
Learning Methods
for

Online Prediction Problems

Peter Bartlett
Statistics and EECS

UC Berkeley

Online Learning

I Repeated game:

Decision method plays at

World reveals `t ∈ L

I Aim: minimize L̂n =
n∑

t=1

`t (at).

I For example, aim to minimize regret, that is, perform well
compared to the best (in retrospect) from some class:

regret =
n∑

t=1

`t (at)−min
a∈A

n∑
t=1

`t (a)

= L̂n − L∗n.

I Data can be adversarially chosen.

Online Learning

Minimax regret is the value of the game:

min
a1

max
`1
· · ·min

an
max
`n

(
n∑

t=1

`t (at)−min
a∈A

n∑
t=1

`t (a)

)
.

Online Learning: Motivations

1. Adversarial model is appropriate for
I Computer security.
I Computational finance.

2. Adversarial model assumes little:
It is often straightforward to convert a strategy for an
adversarial environment to a method for a probabilistic
environment.

3. Studying the adversarial model sometimes reveals the
deterministic core of a statistical problem: there are strong
similarities between the performance guarantees in the two
cases, and in particular between their dependence on the
complexity of the class of prediction rules.

4. There are significant overlaps in the design of methods for
the two problems:

I Regularization plays a central role.
I Many online prediction strategies have a natural

interpretation as a Bayesian method.

Computer Security: Spam Detection

Computer Security: Spam Email Detection

I Here, the action at might be a classification rule, and `t is
the indicator for a particular email being incorrectly
classified (e.g., spam allowed through).

I The sender can determine if an email is delivered (or
detected as spam), and try to modify it.

I An adversarial model allows an arbitrary sequence.
I We cannot hope for good classification accuracy in an

absolute sense; regret is relative to a comparison class.
I Minimizing regret ensures that the spam detection

accuracy is close to the best performance in retrospect on
the particular spam sequence.

Computer Security: Spam Email Detection

I Suppose we consider features of email messages from
some set X (e.g., information about the header, about
words in the message, about attachments).

I The decision method’s action at is a mapping from X to
[0,1] (think of the value as an estimated probability that the
message is spam).

I At each round, the adversary chooses a feature vector
xt ∈ X and a label yt ∈ {0,1}, and the loss is defined as

`t (at) = (yt − at (xt))2 .

I The regret is then the excess squared error, over the best
achievable on the data sequence:

n∑
t=1

`t (at)−min
a∈A

n∑
t=1

`t (a) =
n∑

t=1

(yt−at (xt))2−min
a∈A

n∑
t=1

(yt−a(xt))2.

Computer Security: Web Spam Detection

Web Spam Challenge (www.iw3c2.org)

Computer Security: Detecting Denial of Service

ACM

Computational Finance: Portfolio Optimization

Computational Finance: Portfolio Optimization

I Aim to choose a portfolio (distribution over financial
instruments) to maximize utility.

I Other market players can profit from making our decisions
bad ones. For example, if our trades have a market impact,
someone can front-run (trade ahead of us).

I Here, the action at is a distribution on instruments, and `t
might be the negative logarithm of the portfolio’s increase,
at · rt , where rt is the vector of relative price increases.

I We might compare our performance to the best stock
(distribution is a delta function), or a set of indices
(distribution corresponds to Dow Jones Industrial Average,
etc), or the set of all distributions.

Computational Finance: Portfolio Optimization

I The decision method’s action at is a distribution on the m
instruments, at ∈ ∆m = {a ∈ [0,1]m :

∑
i ai = 1}.

I At each round, the adversary chooses a vector of returns
rt ∈ Rm

+; the i th component is the ratio of the price of
instrument i at time t to its price at the previous time, and
the loss is defined as

`t (at) = − log (at · rt) .

I The regret is then the log of the ratio of the maximum value
the portfolio would have at the end (for the best mixture
choice) to the final portfolio value:

n∑
t=1

`t (at)−min
a∈A

n∑
t=1

`t (a) = max
a∈A

n∑
t=1

log(a ·rt)−
n∑

t=1

log(at ·rt).

Online Learning: Motivations

2. Online algorithms are also effective in probabilistic settings.

I Easy to convert an online algorithm to a batch algorithm.
I Easy to show that good online performance implies good

i.i.d. performance, for example.

Online Learning: Motivations

3. Understanding statistical prediction methods.

I Many statistical methods, based on probabilistic
assumptions, can be effective in an adversarial setting.

I Analyzing their performance in adversarial settings
provides perspective on their robustness.

I We would like violations of the probabilistic assumptions to
have a limited impact.

Key Points

I Online Learning:
I repeated game.
I aim to minimize regret.
I Data can be adversarially chosen.

I Motivations:
I Often appropriate (security, finance).
I Algorithms also effective in probabilistic settings.
I Can provide insight into statistical prediction methods.

Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Converting online to batch.
I Online convex optimization.
I Log loss.

Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Bayesian interpretation
I Convex (versus linear) losses

5. Statistical prediction with a finite class.

Prediction with Expert Advice

Suppose we are predicting whether it will rain tomorrow. We
have access to a set of m experts, who each make a forecast of
0 or 1. Can we ensure that we predict almost as well as the
best expert?
Here, A = {1, . . . ,m}. There are m experts, and each has a
forecast sequence f i

1, f
i
2, . . . from {0,1}. At round t , the

adversary chooses an outcome yt ∈ {0,1}, and sets

`t (i) = 1[f i
t 6= yt] =

{
1 if f i

t 6= yt ,
0 otherwise.

Online Learning

Minimax regret is the value of the game:

min
a1

max
`1
· · ·min

an
max
`n

(
n∑

t=1

`t (at)−min
a∈A

n∑
t=1

`t (a)

)
.

L̂n =
n∑

t=1

`t (at), L∗n = min
a∈A

n∑
t=1

`t (a).

Prediction with Expert Advice

An easier game: suppose that the adversary is constrained to
choose the sequence yt so that some expert incurs no loss
(L∗n = 0), that is, there is an i∗ ∈ {1, . . . ,m} such that for all t ,
yt = f i∗

t .
How should we predict?

Prediction with Expert Advice: Halving

I Define the set of experts who have been correct so far:

Ct = {i : `1(i) = · · · = `t−1(i) = 0} .

I Choose at any element of{
i : f i

t = majority
(
{f j

t : j ∈ Ct}
)}

.

Theorem
This strategy has regret no more than log2 m.

Prediction with Expert Advice: Halving

Theorem
The halving strategy has regret no more than log2 m.

Proof.
If it makes a mistake (that is, `t (at) = 1), then the minority of
{f j

t : j ∈ Ct} is correct, so at least half of the experts are
eliminated:

|Ct+1| ≤
|Ct |
2
.

And otherwise |Ct+1| ≤ |Ct | (because |Ct | never increases).
Thus,

L̂n =
n∑

t=1

`t (at)

≤ log2
|C1|
|Cn+1|

= log2 m − log2 |Cn+1| ≤ log2 m.

Prediction with Expert Advice

The proof follows a pattern we shall see again:
find some measure of progress (here, |Ct |) that

I changes monotonically when excess loss is incurred (here,
it halves),

I is somehow constrained (here, it cannot fall below 1,
because there is an expert who predicts perfectly).

What if there is no perfect expert?
Maintaining Ct makes no sense.

Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Bayesian interpretation
I Convex (versus linear) losses

5. Statistical prediction with a finite class.

Prediction with Expert Advice: Mixed Strategies

I We have m experts.
I Allow a mixed strategy, that is, at chosen from the simplex

∆m—the set of distributions on {1, . . . ,m},

∆m =

{
a ∈ [0,1]m :

m∑
i=1

ai = 1

}
.

I We can think of the strategy as choosing an element of
{1, . . . ,m} randomly, according to a distribution at . Or we
can think of it as playing an element at of ∆m, and
incurring the expected loss,

`t (at) =
m∑

i=1

ai
t`t (ei),

where `t (ei) ∈ [0,1] is the loss incurred by expert i .
(ei denotes the vector with a single 1 in the i th coordinate,
and the rest zeros.)

Prediction with Expert Advice: Exponential Weights

I Maintain a set of (unnormalized) weights over experts:

w i
0 = 1,

w i
t+1 = w i

t exp (−η`t (ei)) .

I Here, η > 0 is a parameter of the algorithm.
I Choose at as the normalized vector,

at =
1∑m

i=1 w i
t
wt .

Prediction with Expert Advice: Exponential Weights

Theorem
The exponential weights strategy with parameter

η =

√
8 ln m

n

has regret satisfying

L̂n − L∗n ≤
√

n ln m
2

.

Exponential Weights: Proof Idea

We use a measure of progress:

Wt =
m∑

i=1

w i
t .

1. Wn grows at least as

exp

(
−ηmin

i

n∑
t=1

`t (ei)

)
.

2. Wn grows no faster than

exp

(
−η

n∑
t=1

`t (at)

)
.

Exponential Weights: Proof 1

ln
Wn+1

W1
= ln

(
m∑

i=1

w i
n+1

)
− ln m

= ln

(
m∑

i=1

exp

(
−η
∑

t

`t (ei)

))
− ln m

≥ ln

(
max

i
exp

(
−η
∑

t

`t (ei)

))
− ln m

= −ηmin
i

(∑
t

`t (ei)

)
− ln m

= −ηL∗n − ln m.

Exponential Weights: Proof 2

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t (ei))w i

t∑
i w i

t

)
≤ −η

∑
i `t (ei)w i

t∑
i w i

t
+
η2

8

= −η`t (at) +
η2

8
,

where we have used Hoeffding’s inequality:
for a random variable X ∈ [a,b] and λ ∈ R,

ln
(

EeλX
)
≤ λEX +

λ2(b − a)2

8
.

Aside: Proof of Hoeffding’s inequality

Define

A(λ) = log
(

EeλX
)

= log
(∫

eλx dP(x)

)
,

where X ∼ P. Then A is the log normalization of the
exponential family random variable Xλ with reference measure
P and sufficient statistic x . Since P has bounded support,
A(λ) <∞ for all λ, and we know that

A′(λ) = E(Xλ),

A′′(λ) = Var(Xλ).

Since P has support in [a,b], Var(Xλ) ≤ (b − a)2/4. Then a
Taylor expansion about λ = 0 (where Xλ has the same
distribution as X) gives

A(λ) ≤ λEX +
λ2

8
(b − a)2.

Exponential Weights: Proof

−ηL∗n − ln m ≤ ln
Wn+1

W1
≤ −ηL̂n +

nη2

8
.

Thus,

L̂n − L∗n ≤
ln m
η

+
ηn
8
.

Choosing the optimal η gives the result:

Theorem
The exponential weights strategy with parameter

η =
√

8 ln m/n has regret no more than
√

n ln m
2 .

Key Points

For a finite set of actions (experts):
I If one is perfect (zero loss), halving algorithm gives per

round regret of
ln m

n
.

I Exponential weights gives per round regret of

O

(√
ln m

n

)
.

Prediction with Expert Advice: Refinements

1. Does exponential weights strategy give the faster rate if
L∗ = 0?

2. Do we need to know n to set η?

Prediction with Expert Advice: Refinements

1. Does exponential weights strategy give the faster rate if
L∗ = 0?
Replace Hoeffding:

ln EeλX ≤ λEX +
λ2

8
,

with ‘Bernstein’:
ln EeλX ≤ (eλ − 1)EX .

(for X ∈ [0,1]).

Exponential Weights: Proof 2

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t (ei))w i

t∑
i w i

t

)
≤
(
e−η − 1

)
`t (at).

Thus
L̂n ≤

η

1− e−η
L∗n +

ln m
1− e−η

.

For example, if L∗n = 0 and η is large, we obtain a regret bound
of roughly ln m/n again. And η large is like the halving
algorithm (it puts roughly equal weight on all experts that have
zero loss so far).

Prediction with Expert Advice: Refinements

2. Do we need to know n to set η?

I We used the optimal setting η =
√

8 ln m/n. But can this
regret bound be achieved uniformly across time?

I Yes; using a time-varying ηt =
√

8 ln m/t gives the same
rate (worse constants).

I It is also possible to set η as a function of L∗t , the best
cumulative loss so far, to give the improved bound for small
losses uniformly across time (worse constants).

Prediction with Expert Advice: Refinements

3. We can interpret the exponential weights strategy as
computing a Bayesian posterior.
Consider f i

t ∈ [0,1], yt ∈ {0,1}, and `it = |f i
t − yt |. Then

consider a Bayesian prior that is uniform on m distributions.
Given the i th distribution, yt is a Bernoulli random variable with
parameter

e−η(1−f i
t)

e−η(1−f i
t) + e−ηf i

t
.

Then exponential weights is computing the posterior
distribution over the m distributions.

Prediction with Expert Advice: Refinements

4. We could work with arbitrary convex losses on ∆m:
We defined loss as linear in a:

`t (a) =
∑

i

ai`t (ei).

We could replace this with any bounded convex function on
∆m. The only change in the proof is an equality becomes an
inequality:

−η
∑

i `t (ei)w i
t∑

i w i
t
≤ −η`t (at).

Prediction with Expert Advice: Refinements

But note that the exponential weights strategy only competes
with the corners of the simplex:

Theorem
For convex functions `t : ∆m → [0,1], the exponential weights
strategy, with η =

√
8 ln m/n, satisfies

n∑
t=1

`t (at) ≤ min
i

n∑
t=1

`t (ei) +

√
n ln m

2
.

Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Bayesian interpretation
I Convex (versus linear) losses

5. Statistical prediction with a finite class.

Probabilistic Prediction Setting

Let’s consider a probabilistic formulation of a prediction
problem.

I There is a sample of size n drawn i.i.d. from an unknown
probability distribution P on X × Y:
(X1,Y1), . . . , (Xn,Yn).

I Some method chooses f̂ : X → Y.
I It suffers regret

E`(f̂ (X),Y)−min
f∈F

E`(f (X),Y).

I Here, F is a class of functions from X to Y.

Probabilistic Setting: Zero Loss

Theorem
If some f ∗ ∈ F has E`(f ∗(X),Y) = 0, then choosing

f̂ ∈ Cn =
{

f ∈ F : Ê`(f (X),Y) = 0
}

leads to regret that is

O
(

log |F |
n

)
.

Probabilistic Setting: Zero Loss

Proof.

Pr(E`(f̂) ≥ ε) ≤ Pr(∃f ∈ F : Ê`(f) = 0, E`(f̂) ≥ ε)
≤ |F |(1− ε)n

≤ |F |e−nε.

Integrating the tail bound Pr(E`(f̂)n/ ln |F | ≥ x) ≥ 1− e−x gives
E`(f̂) ≤ c ln |F |/n.

Probabilistic Setting

Theorem
Choosing f̂ to minimize the empirical risk, Ê`(f (X),Y), leads to
regret that is

O

(√
log |F |

n

)
.

Probabilistic Setting

Proof.
By the triangle inequality and the definition of f̂ ,
E`f̂ −minf∈F E`f ≤ 2E supf∈F

∣∣∣E`f − Ê`f
∣∣∣.

E sup
f∈F

∣∣∣E`f − Ê`f
∣∣∣ = E sup

f∈F

∣∣∣EÊ′`f − Ê`f
∣∣∣

≤ E sup
f∈F

∣∣∣∣∣1n ∑
t

εt
(
`f (X ′t ,Y

′
t)− `f (Xt ,Yt)

)∣∣∣∣∣
≤ 2E sup

f∈F

∣∣∣∣∣1n ∑
t

εt`f (Xt ,Yt)

∣∣∣∣∣
≤ 2 max

Xi ,Yi

√∑
t

`(f (Xi ,Yi))2

√
2 log |F |

n

≤ 2

√
2 log |F |

n
.

Probabilistic Setting: Key Points

For a finite function class
I If one is perfect (zero loss), choosing f̂ to minimize the

empirical risk, Ê`(f (X),Y), gives per round regret of

ln |F |
n

.

I In any case, this f̂ has per round regret of

O

(√
ln |F |

n

)
.

just as in the adversarial setting.

Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions.
5. Statistical prediction with a finite class.

I Converting online to batch.
I Online convex optimization.
I Log loss.

Online to Batch Conversion

I Suppose we have an online strategy that, given
observations `1, . . . , `t−1, produces at = A(`1, . . . , `t−1).

I Can we convert this to a method that is suitable for a
probabilistic setting? That is, if the `t are chosen i.i.d., can
we use A’s choices at to come up with a â ∈ A so that

E`1(â)−min
a∈A

E`1 (a)

is small?
I Consider the following simple randomized method:

1. Pick T uniformly from {0, . . . ,n}.
2. Let â = A(`T +1, . . . , `n).

Online to Batch Conversion

Theorem
If A has a regret bound of Cn+1 for sequences of length n + 1,
then for any stationary process generating the `1, . . . , `n+1, this
method satisfies

E`n+1(â)−min
a∈A

E`n (a) ≤ Cn+1

n + 1
.

(Notice that the expectation averages also over the
randomness of the method.)

Online to Batch Conversion

Proof.

E`n+1(â) = E`n+1(A(`T +1, . . . , `n))

= E
1

n + 1

n∑
t=0

`n+1(A(`t+1, . . . , `n))

= E
1

n + 1

n∑
t=0

`n−t+1(A(`1, . . . , `n−t))

= E
1

n + 1

n+1∑
t=1

`t (A(`1, . . . , `t−1))

≤ E
1

n + 1

(
min

a

n+1∑
t=1

`t (a) + Cn+1

)

≤ min
a

E`t (a) +
Cn+1

n + 1
.

Online to Batch Conversion

I The theorem is for the expectation over the randomness of
the method.

I For a high probability result, we could
1. Choose â = 1

n

∑n
t=1 at , provided A is convex and the `t are

all convex.
2. Choose

â = arg min
at

(
1

n − t

n∑
s=t+1

`s(at) + c

√
log(n/δ)

n − t

)
.

In both cases, the analysis involves concentration of
martingale sequences.
The second (more general) approach does not recover the
Cn/n result: the penalty has the wrong form when
Cn = o(

√
n).

Online to Batch Conversion

Key Point:
I An online strategy with regret bound Cn can be converted

to a batch method.
The regret per trial in the probabilistic setting is bounded
by the regret per trial in the adversarial setting.

Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Converting online to batch.
I Online convex optimization.

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization
5. Regret bounds

I Log loss.

Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent to minimizing latest

loss and divergence from previous decision
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions

Online Convex Optimization

I A = convex subset of Rd .
I L = set of convex real functions on A.

For example,

`t (a) = (xt · a− yt)
2.

`t (a) = |xt · a− yt |.

Online Convex Optimization: Example

Choosing at to minimize past losses,
at = arg mina∈A

∑t−1
s=1 `s(a), can fail.

(‘fictitious play,’ ‘follow the leader’)
I Suppose A = [−1,1], L = {a 7→ v · a : |v | ≤ 1}.
I Consider the following sequence of losses:

a1 = 0, `1(a) =
1
2

a,

a2 = −1, `2(a) = −a,
a3 = 1, `3(a) = a,
a4 = −1, `4(a) = −a,
a5 = 1, `5(a) = a,

...
...

I a∗ = 0 shows L∗n ≤ 0, but L̂n = n − 1.

Online Convex Optimization: Example

I Choosing at to minimize past losses can fail.
I The strategy must avoid overfitting, just as in probabilistic

settings.
I Similar approaches (regularization; Bayesian inference)

are applicable in the online setting.
I First approach: gradient steps.

Stay close to previous decisions, but move in a direction of
improvement.

Online Convex Optimization: Gradient Method

a1 ∈ A,
at+1 = ΠA (at − η∇`t (at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem
For G = maxt ‖∇`t (at)‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.

Online Convex Optimization: Gradient Method

Theorem
For G = maxt ‖∇`t (at)‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.

Example
A = {a ∈ Rd : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}.
D = 2, G ≤ 1.
Regret is no more than 2

√
n.

(And O(
√

n) is optimal.)

Online Convex Optimization: Gradient Method

Theorem
For G = maxt ‖∇`t (at)‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.

Example
A = ∆m, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.
D = 2, G ≤

√
m.

Regret is no more than 2
√

mn.
Since competing with the whole simplex is equivalent to
competing with the vertices (experts) for linear losses, this is
worse than exponential weights (

√
m versus log m).

Online Convex Optimization: Gradient Method

Proof.

Define ãt+1 = at − η∇`t (at),

at+1 = ΠA(ãt+1).

Fix a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2 ≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t (at)‖2 − 2η∇t (at) · (at − a).

By convexity,

n∑
t=1

(`t (at)− `t (a)) ≤
n∑

t=1

∇`t (at) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2

2η
+
η

2

n∑
t=1

‖∇`t (at)‖2

Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent to minimizing latest

loss and divergence from previous decision
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions

Online Convex Optimization: A Regularization Viewpoint

I Suppose `t is linear: `t (a) = gt · a.
I Suppose A = Rd .
I Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1
2
‖a‖2

)

corresponds to the gradient step

at+1 = at − η∇`t (at).

Online Convex Optimization: Regularization

Regularized minimization
Consider the family of strategies of the form:

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

The regularizer R : Rd → R is strictly convex and differentiable.

Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

I R keeps the sequence of ats stable: it diminishes `t ’s
influence.

I We can view the choice of at+1 as trading off two
competing forces: making `t (at+1) small, and keeping at+1
close to at .

I This is a perspective that motivated many algorithms in the
literature. We’ll investigate why regularized minimization
can be viewed this way.

Properties of Regularization Methods

In the unconstrained case (A = Rd), regularized minimization is
equivalent to minimizing the latest loss and the distance to the
previous decision. The appropriate notion of distance is the
Bregman divergence DΦt−1 :
Define

Φ0 = R,
Φt = Φt−1 + η`t ,

so that

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
= arg min

a∈A
Φt (a).

Bregman Divergence

Definition
For a strictly convex, differentiable Φ : Rd → R, the Bregman
divergence wrt Φ is defined, for a,b ∈ Rd , as

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a,b) is the difference between Φ(a) and the value at a of
the linear approximation of Φ about b.

Bregman Divergence

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example
For a ∈ Rd , the squared euclidean norm, Φ(a) = 1

2‖a‖
2, has

DΦ(a,b) =
1
2
‖a‖2 −

(
1
2
‖b‖2 + b · (a− b)

)
=

1
2
‖a− b‖2,

the squared euclidean norm.

Bregman Divergence

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example
For a ∈ [0,∞)d , the unnormalized negative entropy,
Φ(a) =

∑d
i=1 ai (ln ai − 1), has

DΦ(a,b) =
∑

i

(ai(ln ai − 1)− bi(ln bi − 1)− ln bi(ai − bi))

=
∑

i

(
ai ln

ai

bi
+ bi − ai

)
,

the unnormalized KL divergence.
Thus, for a ∈ ∆d , Φ(a) =

∑
i ai ln ai has

Dφ(a,b) =
∑

i

ai ln
ai

bi
.

Bregman Divergence

When the range of Φ is A ⊂ Rd , in addition to differentiability
and strict convexity, we make two more assumptions:

I The interior of A is convex,
I For a sequence approaching the boundary of A,
‖∇Φ(an)‖ → ∞.

We say that such a Φ is a Legendre function.

Bregman Divergence

Properties:
1. DΦ ≥ 0, DΦ(a,a) = 0.
2. DA+B = DA + DB.
3. Bregman projection, ΠΦ

A(b) = arg mina∈ADΦ(a,b) is
uniquely defined for closed, convex A.

4. Generalized Pythagorus: for closed, convex A,
b∗ = ΠΦ

A(b), and a ∈ A,

DΦ(a,b) ≥ DΦ(a,a∗) + DΦ(a∗,b).

5. ∇aDΦ(a,b) = ∇Φ(a)−∇Φ(b).
6. For ` linear, DΦ+` = DΦ.
7. For Φ∗ the Legendre dual of Φ,

∇Φ∗ = (∇Φ)−1 ,

DΦ(a,b) = DΦ∗(∇φ(b),∇φ(a)).

Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

I Φ∗ is Legendre.
I dom(Φ∗) = ∇Φ(int dom Φ).
I ∇Φ∗ = (∇Φ)−1.
I DΦ(a,b) = DΦ∗(∇φ(b),∇φ(a)).
I Φ∗∗ = Φ.

Legendre Dual

Example
For Φ = 1

2‖ · ‖
2
p, the Legendre dual is Φ∗ = 1

2‖ · ‖
2
q, where

1/p + 1/q = 1.

Example
For Φ(a) =

∑d
i=1 eai ,

∇Φ(a) = (ea1 , . . . ,ead)′,

so
(∇Φ)−1 (u) = ∇Φ∗(u) = (ln u1, . . . , ln ud)′,

and Φ∗(u) =
∑

i ui(ln ui − 1).

Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent to minimizing latest

loss and divergence from previous decision
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions

Properties of Regularization Methods

In the unconstrained case (A = Rd), regularized minimization is
equivalent to minimizing the latest loss and the distance
(Bregman divergence) to the previous decision.

Theorem
Define ã1 via ∇R(ã1) = 0, and set

ãt+1 = arg min
a∈Rd

(
η`t (a) + DΦt−1(a, ãt)

)
.

Then

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

`s(a) + R(a)

)
.

Properties of Regularization Methods

Proof.
By the definition of Φt ,

η`t (a) + DΦt−1(a, ãt) = Φt (a)− Φt−1(a) + DΦt−1(a, ãt).

The derivative wrt a is

∇Φt (a)−∇Φt−1(a) +∇aDΦt−1(a, ãt)

= ∇Φt (a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt)

Setting to zero shows that

∇Φt (ãt+1) = ∇Φt−1(ãt) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizes Φt .

Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained
minimization, followed by Bregman projection:

Theorem
For

at+1 = arg min
a∈A

Φt (a),

ãt+1 = arg min
a∈Rd

Φt (a),

we have

at+1 = ΠΦt
A (ãt+1).

Properties of Regularization Methods

Proof.
Let a′t+1 denote ΠΦt

A (ãt+1). First, by definition of at+1,

Φt (at+1) ≤ Φt (a′t+1).

Conversely,

DΦt (a
′
t+1, ãt+1) ≤ DΦt (at+1, ãt+1).

But ∇Φt (ãt+1) = 0, so

DΦt (a, ãt+1) = Φt (a)− Φt (ãt+1).

Thus, Φt (a′t+1) ≤ Φt (at+1).

Properties of Regularization Methods

Example
For linear `t , regularized minimization is equivalent to
minimizing the last loss plus the Bregman divergence wrt R to
the previous decision:

arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)

= ΠR
A

(
arg min

a∈Rd
(η`t (a) + DR(a, ãt))

)
,

because adding a linear function to Φ does not change DΦ.

Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent and Bregman

divergence from previous
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions

Properties of Regularization Methods: Linear Loss

We can replace `t by ∇`t (at), and this leads to an upper bound
on regret.

Theorem
Any strategy for online linear optimization, with regret satisfying

n∑
t=1

gt · at −min
a∈A

n∑
t=1

gt · a ≤ Cn(g1, . . . ,gn)

can be used to construct a strategy for online convex
optimization, with regret

n∑
t=1

`t (at)−min
a∈A

n∑
t=1

`t (a) ≤ Cn(∇`1(a1), . . . ,∇`n(an)).

Proof.
Convexity implies `t (at)− `t (a) ≤ ∇`t (at) · (at − a).

Properties of Regularization Methods: Linear Loss

Key Point:
We can replace `t by ∇`t (at), and this leads to an upper bound
on regret.
Thus, we can work with linear `t .

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as
mirror descent—taking a gradient step in a dual space:

Theorem
The decisions

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

gs · a + R(a)

)

can be written

ãt+1 = (∇R)−1 (∇R(ãt)− ηgt) .

This corresponds to first mapping from ãt through ∇R, then
taking a step in the direction −gt , then mapping back through
(∇R)−1 = ∇R∗ to ãt+1.

Regularization Methods: Mirror Descent

Proof.
For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs,

∇R(ãt) = −η
t−1∑
s=1

gs,

so ∇R(ãt+1) = ∇R(ãt)− ηgt , which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .

Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization and Bregman divergences
5. Regret bounds

I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions

Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

The regularizer R : Rd → R is strictly convex and differentiable.

Regularization Methods: Regret

Theorem
For A = Rd , regularized minimization suffers regret against any
a ∈ A of

n∑
t=1

`t (at)−
n∑

t=1

`t (a) =
DR(a,a1)− DΦn (a,an+1)

η
+

1
η

n∑
t=1

DΦt (at ,at+1),

and thus

L̂n ≤ inf
a∈Rd

(
n∑

t=1

`t (a) +
DR(a,a1)

η

)
+

1
η

n∑
t=1

DΦt (at ,at+1).

So the sizes of the steps DΦt (at ,at+1) determine the regret
bound.

Regularization Methods: Regret

Theorem
For A = Rd , regularized minimization suffers regret

L̂n ≤ inf
a∈Rd

(
n∑

t=1

`t (a) +
DR(a,a1)

η

)
+

1
η

n∑
t=1

DΦt (at ,at+1).

Notice that we can write

DΦt (at ,at+1) = DΦ∗
t
(∇Φt (at+1),∇Φt (at))

= DΦ∗
t
(0,∇Φt−1(at) + η∇`t (at))

= DΦ∗
t
(0, η∇`t (at)).

So it is the size of the gradient steps, DΦ∗
t
(0, η∇`t (at)), that

determines the regret.

Regularization Methods: Regret Bounds

Example
Suppose R = 1

2‖ · ‖
2. Then we have

L̂n ≤ L∗n +
‖a∗ − a1‖2

2η
+
η

2

n∑
t=1

‖gt‖2.

And if ‖gt‖ ≤ G and ‖a∗ − a1‖ ≤ D, choosing η appropriately
gives L̂n ≤ L∗n ≤ DG

√
n.

Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization and Bregman divergences
5. Regret bounds

I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions

Regularization Methods: Regret Bounds

Seeing the future gives small regret:

Theorem
For all a ∈ A,

n∑
t=1

`t (at+1)−
n∑

t=1

`t (a) ≤ 1
η

(R(a)− R(a1)).

Regularization Methods: Regret Bounds

Proof.
Since at+1 minimizes Φt ,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t (at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t (at+1) + η

t−1∑
s=1

`s(at) + R(at)

...

≥ η
t∑

s=1

`s(as+1) + R(a1).

Regularization Methods: Regret Bounds

Theorem
For all a ∈ A,

n∑
t=1

`t (at+1)−
n∑

t=1

`t (a) ≤ 1
η

(R(a)− R(a1)).

Thus, if at and at+1 are close, then regret is small:

Corollary
For all a ∈ A,

n∑
t=1

(`t (at)− `t (a)) ≤
n∑

t=1

(`t (at)− `t (at+1)) +
1
η

(R(a)− R(a1)) .

So how can we control the increments `t (at)− `t (at+1)?

Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent and Bregman

divergence from previous
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions

Regularization Methods: Regret Bounds

Definition
We say R is strongly convex wrt a norm ‖ · ‖ if, for all a,b,

R(a) ≥ R(b) +∇R(b) · (a− b) +
1
2
‖a− b‖2.

For linear losses and strongly convex regularizers, the dual
norm of the gradient is small:

Theorem
If R is strongly convex wrt a norm ‖ · ‖, and `t (a) = gt · a, then

‖at − at+1‖ ≤ η‖gt‖∗,

where ‖ · ‖∗ is the dual norm to ‖ · ‖:

‖v‖∗ = sup{|v · a| : a ∈ A, ‖a‖ ≤ 1}.

Regularization Methods: Regret Bounds

Proof.

R(at) ≥ R(at+1) +∇R(at+1) · (at − at+1) +
1
2
‖at − at+1‖2,

R(at+1) ≥ R(at) +∇R(at) · (at+1 − at) +
1
2
‖at − at+1‖2.

Combining,

‖at − at+1‖2 ≤ (∇R(at)−∇R(at+1)) · (at − at+1)

Hence,

‖at − at+1‖ ≤ ‖∇R(at)−∇R(at+1)‖∗ = ‖ηgt‖∗.

Regularization Methods: Regret Bounds

This leads to the regret bound:

Corollary
For linear losses, if R is strongly convex wrt ‖ · ‖, then for all
a ∈ A,

n∑
t=1

(`t (at)− `t (a)) ≤ η
n∑

t=1

‖gt‖2∗ +
1
η

(R(a)− R(a1)) .

Thus, for ‖gt‖∗ ≤ G and R(a)− R(a1) ≤ D2, choosing η
appropriately gives regret no more than 2GD

√
n.

Regularization Methods: Regret Bounds

Example
Consider R(a) = 1

2‖a‖
2, a1 = 0, and A contained in a

Euclidean ball of diameter D.
Then R is strongly convex wrt ‖ · ‖ and ‖ · ‖∗ = ‖ · ‖. And the
mapping between primal and dual spaces is the identity.
So if supa∈A ‖∇`t (a)‖ ≤ G, then regret is no more than
2GD

√
n.

Regularization Methods: Regret Bounds

Example
Consider A = ∆m, R(a) =

∑
i ai ln ai . Then the mapping

between primal and dual spaces is ∇R(a) = ln(a)
(component-wise). And the divergence is the KL divergence,

DR(a,b) =
∑

i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1 (check!).
Suppose that ‖gt‖∞ ≤ 1. Also, R(a)− R(a1) ≤ ln m, so the
regret is no more than 2

√
n ln m.

Regularization Methods: Regret Bounds

Example
A = ∆m, R(a) =

∑
i ai ln ai .

What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to
normalization, ΠR

A(ã) = ã/‖a‖1.

Regularization Methods: Regret Bounds

Notice that when the losses are linear, exponentiated gradient
is exactly the exponential weights strategy we discussed for a
finite comparison class.
Compare R(a) =

∑
i ai ln ai with R(a) = 1

2‖a‖
2,

for ‖gt‖∞ ≤ 1, A = ∆m:

O(
√

n ln m) versus O(
√

mn).

Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent and Bregman

divergence from previous
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions

Regularization Methods: Extensions

I Instead of

at+1 = arg min
a∈A

(
η`t (a) + DΦt−1(a, ãt)

)
,

we can use

at+1 = arg min
a∈A

(
η`t (a) + DΦt−1(a,at)

)
.

And analogous results apply. For instance, this is the
approach used by the first gradient method we considered.

I We can get faster rates with stronger assumptions on the
losses...

Regularization Methods: Varying η

Theorem
Define

at+1 = arg min
a∈Rd

(
n∑

t=1

ηt`t (a) + R(a)

)
.

For any a ∈ Rd ,

L̂n−
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

(
DΦt (at ,at+1) + DΦt−1(a,at)− DΦt (a,at+1)

)
.

If we linearize the `t , we have

L̂n −
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

(DR(at ,at+1) + DR(a,at)− DR(a,at+1)) .

But what if `t are strongly convex?

Regularization Methods: Strongly Convex Losses

Theorem
If `t is σ-strongly convex wrt R, that is, for all a,b ∈ Rd ,

`t (a) ≥ `t (b) +∇`t (b) · (a− b) +
σ

2
DR(a,b),

then for any a ∈ Rd , this strategy with ηt = 2
tσ has regret

L̂n −
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

DR(at ,at+1).

Strongly Convex Losses: Proof idea

n∑
t=1

(`t (at)− `t (a))

≤
n∑

t=1

(
∇`t (at) · (at − a)− σ

2
DR(a,at)

)
≤

n∑
t=1

1
ηt

(
DR(at ,at+1) + DR(a,at)− DR(a,at+1)− ηtσ

2
DR(a,at)

)
≤

n∑
t=1

1
ηt

DR(at ,at+1) +
n∑

t=2

(
1
ηt
− 1
ηt−1

− σ

2

)
DR(a,at)

+

(
1
η1
− σ

2

)
DR(a,a1).

And choosing ηt appropriately eliminates the second and third
terms.

Strongly Convex Losses

Example
For R(a) = 1

2‖a‖
2, we have

L̂n − L∗n ≤
1
2

n∑
t=1

1
ηt
‖ηt∇`t‖2 ≤

n∑
t=1

G2

tσ
= O

(
G2

σ
log n

)
.

Strongly Convex Losses

Key Point: When the loss is strongly convex wrt the regularizer,
the regret rate can be faster; in the case of quadratic R (and `t),
it is O(log n), versus O(

√
n).

Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Converting online to batch.
I Online convex optimization.
I Log loss.

I Three views of log loss.
I Normalized maximum likelihood.
I Sequential investment.
I Constantly rebalanced portfolios.

Log Loss

A family of decision problems with several equivalent
interpretations:

I Maximizing long term rate of growth in portfolio
optimization.

I Minimizing redundancy in data compression.
I Minimizing likelihood ratio in sequential probability

assignment.
See Nicolò Cesa-Bianchi and Gàbor Lugosi, Prediction,
Learning and Games, Chapters 9, 10.

Log Loss

I Consider a finite outcome space Y = {1, . . . ,m}.
I The comparison class A is a set of sequences f1, f2, . . . of

maps ft : Y t → ∆Y .
I We write ft (yt |y1, . . . , yt−1), notation that is suggestive of a

conditional probability distribution.
I The adversary chooses, at round t , a value yt ∈ Y, and the

loss function for a particular sequence f is

`t (f) = − ln(ft (yt |y1, . . . , yt−1)).

Log Loss: Notation

yn = yn
1 = (y1, . . . , yn),

fn(yn) =
n∏

t=1

ft (yt |y t−1),

an(yn) =
n∏

t=1

at (yt |y t−1).

Again, this notation is suggestive of probability distributions.
Check:

fn(yn) ≥ 0
∑

yn∈Yn

fn(yn) = 1.

Log Loss: Three applications

I Sequential probability assignment.
I Gambling/investment.
I Data compression.

Log Loss: Sequential Probability Assignment

Think of yt as the indicator for the event that it rains on day t .
Minimizing log loss is forecasting Pr(yt |y t−1) sequentially:

L∗n = inf
f∈F

n∑
t=1

ln
1

ft (yt |y t−1)

L̂n =
n∑

t=1

ln
1

at (yt |y t−1)

L∗n − L̂n = sup
f∈F

ln
fn(yn)

an(yn)
,

which is the worst ratio of log likelihoods.

Log Loss: Gambling

Suppose we are investing our initial capital C in proportions

at (1), . . . ,at (m)

across m horses. If horse i wins, it pays odds ot (i) ≥ 0. In that
case, our capital becomes Cat (i)ot (i).
Let yt ∈ {1, . . . ,m} denote the winner of race t .
Suppose that at (y |y1, . . . , yt−1) depends on the previous
winners. Then our capital goes from C to

C
n∏

t=1

at (yt |y t−1)ot (yt).

Log Loss: Gambling

Compared to a set F of experts (who also start with capital C),
the ratio of the best expert’s final capital to ours is

sup
f∈F

C
∏n

t=1 ft (yt |y t−1)ot (yt)

C
∏n

t=1 at (yt |y t−1)ot (yt)

= sup
f∈F

fn(yn)

an(yn)

= exp
(

sup
f∈F

ln
fn(yn)

an(yn)

)
.

Log Loss: Data Compression

We can identify probability distributions with codes, and view
ln p(yn) as the length (in nats) of an optimal sequentially
constructed codeword encoding the sequence yn, under the
assumption that yn is generated by p.
Then

− ln pn(yn)− inf
f∈F

(
− ln fn(yn)

)
= L̂− L∗

is the redundancy (excess length) of the code with respect to a
family F of codes.

Log Loss: Optimal Prediction

The minimax regret for a class F is

Vn(F) = inf
a

sup
yn∈Yn

ln
supf∈F fn(yn)

an(yn)
.

For a class F and n > 0, define the normalized maximum
likelihood strategy a∗ by

a∗n(yn) =
supf∈F fn(yn)∑

xn∈Yn supf∈F fn(xn)
.

Log Loss: Optimal Prediction

Theorem
1. a∗ is the unique strategy that satisfies

sup
yn∈Yn

ln
supf∈F fn(yn)

a∗n(yn)
= Vn(F).

2. For all yn ∈ Yn,

ln
supf∈F fn(yn)

a∗n(yn)
= ln

∑
xn∈Yn

sup
f∈F

fn(xn).

Log Loss: Optimal Prediction

Proof.
2. By the definition of a∗n,

ln
supf∈F fn(yn)

a∗n(yn)
= ln

∑
xn∈Yn

sup
f∈F

fn(xn).

1. For any other a, there must be a yn ∈ Yn with
an(yn) < a∗n(yn). Then

ln
supf∈F fn(yn)

an(yn)
> ln

supf∈F fn(yn)

a∗n(yn)
,

which implies the sup over yn is bigger than its value for a∗.

Log Loss: Optimal Prediction

How do we compute the normalized maximum likelihood
strategy?

a∗n(yn) =
supf∈F fn(yn)∑

xn∈Yn supf∈F fn(xn)
.

This a∗n is a probability distribution on Yn. We can calculate it
sequentially via

a∗t (yt |y t−1) =
a∗t (y t)

a∗t−1(y t−1)
,

where
a∗t (y t) =

∑
yn

t+1∈Yn−t

a∗n(yn).

Log Loss: Optimal Prediction

I In general, these are big sums.
I The normalized maximum likelihood strategy does not

exist if we cannot sum supf∈F fn(xn) over xn ∈ Y\.
I We need to know the horizon n: it is not possible to extend

the strategy for n − 1 to the strategy for n.
I In many cases, there are efficient strategies that

approximate the performance of the optimal (normalized
maximum likelihood) strategy.

Log Loss: Minimax Regret

Example
Suppose |F | = m. Then we have

Vn(F) = ln
∑

yn∈Yn

sup
f∈F

fn(yn)

≤ ln
∑

yn∈Yn

∑
f∈F

fn(yn)

= ln
∑
f∈F

∑
yn∈Yn

fn(yn)

= ln N.

Log Loss: Minimax Regret

Example
Consider the class F of all constant experts:

ft (y |y t−1) = ft (y).

For |Y| = 2,

Vn(F) =
1
2

ln n +
1
2

ln
π

2
+ o(1).

Minimax Regret: Proof Idea

Vn(F) = ln
∑

yn∈Yn

sup
f∈F

fn(yn).

Suppose that f (1) = q, f (0) = 1− q. Clearly, fn(yn) depends
only on the number n1 of 1s in yn, and it’s easy to check that
the maximizing value of q is n1/n, so

sup
f∈F

fn(yn) = max
q

(1− q)n−n1qn1 =

(
n − n1

n

)n−n1 (n1

n

)n1
.

Thus (using Stirling’s approximation),

Vn(F) = ln
n−1∑
n1=1

(
n
n1

)(
n − n1

n

)n−n1 (n1

n

)n1

...

= ln

(
(1 + o(1))

√
nπ
2

)
.

Log Loss

I Three views of log loss.
I Normalized maximum likelihood.
I Sequential investment.
I Constantly rebalanced portfolios.

Sequential Investment

Suppose that we have n financial instruments (let’s call them
1,2, . . . ,n), and at each period we need to choose how to
spread our capital. We invest a proportion pi in instrument i
(with pi ≥ 0 and

∑
i pi = 1). During the period, the value of

instrument i increases by a factor of xi ≥ 0 and so our wealth
increases by a factor of

p′x =
n∑

i=1

pixi .

For instance, x1 = 1 and x2 ∈ {0,2} corresponds to a choice
between doing nothing and placing a fair bet at even odds.

Asymptotic growth rate optimality of logarithmic utility

Logarithmic utility has the attractive property that, if the vectors
of market returns X1,X2, . . .Xt , . . . are random, then maximizing
expected log wealth leads to the optimal asymptotic growth
rate.
We’ll illustrate with a simple example, and then state a general
result. Suppose that we are betting on two instruments many
times. Their one-period returns (that is, the ratio of the
instrument’s value after period t to that before period t) satisfy

Pr(Xt ,1 = 1) = 1,
Pr(Xt ,2 = 0) = p,
Pr(Xt ,2 = 2) = 1− p.

Clearly, one is risk free, and the other has two possible
outcomes: complete loss of the investment, and doubling of the
investment.

Asymptotic growth rate optimality of logarithmic utility

For instance, suppose that we start with wealth at t = 0 of
V0 > 0, and 0 < p < 1. If we bet all of our money on instrument
2 at each step, then after T rounds we end up with expected
wealth of

EVT = (2(1− p))T V0,

and this is the maximum value of expected wealth over all
strategies. But with probability one, we will eventually have
wealth zero if we follow this strategy. What should we do?

Asymptotic growth rate optimality of logarithmic utility

Suppose that, for period t , we bet a fraction bt of our wealth on
instrument 2. Then if we define

Wt = 1[Xt ,2 = 2] (that is, we win the bet),

then we have

Vt+1 = (1 + bt)
Wt (1− b)1−Wt Vt .

Consider the asymptotic growth rate of wealth,

G = lim
T→∞

1
T

log2
VT

V0
.

(This extracts the exponent.)

Asymptotic growth rate optimality of logarithmic utility

By the weak law of large numbers, we have

G = lim
T→∞

(
1
T

T∑
t=1

(Wt log2(1 + bt) + (1−Wt) log2(1− bt))

)

= lim
T→∞

(
1
T

T∑
t=1

((1− p) log2(1 + bt) + p log2(1− bt))

)
.

For what values of bt is this maximized? Well, the concavity of
log2, together with Jensen’s inequality, implies that, for all
xi ≥ 0 with

∑
i xi = x ,

max
∑

xi log yi

s.t.
∑

yi = y

has the solution yi = xiy/x . Thus, we should set bt = 1− 2p.

Asymptotic growth rate optimality of logarithmic utility

That is, if we choose the proportion bt to allocate to each
instrument so as to maximize the expected log return,

((1− p) log2(1 + bt) + p log2(1− bt)) ,

then we obtain the optimal exponent in the asymptotic growth
rate, which is

G = (1− p) log2(2(1− p)) + p log2(2p).

Notice that if p is strictly less than 1/2, G > 0. That is, we have
exponential growth. Compare this with the two individual
alternatives: choosing instrument 1 gives no growth, whereas
choosing instrument 2 gives expected wealth that grows
exponentially, but it leads to ruin, almost surely.

Asymptotic growth rate optimality of logarithmic utility

This result was first pointed out by Kelly [5]. Kelly viewed p as
the probability that a one-bit message containing the future
outcome Xt was transmitted through a communication channel
incorrectly, and then the optimal exponent G is equal to the
channel capacity,

G = 1−
(

(1− p) log2
1

1− p
+ p log2

1
p

)
.

Asymptotic growth rate optimality of logarithmic utility

Maximizing expected log return is asymptotically optimal much
more generally. To define the general result, suppose that, in
period t , we need to distribute our wealth over m instruments.
We allocate proportion bt ,i to the i th, and assume the bt ∈ ∆m,
the m-simplex. Then, if the period t returns are
Xt ,1, . . . ,Xt ,m ≥ 0, the yield per dollar invested is bt · Xt , so that
our initial capital of Vt becomes

Vt+1 = Vtbt · Xt .

By a strategy, we mean a sequence of functions {bt} which, at
time t , uses the allocation bt (X1, . . . ,Xt−1) ∈ ∆m.

Asymptotic growth rate optimality of logarithmic utility

Definition
If Xt ∈ Rm

+ denotes the random returns of m instruments during
period t , we say that strategy b∗ is log-optimal if

b∗t (X0, . . . ,Xt−1) = arg max
b∈∆m

E [log(b · Xt)|X0, . . . ,Xt−1] .

Asymptotic growth rate optimality of logarithmic utility

Breiman [3] proved the following result for i.i.d. discrete-valued
returns; Algoet and Cover [1] proved the general case.

Theorem
Suppose that the log-optimal strategy b∗ has capital growth
V0,V ∗1 , . . . ,V

∗
T over T periods and some strategy b has capital

growth V0,V1, . . . ,VT . Then almost surely

lim sup
T→∞

1
T

log
VT

V ∗T
≤ 0.

In particular, if the returns are i.i.d., then in each period the
optimal strategy (at least, optimal to first order in the exponent)
allocates its capital according to some fixed mixture b∗ ∈ ∆m.
This mixture is the one that maximizes the expected logarithm
of the one-period yield.

Asymptotic growth rate optimality of logarithmic utility

This is an appealing property: if we are interested in what
happens asymptotically, then we should use log as a utility
function, and maximize the expected log return during each
period.

Constantly rebalanced portfolios

A constantly rebalanced portfolio (CRP) is an investment
strategy defined by a mixture vector b ∈ ∆m. At every time
step, it allocates proportion bj of the total capital to instrument j .
We have seen that, for i.i.d. returns, the asymptotic growth rate
is maximized by a particular CRP. The Dow Jones Industrial
Average measures the performance of another CRP (the one
that allocates one thirtieth of its capital to each of thirty stocks).
Investing in a single stock is another special case of a CRP. (As
an illustration of the benefits provided by rebalancing, consider
an i.i.d. market with two instruments and return vectors chosen
uniformly from {(2,1/2), (1/2,2)}. Investing in any single
instrument leads to a growth rate of 0, whereas a (1/2,1/2)
CRP will have wealth that increases by a factor of 5/4 in each
period.)

Constantly rebalanced portfolios

Now that we’ve motivated CRPs, we’ll drop all probabilistic
assumptions and move back to an online setting. Suppose that
the market is adversarial (a reasonable assumption), and
consider the problem of competing with the best CRP in
hindsight. That is, at each step t we must choose an allocation
of our capital bt so that, after T rounds, the logarithm of our
wealth is close to that of the best CRP.

Constantly rebalanced portfolios

The following theorem is due to Cover [4] (the proof we give is
due to Blum and Kalai [2]). It shows that there is a universal
portfolio strategy, that is, one that competes with the best CRP.

Theorem
There is a strategy (call it bU) for which

log(VT) ≥ log(VT (b∗))− (m − 1) log(T + 1)− 1,

where b∗ is the best CRP.
The strategy is conceptually very simple. It involves distributing
capital uniformly across all CRPs at each period.

Constantly rebalanced portfolios

Consider competing with the m single instrument portfolios. We
could just place our money uniformly across the m instruments
at the start, and leave it there. Then we have

log(VT) = log

 m∑
j=1

T∏
t=1

Xt ,j(V0/m)

≥ max

j
log

(
T∏

t=1

Xt ,j(V0/m)

)

= max
j

log

(
T∏

t=1

Xt ,jV0

)
− log(m),

that is, our regret with respect to the best single instrument
portfolio (in hindsight) is no more than log m.

Constantly rebalanced portfolios

To compete with the set of CRPs, we adopt a similar strategy:
we allocate our capital uniformly over ∆m, and then calculate
the mixture bt that corresponds at time t to this initial
distribution. Consider an infinitesimal region around a point
b ∈ ∆m. If µ is the uniform measure on ∆m, the initial
investment in CRP b is dµ(b)V0. By time t − 1, this has grown
to Vt−1(b)dµ(b)V0, and so this is the contribution to the overall
mixture bt . And of course we need to appropriately normalize
(by the total capital at time t − 1):

bt =

∫
∆m

bVt−1(b)dµ(b)∫
∆m

Vt−1(b)dµ(b)
.

Constantly rebalanced portfolios

How does this strategy perform? Suppose that b∗ is the best
CRP in hindsight. Then the region around b∗ contains very
similar mixtures, and provided that there is enough volume of
sufficiently similar CRPs, our strategy should be able to
compete with b∗. Indeed, consider the set of mixtures of b∗ with
some other vector a ∈ ∆m,

S = {(1− ε)b∗ + εa : a ∈ ∆m}.

For every b ∈ S, we have

V1(b)

V0
=

V1((1− ε)b∗ + εa)

V0
≥ (1− ε)V1(b∗)

V0
.

Thus, after T steps,

VT (b)

VT (b∗)
≥ (1− ε)T .

Constantly rebalanced portfolios

Also, the proportion of initial wealth allocated to CRPs in S is

µ(S) = µ({εa : a ∈ ∆m}) = εm−1.

Combining these two facts, we have that

log
(

VT (bU)

VT (b∗)

)
≥ log

(
(1− ε)T εm−1

)
.

Setting ε = 1/(T + 1) gives a regret of

log
(

(1− 1/(T + 1))T (T + 1)−(m−1)
)
> −1−(m−1) log(T +1).

Constantly rebalanced portfolios

There are other approaches to portfolio optimization based on
the online prediction strategies that we have seen earlier. For
instance, the exponential weights algorithm can be used in this
setting, although it leads to

√
T regret, rather than log T . Also,

gradient descent approaches have also been investigated. For
a Newton update method, logarithmic regret bounds have been
proved.

Paul H. Algoet and Thomas M. Cover.
Asymptotic optimality and asymptotic equipartition
properties of log-optimum investment.
The Annals of Probability, 16(2):876–898, 1988.

Avrim Blum and Adam Kalai.
Universal portfolios with and without transaction costs.
Machine Learning, 35:193–205, 1999.

Leo Breiman.
Optimal gambling systems for favorable games.
In Proc. Fourth Berkeley Symp. Math. Statist. Probab.,
volume 1, pages 60–77. Univ. California Press, 1960.

Thomas M. Cover.
Universal portfolios.
Mathematical Finance, 1(1):1–29, 1991.

Jr. J. L. Kelly.
A new interpretation of information rate.
J. Oper. Res. Soc., 57:975–985, 1956.

Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Converting online to batch.
I Online convex optimization.
I Log loss.

