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Learning to run a marketplace

• The learning machine 
is not a machine but 
is an organization with lots 
of people doing stuff and 
making decisions
working in the dark

How can we help?

• Goal: improve marketplace machinery such 
that its long term revenue is maximal

• Approximate goal by improving multiple 
performance measures related to all players



Learning to run a marketplace

• The learning machine 
is not a machine but 
is an organization with lots 
of people doing stuff and 
making decisions
working in the dark

How can we help?

• Goal: improve marketplace machinery such 
that its long term revenue is maximal

• Approximate goal by improving multiple 
performance measures related to all players
• Provide data for decision making
• Automatically optimize parts of the 

system



The feedback loop problem
(why exploration is necessary)

• Shifting distributions

• Data is collected when the system operates in a certain 
way.
The observed data follows a first distribution.

• Collected data is used to justify actions that change the 
operating point.
Newly observed data then follows a second distribution.

• Correlations observed on data following the first 
distribution 
do not necessarily exist in the second distribution.

• Often lead to vicious circles..



Toy example

• True conditional click probabilities

A1
(cheap jewelry)

A2
(cheap autos)

A3
(engagement rings)

Q1 (cheap diamonds) 7% 2% 9%

Q2 (news) 2% 2% 2%

Step 1: pick ads randomly.

𝐶𝑙𝑖𝑐𝑘𝑠 =
1

2

7%+ 2%+ 9%

3
+
2%+ 2%+ 2%

3
= 4%



Toy example

• Step 2: estimate click probabilities

– Build a model based on a single Boolean feature:
F1 : “query and ad have at least one word in common”

A1
(cheap jewelry)

A2
(cheap autos)

A3
(engagement rings)

Q1 (cheap diamonds) 7% 2% 9%

Q2 (news) 2% 2% 2%

𝑃 𝐶𝑙𝑖𝑐𝑘 𝐹1 =
7% + 2%

2
= 4.5%

𝑃 𝐶𝑙𝑖𝑐𝑘 ¬𝐹1 =
9%+ 2%+ 2%+ 2%

4
= 3.75%



Toy example

• Step 3: place ads according to estimated pclick.
Q1: show A1 or A2. (predicted pclick 4.5% > 3.75%)

Q2: show A1, A2, or A3. (predicted pclick 3.75%)

A1
(cheap jewelry)

A2
(cheap autos)

A3
(engagement rings)

Q1 (cheap diamonds) 7% 2% 9%

Q2 (news) 2% 2% 2%

𝐶𝑙𝑖𝑐𝑘𝑠 =
1

2

7%+ 2%

2
+
2%+ 2%+ 2%

3
= 3.25%



Toy example

• Step 4: re-estimate click probabilities with new data.

A1
(cheap jewelry)

A2
(cheap autos)

A3
(engagement rings)

Q1 (cheap diamonds) 7% 2% 9%

Q2 (news) 2% 2% 2%

𝑃 𝐶𝑙𝑖𝑐𝑘 𝐹1 =
7%+ 2%

2
= 4.5%

𝑃 𝐶𝑙𝑖𝑐𝑘 ¬𝐹1 =
2% + 2%+ 2%

3
= 2%

• We keep selecting the same inferior ads.

• Estimated click probabilities now seem more accurate.



What is going wrong?

• Adding a feature F2 that singles out the case (Q1,A3)
– would improve the pclick estimation metric.
– would rank Q1 ads more adequately.

A1 A2 A3

Q1 7% 2% 9%

Q2 2% 2% 2%

• Estimating Pclick using click data collected 
by showing random ads.

Feature F1 identifies 
relevant ads using a 

narrow criterion.

1

P(Click|¬F1) is pulled down by 
queries that do not click.

3

Ads for query Q1 are ranked incorrectly.
4

Feature F1 misses a 
very good ad for 

query Q1.

2



What is going wrong?

• Adding a feature F2
– would not improve the Pclick estimation on this data.

– would not help ranking (Q1,A3) higher.

• Further feature engineering based on this data
– would always result in eliminating more options, e.g. (Q1,A2).

– would never result in recovering lost options, e.g. (Q1,A3).

A1 A2 A3

Q1 7% 2% 9%

Q2 2% 2% 2%

• Re-estimating Pclick using click data collected by
showing ads suggested by the previous Pclick model.

In this data, A3 is never 
shown for query Q1.

𝑃(𝐶𝑙𝑖𝑐𝑘|¬𝐹1) seems 
more accurate because 
we have removed the 

case (Q1,A3)



We have created a black hole!

• (Q,A) can be occasionally sucked by the black hole.
– All kinds of events can cause ads to disappear.
– Sometimes, advertisers spend extra money to displace 

competitors.

• (Q,A) can be born in the black hole.
– Ads newly entered by advertisers
– Ads newly selected as eligible because of algorithmic 

improvements.

• Exploration

– We should sometimes show ads that we would not 
normally show in order to train the click prediction model.
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Counterfactuals, interventions, and 
randomization

Counterfactuals: Measuring something that did not happen
“How would the system have performed if, when the data was 
collected, we had intervened and used 𝑃∗ 𝐶 instead of 𝑃 𝐶 ? ”

In a randomized system, counterfactual estimation is possible
Interventions are a change in a distribution
Estimating one distribution using data generated by another distribution

Learning procedure
• Collect data that describes the operation of the system during a 

past time period.
• Find changes that would have increased the performance of the 

system if they had been applied during the data collection period.
• Implement and verify…



Markov factorization

Some variables are observed, some are not
Some factors are known, some are not
Some factors can be manipulated some can’t



Markov interventions

Many interrelated Bayes networks are born  (Pearl, 2000)

– They are interrelated because they share some factors.

– More complex algebraic interventions are of course possible.

*

*

Distribution under 
intervention



A Contextual Bandit?
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for all possible 
actions
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A Contextual Bandit?

• Context and 
potential rewards
are drawn from 
joint unknown 
distribution

• Potential reward is 
a vector of rewards 
for all possible 
actions

• Action is decided 
by policy given 
context

Context

Reward

Action

• A contextual bandit indeed
– Very large context and action space
– Structure in context, reward and policy



Importance sampling

*

*

Distribution under 
intervention

• Can we estimate the results of the intervention 
counterfactually (without actually performing the 
intervention)
– Yes if P and P* are non-deterministic (and close enough)



Importance sampling

Actual expectation

𝑌 =  
𝜔

ℓ 𝜔 𝑃(𝜔)

Counterfactual expectation

𝑌∗ =  
𝜔

ℓ 𝜔 𝑃∗(𝜔) =  
𝜔

ℓ 𝜔
𝑃∗(𝜔)

𝑃 𝜔
𝑃(𝜔)

≈
1

𝑛
 

𝑖=1

𝑛
𝑃∗(𝜔𝑖)

𝑃 𝜔𝑖
ℓ 𝜔𝑖



Importance sampling

Principle
• Reweight past examples to emulate the 

probability they would have had under the 
counterfactual distribution.

𝑤 𝜔𝑖 =
𝑃∗(𝜔𝑖)

𝑃 𝜔𝑖
=

𝑃∗(𝑞|𝑥, 𝑎)

𝑃(𝑞|𝑥, 𝑎)

• Only requires the knowledge of the factor under 
intervention (before and after)

Factors in P* not in P

Factors in P not in P*



Exploration

𝑃(𝜔) 𝑃∗(𝜔)

Quality of the estimation

• Large ratios undermine 
estimation quality.

• Confidence intervals reveal 
whether the data collection 
distribution 𝑃 𝜔 performs 
sufficient exploration to 
answer the counterfactual 
question of interest.

𝑃(𝜔) 𝑃∗(𝜔)



Confidence intervals

𝑌∗ =  
𝜔

ℓ 𝜔 𝑤 𝜔 𝑃(𝜔) ≈
1

𝑛
 

𝑖=1

𝑛

ℓ 𝜔𝑖 𝑤 𝜔𝑖

Using the central limit theorem?

• 𝑤 𝜔𝑖 very large when 𝑃(𝜔𝑖) small.

• A few samples in poorly explored regions 
dominate the sum with their noisy contributions.

• Solution: ignore them.



Confidence intervals (ii)

Zero-clipped weights

 𝑤 𝜔 =  
𝑤(𝜔) if less than 𝑅,
0 otherwise.

Easier estimate

 𝑌∗ =  
𝜔

ℓ 𝜔  𝑤 𝜔 𝑃(𝜔) ≈
1

𝑛
 

𝑖=1

𝑛

ℓ 𝜔𝑖  𝑤 𝜔𝑖



Confidence intervals (iii)

Bounding the bias

• Observe  
𝜔
𝑤 𝜔 𝑃(𝜔) =  

𝜔

𝑃∗ 𝜔

𝑃 𝜔
𝑃 𝜔 = 1.

• Assuming 0 ≤ ℓ 𝜔 ≤ 𝑀 we have

0 ≤ 𝑌∗ −  𝑌∗ =  
𝜔

𝑤 −  𝑤 ℓ(𝜔) 𝑃(𝜔) ≤ 𝑀 
𝜔

𝑤 −  𝑤 𝑃(𝜔)

= 𝑀 1 − 
𝜔

 𝑤(𝜔)𝑃(𝜔) ≈ 𝑀 1 −
1

𝑛
 

𝑖=1

𝑛

 𝑤(𝜔𝑖)

• This is easy to estimate because  𝑤(𝜔) is bounded.

• This represents what we miss because of insufficient exploration.



Two-parts confidence interval

Outer confidence interval

• Bounds    Y∗ −  Y𝑛
∗

• When this is too large, we must sample more.

Inner confidence interval

• Bounds  𝑌∗ −  𝑌∗

• When this is too large, we must explore more.



The pesky little ads again

Mainline
Sidebar



Playing with mainline reserves (ii)

Inner interval

Outer interval

Control with no 
randomization

Control with 
18% lower MLR



Playing with mainline reserves (iv)

Revenue always  
has high variance



Algorithmic toolbox

• Improving the confidence intervals:
– Exploiting causal graph for much better behaved 

weights

– Incorporating neutral predictors invariant to the 
manipulation

• Counterfactual derivatives and optimization
– Counterfactual differences

– Counterfactual derivatives

– Policy gradients

– Optimization (= learning)

• Equilibrium analysis



Shifting the reweighting point

• Users make click decisions on the basis of what they see.
• They cannot see the scores, the reserves, the prices, etc.



Shifting the reweighting point

Standard weights

𝑤 𝜔𝑖 =
𝑃∗(𝜔𝑖)

𝑃 𝜔𝑖
=

𝑃∗(𝑞|𝑥, 𝑎)

𝑃(𝑞|𝑥, 𝑎)

Shifted weights

𝑤 𝜔𝑖 =
𝑃∗(𝑠|𝑥, 𝑎, 𝑏)

𝑃(𝑠|𝑥, 𝑎, 𝑏)

with 𝑃⋄ 𝑠 𝑥, 𝑎, 𝑏 =  𝑞𝑃 𝑠 𝑎, 𝑞, 𝑏 𝑃⋄(𝑞|𝑥, 𝑎) .



Shifting the reweighting point

Experimental validation

• Mainline reserves

Score reweighting Slate reweighting



Shifting the reweighting point

When can we do this?

• 𝑃⋄(𝜔) factorizes in the right way iff

1. Reweighting variables intercept every causal path 
connecting the point(s) of intervention to the 
point of measurement.

2. All functional dependencies between the point(s) 
of intervention and the reweighting variables are 
known.



Shifting the reweighting point

• The engineering challenge:
– The factor calculating slate 

based on scores is complex 
code

– Need some way to 
calculate 𝑃(𝑠|𝑥, 𝑎, 𝑏)
automatically

• The organizational 
challenge:
– Everybody wants to change 

the slate post-hoc 



Shifting the reweighting point

• The engineering challenge:
– The factor calculating slate 

based on scores is complex 
code

– Need some way to 
calculate 𝑃(𝑠|𝑥, 𝑎, 𝑏)
automatically

• The organizational 
challenge:
– Everybody wants to change 

the slate post-hoc 

– Code path leading to the slate as 
the reweighting variable

– Symbolic algebra tracking the 
conditions leading to this code 
path

– Limit the information over which 
they can base their changes



Variance reduction 
using a neutral predictor

Hourly average click yield for two interventions

Daily effects increases 
the variance of both 

interventions.

𝑌 −
1

𝑛
 𝑦𝑖 ~ 𝒩 0,

𝜎

𝑛

Daily effects affect both interventions in similar ways!   
Can we subtract them?
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Variance reduction 
using a neutral predictor

• Which intervention works best?

• Comparing expectations under counterfactual 
distributions 𝑃+(𝜔) and 𝑃∗(𝜔).

• Predictor 𝜁(𝑥) estimates target on the basis of only the query time 𝑥.

𝑌+ − 𝑌∗ =  
𝜔

ℓ 𝜔 − 𝜁 𝜈 Δ𝑤 𝜔 𝑃 𝜔

≈
1

𝑛
 

𝑖=1

𝑛

ℓ 𝜔𝑖 − 𝜁(𝜈𝑖) Δ𝑤 𝜔𝑖

with Δ𝑤 𝜔 =
𝑃+ 𝜔

𝑃 𝜔
−

𝑃∗ 𝜔

𝑃 𝜔

Variance captured by 
predictor 𝜁 𝜈 is 

gone!
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This is true regardless of the predictor quality.
But if it is any good, var 𝑌 − 𝜁 𝑋 < var[𝑌], and 



Main messages

• There are systems in the real world that are 
too complex to easily formalize

– ML can assist humans in running these systems

• Relation between explore-exploit and 
correlation-causation

• The counterfactual framework provides a rich 
and modular framework for engineering of 
web-scale interactive learning systems


