree Search: The
optimistic principle applied to optimization and planning.

from my web page:

http://chercheurs.lille.inria.fr/∼munos/


