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MOTIVATION [1]

~ n
Want to solve Ordinary Least Squares (OLS): 6, = arg min, % Sy — 07x)?
i=1
Complexity

o O(d?) using the Sherman-Morrison lemma or

o O(d?8%7) using the Strassen algorithm or O(d?37°) the
Coppersmith-Winograd algorithm

What we propose: Use online gradient descent (GD) to estimate 8;
Why:

o Efficient with complexity of only O(d) (Well-known)

o High probability bounds with explicit constants can be derived (not fully
known)
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MOTIVATION [2]

A TYPICAL LINEAR BANDIT ALGORITHM

Given: arms x in a compact subset D of R,
Forn=1,2,...do

StEP | Compute an OLS estimate 0, based on arms x; chosen and
losses y;seensofar,i=1,...,n—1

STep 2 Construct an ellipsoid B2 centered at 6;

STEP 3 Choose x, that gives the minimum estimated loss over B2
STEP 4 Observe the reward y,,.
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MOTIVATION [2]

A TYPICAL LINEAR BANDIT ALGORITHM

Given: arms x in a compact subset D of RY.
Forn=1,2,...do

StEP | Compute an OLS estimate 0, based on arms x; chosen and
losses y;seensofar,i=1,...,n—1

STep 2 Construct an ellipsoid B2 centered at 6;
STEP 3 Choose x, that gives the minimum estimated loss over B2
STEP 4 Observe the reward y,,.

OUR CONTRIBUTION

Use online GD in Step 1 and study the impact on regret performance:

STRONGLY-CONVEX ARMS no impact on regret (barring log-factors) vis-a-vis
PEGE algorithm

NON-STRONGLY CONVEX ARMS O (n1 /5) deterioration of the regret vis-a-vis
ConfidenceBall algorithm
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OUTLINE

o BANDITS WITH STRONGLY CONVEX ARMS
@ Random online algorithm for OLS
@ Regret bounds

9 BANDITS WITH NON-STRONGLY CONVEX ARMS
@ Random online-regularized algorithm
@ Regret bounds

© CONCLUSIONS

5/19



Bandits with strongly convex arms

OUTLINE

@ BANDITS WITH STRONGLY CONVEX ARMS
@ Random online algorithm for OLS
@ Regret bounds
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Bandits with strongly convex arms Random online algorithm for OLS

RANDOM ONLINE ALGORITHM

Pick a sample (Xx;,, y;,) uniformly randomly from the set {(x1, y1),
Update the iterate 6, as
On = On—1 + n(¥i, — Op—1Xi,)Xi,-
We assume:
(A1) Boundedness of xp, i.e., sup, [|Xa|, < 1.
(A2) The noise {&,}isi.i.d. and [&,] < 1,Vn.

n—1
(A3) Forall n, Amin <‘5 3 x,-x,T> > pd
i=1

4\min(+) denotes the smallest eigenvalue of a matrix.

vy (Xn, )+

(1)
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Bandits with strongly convex arms Random online algorithm for OLS

ERROR BOUND

With v, = ¢/n and c > 1/(2u), we have, for any é > 0,
[Kuo [0 =], .y
1
< >1-9.
P( S pthoag+ ( me m )|t @

hy(n) hides log factors, K, . depends on x and ¢

-0,

By averaging the iterates, the dependency on p can be removed while
obtaining optimal rate of convergence.

8/19



Bandits with strongly convex arms Regret bounds

APPLICATION TO BANDITS'

o Arms x, evolve in a set D ¢ RY such that a basis {by, ..., by} € D for RY
is known

o Losses y, = In(x,) satisfy E[I,(xn)| Xn] = X;0*
o Aim: minimise the expected cumulative regret:

n
_ T * H T )k
R,,—ZX,H )r(Téllr;XG

i=1

o Assume: the "best action” function G(¢) := argmin,_5{6},,x} is smooth

"Rusmevichientong, Paat, and John N. Tsitsiklis. “Linearly parameterized bandits”.

Mathematics of Operations Research, 2010.
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Bandits with strongly convex arms Regret bounds

PEGE ALGORITHM WITH ONLINE GD

INPUT AND INITIALISATION
Get a basis {by,...,by} € D for RY.
_ 4d _
Setc = -7 BEN and 6y = 0.
Form=1,2,...do
EXPLORATION PHASE
Forn=(m—1)dto md — 1
@ Choose arm X, = b mod mg @and observe y,.
@ Update 6 as follows: 6, = 01 + <((y; — 0},_1X;)X;), where
ji~u(,....n).
EXPLOITATION PHASE
Find x = G(0ng) := argmin, p{0] 4X}.
Choose arm x m times consecutively.
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Bandits with strongly convex arms Regret bounds

REGRET BOUND

We require the following extra assumptions from [Rusmevichientong 2010]
(A37) Abasis {bi,...,bg} € Dfor RY is made known to the algorithm.
(A4) The function G :  — argmin, . {0"x} is J-Lipschitz.

THEOREM

Under (A1), (A2), (A3’), and (A4), the cumulative regret R, satisfies

Rn < Ci(10" [l + 107l ") ha(n)dn'/2,

where constant Cy depends on )\min(ZL bib}) and J, and hs hides log
factors.
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Bandits with non-strongly convex arms

OUTLINE

e BANDITS WITH NON-STRONGLY CONVEX ARMS
@ Random online-regularized algorithm
@ Regret bounds
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Bandits with non-strongly convex arms Random online-regularized algorithm

ADAPTIVE REGULARIZATION

Problem: In many setting, Amin(As) > 1 may not hold.
Solution: adaptively regularize with A,

~ 1< >
O 1= argmin = ;(}’i — 07x)% + An [16]l3

RANDOM ONLINE-REGULARIZED ALGORITHM

Shadow the solutions @, more and more closely as n — oo using 6, as:

On = On—1 + va((¥i, — O7,_1Xi,)Xi, — Anbn—1), Where ip ~U(1,...,n).

@)

v
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Bandits with non-strongly convex arms Random online-regularized algorithm

ERROR BOUND

For the bandit application, we need to bound 6, — #* in the A, norm, where
lz‘l7 - :E::;l;}1 )(;)(;T '+_ ’7/\,7/(].

THEOREM

Under (A1)-(A2), with 6, = 0 and step-sizes v, = n—i with ¢ > 21_u and

regularisation parameter A, = p/n'~%, with o € (1/2,1), we have for any
0>0

P (160~ 6" lla,2 < sn+ ) 21 =6,

K 1 Co~ ha(n hi(n
where rn = 4/ n2§f1 log 5+ (ﬁ + 1/’8—; + n_;/(4+)1/2 + na151/)2> , Co» bounds

2
160%(|,, ho(n) = 2(v/Ban~>'* + 1) and 8, = max (128dlog nlog ?, (g log ?) ) .
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Bandits with non-strongly convex arms Regret bounds

CONFIDENCEBALL WITH ONLINE GD 2

Input and Initialisation
Choose 1 and ¢ so that uc > 1/2, « € (1/2,1) and set 6y = 0.

Forn=1,2,...do
O Construct ellipsoid B2 = {v IV — Ol 2 < Fn+ ,3;}

@ Choose x, that gives the minimum estimated loss over B2, i.e.,
Xp = argmin, ., min, gz V'x

© Observe loss y;.

@ Update 6, using random online-regularized algorithm:

On = On—1 + cn~*((Vi, — O5_1X,)X;, — N~ 0p_1)

2Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade. "Stochastic Linear
Optimization under Bandit Feedback.” COLT. 2008.
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Bandits with non-strongly convex arms Regret bounds

REGRET BOUND

Assuming an upper bound, Cy-, for ||0*||, is known and under (A1), (A2), and
(A4’), with v, = ¢/n* and \, = u/n'~* where o = 4/5, the cumulative regret
Ry satisfies

Rr <2dVInT T'/2+1/5 wp.1 — 6.

Note:

@ A vanilla confidence ball algorithm has a complexity O(nd?) per time
step, whereas our proposed enhancement has complexity O(nd).
@ However, this comes at a loss of n'/% in the regret R,,.
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Conclusions

OUTLINE

© CONCLUSIONS
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Conclusions

CONCLUSIONS

o We proposed two schemes with randomisation for solving least squares
o The first algorithm assumed strong convexity, while second uses adaptive
regularisation.
o We provide bounds on the error both in expectation and high probability
o We apply our schemes to the linear bandit algorithms PEGE and
ConfidenceBall
o In both settings, there is a significant gains in complexity.
o While there is no loss in regret for PEGE, in the ConfidenceBall algorithm
there is a deterioration of O(n'/%) in the regret.
o Future work:
o Whether the gap in the regret bound for ConfidenceBall algorithm can be
eliminated?
o Experiments on news-feed application - coming soon!
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