Numerical exploration-exploitation tradeoff for large scale function optimization

Rémi Munos

INRIA Lille - Nord Europe Currently on leave at MSR-NE http://researchers.lille.inria.fr/~munos/

LSOLDM 2013, Cumberland Lodge

イロト 不得 トイヨト イヨト

э

Noisy evaluations

Initial motivation

Monte-Carlo Tree Search in computer-go

Idea: use bandits at each node of the tree search.

UCB applied to Trees

Uses Upper Confidence Bound (UCB) algorithm [Auer et al., 2002] at each node of the tree

$$B_j \stackrel{\mathrm{def}}{=} X_{j,n_j} + \sqrt{\frac{2\log(n_i)}{n_j}}.$$

Intuition:

- Explore first the most promising branches

- Average converges to max
 - Adaptive Multistage Sampling (AMS) algorithm [Chang, Fu, Hu, Marcus, 2005]
 - UCB applied to Trees (UCT) [Kocsis and Szepesvári, 2006]

The MoGo program [Gelly et al., 2006]

Use hierarchy of UCB bandits (UCT) [Kocsis and Szepesvári, 2006]

Features:

- Monte-Carlo evaluation
- Asymmetric tree expansion
- Anytime algo
- Use of features

Very strong program!

MCTS and UCT very successful

イロト イポト イヨト イヨト

Noisy evaluations

No finite-time guarantee for UCT

 $\frac{D-1}{D}$

Problem: at each node, the rewards are not i.i.d. Consider the tree:

The left branches seem better than right branches, thus are explored for a **very** long time before the optimal leaf is eventually reached.

The regret is disastrous:

$$\mathbb{E}R_n = \Omega(\underbrace{\exp(\exp(\dots \exp(1)\dots))}_{D \text{ times}} + O(\log(n)).$$

See [Coquelin and Munos, 2007]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Optimism in the face of uncertainty

"Numerical exploration-exploitation tradeoff": perform search in simulation using finite numerical resources.

Outline:

- Optimistic optimization of a deterministic Lipschitz functions
- 4 extensions:
 - Locally smooth functions,
 - Tractable algorithm
 - Unknown smoothness,
 - Noisy evaluations

Optimization of a deterministic Lipschitz function

Problem: Find online the maximum of $f : X \rightarrow \mathbb{R}$, assumed to be Lipschitz:

$$|f(x)-f(y)| \leq \ell(x,y).$$

Protocol:

- For each time step $t = 1, 2, \ldots, n$ select a state $x_t \in X$
- Observe $f(x_t)$
- Return a state x(n)

Loss:

$$r_n = f^* - f(x(n)),$$

where $f^* = \sup_{x \in X} f(x)$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Noisy evaluations

Example in 1d

Lipschitz property \rightarrow the evaluation of f at x_t provides a first upper-bound on f.

э

Example in 1d (continued)

New point \rightarrow refined upper-bound on f.

Example in 1d (continued)

Question: where should one sample the next point? Answer: select the point with highest upper bound! "Optimism in the face of (partial observation) uncertainty"

Several issues

- 1. Lipschitz assumption is too strong
- 2. Finding the optimum of the upper-bounding function may be hard!
- 3. What if we don't know the metric ℓ ?
- 4. How to handle noise?

Local smoothness property

Assumption: f is "locally smooth" around its max. w.r.t. ℓ where ℓ is a semi-metric (symmetric, and $\ell(x, y) = 0 \Leftrightarrow x = y$): For all $x \in \mathcal{X}$,

$$f(x^*) - f(x) \leq \ell(x, x^*).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

(日) (同) (日) (日)

Local smoothness is enough!

Optimistic principle only requires:

- a true bound at the maximum
- the bounds gets refined when adding more points

Efficient implementation

Deterministic Optimistic Optimization (DOO) builds a hierarchical partitioning of the space where cells are refined according to their upper bounds.

- For t = 1 to n,
 - Define an upper bound for each cell:

$$B_i = f(x_i) + \operatorname{diam}_{\ell}(X_i)$$

• Select the cell with highest bound

$$I_t = \underset{i}{\operatorname{argmax}} B_i.$$

- Expand I_t : refine the grid and evaluate f in children cells
- Return $x(n) \stackrel{\text{def}}{=} \operatorname{argmax}_{\{x_t\}_{1 \le t \le n}} f(x_t)$

Near-optimality dimension

Define the **near-optimality dimension** of f as the smallest $d \ge 0$ such that $\exists C, \forall \epsilon$, the set of ε -optimal states

$$X_{\varepsilon} \stackrel{\mathrm{def}}{=} \{x \in X, f(x) \geq f^* - \varepsilon\}$$

can be covered by $C\varepsilon^{-d}$ ℓ -balls of radius ε .

Example 1:

Assume the function is piecewise linear at its maximum:

Using $\ell(x, y) = ||x - y||$, it takes $O(\epsilon^0)$ balls of radius ϵ to cover X_{ϵ} . Thus d = 0.

Example 2:

Assume the function is locally quadratic around its maximum:

For $\ell(x, y) = ||x - y||$, it takes $O(\epsilon^{-D/2})$ balls of radius ϵ to cover X_{ϵ} (of size $O(\epsilon^{D/2})$). Thus d = D/2.

Example 2:

 $f(x^*) - f(x) = \Theta(||x^* - x||^2)$

Assume the function is locally quadratic around its maximum:

For $\ell(x, y) = ||x - y||^2$, it takes $O(\epsilon^0) \ell$ -balls of radius ϵ to cover X_{ε} . Thus d = 0. - 日本 - 4 日本 - 4 日本 - 日本

Example 3:

Assume the function has a square-root behavior around its maximum:

For $\ell(x, y) = ||x - y||^{1/2}$ we have d = 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Example 4:

Assume $\mathcal{X} = [0, 1]^D$ and f is locally equivalent to a polynomial of degree $\alpha > 0$ around its maximum (i.e. f is α -smooth):

$$f(x^*) - f(x) = \Theta(||x^* - x||^{\alpha})$$

Consider the semi-metric $\ell(x, y) = ||x - y||^{\beta}$, for some $\beta > 0$.

- If $\alpha = \beta$, then d = 0.
- If $\alpha > \beta$, then $d = D(\frac{1}{\beta} \frac{1}{\alpha}) > 0$.
- If $\alpha < \beta$, then the function is not locally smooth wrt ℓ .

Analysis of DOO (deterministic case)

Assume that the ℓ -diameters of the nodes of depth h decrease exponentially fast with h (i.e., diam $(h) = c\gamma^h$, for c > 0 $\gamma < 1$).

Example: $\mathcal{X} = [0,1]^D$ and $\ell(x,y) = ||x - y||^{\beta}$ for some $\beta > 0$. **Theorem 1.** *The loss of DOO is*

$$r_n = \begin{cases} \left(\frac{C}{1-\gamma^d}\right)^{1/d} n^{-1/d} & \text{ for } d > 0, \\ \\ c\gamma^{n/C-1} & \text{ for } d = 0. \end{cases}$$

(Remember that $r_n \stackrel{\text{def}}{=} f(x^*) - f(x(n))$).

About the local smoothness assumption

Assume f satisfies $f(x^*) - f(x) = \Theta(||x^* - x||^{\alpha})$.

Use DOO with the semi-metric $\ell(x, y) = ||x - y||^{\beta}$:

- If α = β, then d = 0: the true "local smoothness" of the function is known, and exponential rate is achieved.
- If $\alpha > \beta$, then $d = D(\frac{1}{\beta} \frac{1}{\alpha}) > 0$: we under-estimate the smoothness, which causes more exploration than needed.
- If α < β: We over-estimate the true smoothness and DOO may fail to find the global optimum.

DOO heavilly depends on our knowledge of the true local smoothness.

Experiments [1]

 $f(x) = \frac{1}{2}(\sin(13x)\sin(27x) + 1)$ satisfies the local smoothness assumption with

•
$$\ell_1(x,y) = 14|x-y|$$
 (i.e., f is globally Lipschitz), $d = 1/2$

•
$$\ell_2(x,y) = 222|x-y|^2$$
 (i.e., f is locally quadratic), $d = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Experiments [2]

Using $\ell_1(x, y) = 14|x - y|$ (i.e., f is globally Lipschitz). n = 150.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Experiments [3]

Using $\ell_2(x, y) = 222|x - y|^2$ (i.e., f is locally quadratic). n = 150.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Experiments [4]

n	uniform grid	DOO with ℓ_1 ($d=1/2$)	DOO with ℓ_2 ($d = 0$)
50	$1.25 imes10^{-2}$	$2.53 imes10^{-5}$	$1.20 imes10^{-2}$
100	$8.31 imes10^{-3}$	$2.53 imes10^{-5}$	$1.67 imes10^{-7}$
150	$9.72 imes10^{-3}$	$4.93 imes10^{-6}$	$4.44 imes10^{-16}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Loss r_n for different values of n for a uniform grid and DOO with the two semi-metric ℓ_1 and ℓ_2 .

What if the smoothness is unknown?

Previous algorithms heavily rely on the knowledge or the local smoothness of the function (i.e. knowledge of the best metric).

Question: When the smoothness is unknown, is it possible to implement the optimistic principle for function optimization?

DIRECT algorithm [Jones et al., 1993]

Assumes f is Lipschitz but the Lipschitz constant L is unknown.

The DIRECT algorithm expands simultaneously all nodes that may potentially contain the maximum for some value of L.

Be optimistic for all L

Illustration of DIRECT

The sin function and its upper bound for L = 2.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Illustration of DIRECT

The sin function and its upper bound for L = 1/2.

Limitations of DIRECT

- No finite-time analysis (only the consistency property $\lim_{n\to\infty} r_n = 0$ in [Finkel and Kelley, 2004])
- Global Lipschitz assumption is too strong!

We want to extend to

- any function locally smooth w.r.t. ℓ ,
- for any semi-metric ℓ
- and provide performance guarantees.

Simultaneous Optimistic Optimization (SOO)

[Munos, 2011]

- Expand several leaves simultaneously
- SOO expands at most one leaf per depth
- SOO expands a leaf only if its value is larger that the value of all leaves of same or lower depths.
- At round t, SOO does not expand leaves with depth larger than $h_{\max}(t)$

Be optimistic at all scales

SOO algorithm

Input: the maximum depth function $t \mapsto h_{\max}(t)$ **Initialization:** $\mathcal{T}_1 = \{(0,0)\}$ (root node). Set t = 1. while True do

Set $v_{\max} = -\infty$. for h = 0 to min(depth(\mathcal{T}_t), $h_{\max}(t)$) do Select the leaf $(h, j) \in \mathcal{L}_t$ of depth h with max $f(x_{h,j})$ value if $f(x_{h,i}) > v_{\max}$ then Expand the node (h, i), Set $v_{\max} = f(x_{h,i})$, Set t = t + 1if t = n then return $x(n) = \arg \max_{(h,i) \in \mathcal{T}_n} x_{h,i}$ end if end for end while.

Lipschitz optimization

Local smoothness

Hierarchical partitioning

Unknown smoothness

Lipschitz optimization

Local smoothness

Hierarchical partitioning

Lipschitz optimization

Local smoothness

Hierarchical partitioning

Unknown smoothness

Hierarchical partitioning

Unknown smoothness

	۲

			•	
•	۲	•	۲	•
			•	
•	•	•	•	•
•	•		•	

	•		•	
•	•	•	• • •	•
	•		•	
•	۲	•	۲	•
•	•		•	

	•			•		•	•	•	•			•		
• • •	•	•	•	•	•		•	•	•	•	•		•	
	۲		•	•	•	•	•	•	•	•	•		•	
•	•	•		•		•	•	•		•			•	
• • •	•	•	•	•	•	•	•	•						
• •	•	•	•		•	•	•	•	•	•	•	•	•	•
•				•		•		•		•				
•	•	•		•		•	•	•	•		•		•	
• •			•	•	•	•		۲	•	•	•			

Performance of SOO

Theorem 2.

For any semi-metric ℓ such that

- f is locally smooth w.r.t. ℓ
- The ℓ-diameter of cells of depth h is cγ^h
- The near-optimality dimension of f w.r.t. ℓ is d = 0,

by choosing $h_{max}(n) = \sqrt{n}$, the expected loss of SOO is

$$r_n \leq c\gamma^{\sqrt{n}/C-1}$$

In the case d > 0 a similar statement holds with $\mathbb{E}r_n = \widetilde{O}(n^{-1/d})$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Performance of SOO

Remarks:

- Since the algorithm does not depend on ℓ , the analysis holds for the best possible choice of the semi-metric ℓ satisfying the assumptions.
- **SOO** does almost as well as DOO optimally fitted (thus "adapts" to the unknown local smoothness of *f*).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Numerical experiments

Again for the function $f(x) = (\sin(13x)\sin(27x) + 1)/2$ we have:

n	uniform grid	DOO with ℓ_1	DOO with ℓ_2	SOO
50	$1.25 imes10^{-2}$	$2.53 imes10^{-5}$	$1.20 imes10^{-2}$	$3.56 imes10^{-4}$
100	$8.31 imes10^{-3}$	$2.53 imes10^{-5}$	$1.67 imes10^{-7}$	$5.90 imes10^{-7}$
150	$9.72 imes10^{-3}$	$4.93 imes10^{-6}$	$4.44 imes10^{-16}$	$1.92 imes 10^{-10}$

The case d = 0 is non-trivial!

Example:

• f is locally α -smooth around its maximum:

$$f(x^*) - f(x) = \Theta(||x^* - x||^{\alpha}),$$

for some $\alpha > 0$.

- SOO algorithm does not require the knowledge of ℓ ,
- Using $\ell(x, y) = ||x y||^{\alpha}$ in the analysis, all assumptions are satisfied (with $\gamma = 3^{-\alpha/D}$ and d = 0, thus the loss of SOO is $r_n = O(3^{-\sqrt{n\alpha}/(CD)})$ (stretched-exponential loss),
- This is almost as good as DOO optimally fitted!

(Extends to the case $f(x^*) - f(x) \approx \sum_{i=1}^{D} c_i |x_i^* - x_i|^{\alpha_i}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The case d = 0

More generally, any function whose **upper-** and **lower envelopes** around x^* have the same shape: $\exists c > 0$ and $\eta > 0$, such that

$$\min(\eta, {old c}\ell(x,x^*)) \leq f(x^*) - f(x) \leq \ell(x,x^*), \hspace{1em} ext{for all } x \in \mathcal{X}.$$

has a near-optimality d = 0 (w.r.t. the metric ℓ).

▲ロト ▲圖ト ▲温ト ▲温ト

æ

Example of functions for which d = 0

$$\ell(x,y) = c \|x-y\|^2$$

・ロト ・四ト ・ヨト ・ヨト

æ

Example of functions with d = 0

$$\ell(x,y) = c ||x-y||^{1/2}$$

ヘロン ヘロン ヘヨン ヘヨン

æ

$$\ell(x,y) = c \|x - y\|^{1/2}$$

・ロト ・聞ト ・ヨト ・ヨト

э

d > 0

$$f(x) = 1 - \sqrt{x} + (-x^2 + \sqrt{x}) * (\sin(1/x^2) + 1)/2$$

The lower-envelope is of order 1/2 whereas the upper one is of order 2. We deduce that d = 3/2 and $r_n = O(n^{-2/3})$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

SOO versus DIRECT

- **SOO is much more general than DIRECT**: the function is only locally smooth and the space is semi-metric.
- Finite-time analysis of SOO
- **SOO is a rank-based algorithm**: any transformation of the values while preserving their rank will not change anything in the algorithm. Thus extends to the optimization of function givens pair-wise comparisons.

イロト 不得 トイヨト イヨト

3

Noisy evaluations

How to handle noise?

The evaluation of f at x_t is perturbed by noise:

Stochastic SOO (StoSOO)

Extends SOO to stochastic evaluations:

• Select the cells X_i (at most one per depth) according to SOO based on the UCBs:

$$\widehat{\mu}_{i,t} + c \sqrt{\frac{\log n}{T_i(t)}},$$

and get one more value $y_t = f(x_i) + \epsilon_t$ of f at x_i ,

• If $T_i(t) \ge k$, then split the cell X_i .

Remark: This really looks like UCT, except that

- several cells are selected at each round,
- a cell is split only after observing k values.

Performance of StoSOO

Theorem 3 (Valko et al., 2013).

For any semi-metric ℓ such that

- f is locally smooth w.r.t. ℓ
- The *l*-diameters of the cells decrease exponentially fast with their depth,
- The near-optimality dimension of f w.r.t. ℓ is d = 0,

by choosing $k = \frac{n}{(\log n)^3}$, $h_{\max}(n) = (\log n)^{3/2}$, the expected loss of StoSOO is

$$\mathbb{E}r_n = O\Big(\frac{(\log n)^2}{\sqrt{n}}\Big).$$

This is almost as good as HOO [Bubeck et al., 2011] and Zooming [Kleinberg et al., 2008] optimally fitted! Complementary to the adaptive-treed bandits of [Bull, 2013].

Noisy evaluations

Range of application

All illustrations are in Euclidean spaces $[0, 1]^D$ only.

But there are many other semi-metric spaces...

- Trees (games, ...)
- Graphs (social networks, ...),
- Combinatorial spaces (shortest paths problems, ...)
- Other structured spaces (policies in MDPs, ...)

We only require:

- the search space $\mathcal X$ to be equipped with a semi-metric ℓ ,
- a nested (hierarchical) partitioning of the space,
- f to satisfy a local smoothness property w.r.t. ℓ ,
- ℓ may or may not be known.

Conclusions

Provide a measure of the complexity of optimization.

This multi-scale optimistic optimization

- provides an efficient exploration of the search space by exploring the most promising areas first
- provides a natural transition from global to local search
- Performance depends on the "smoothness" of the function around the maximum w.r.t. some metric,
 - and a measure of the quantity of near-optimal solutions,
 - and our knowledge or not of this smoothness.

Thanks !!!

See the review paper

From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning.

from my web page:

http://chercheurs.lille.inria.fr/~munos/