Online gradient descent for least squares regression: Non-asymptotic bounds and application to bandits

Prashanth. L.A.

INRIA Lille - Nord Europe, Team SequeL

September, 2013

Joint work with Nathaniel Korda and Rémi Munos, INRIA Lille - Nord Europe, Team SequeL Want to solve Ordinary Least Squares (OLS): $\hat{\theta}_n = \arg \min_{\theta} \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$ Complexity

- $O(d^2)$ using the Sherman-Morrison lemma or
- *O*(*d*^{2.807}) using the Strassen algorithm or *O*(*d*^{2.375}) the Coppersmith-Winograd algorithm

What we propose: Use online gradient descent (GD) to estimate $\hat{\theta}_t$ Why:

- Efficient with complexity of only O(d) (Well-known)
- High probability bounds with explicit constants can be derived (not fully known)

MOTIVATION [2]

A TYPICAL LINEAR BANDIT ALGORITHM

Given: arms x in a compact subset D of \mathbb{R}^d . For n = 1, 2, ... **do**

- **STEP 1** Compute an OLS estimate $\hat{\theta}_n$ based on arms x_i chosen and losses y_i seen so far, i = 1, ..., n 1
- **STEP 2** Construct an ellipsoid B_n^2 centered at $\hat{\theta}_t$
- **STEP 3** Choose x_n that gives the minimum estimated loss over B_n^2
- **STEP 4** Observe the reward y_n .

A TYPICAL LINEAR BANDIT ALGORITHM

Given: arms x in a compact subset D of \mathbb{R}^d . For n = 1, 2, ... **do**

- **STEP 1** Compute an OLS estimate $\hat{\theta}_n$ based on arms x_i chosen and losses y_i seen so far, i = 1, ..., n 1
- **STEP 2** Construct an ellipsoid B_n^2 centered at $\hat{\theta}_t$
- **STEP 3** Choose x_n that gives the minimum estimated loss over B_n^2
- **STEP 4** Observe the reward y_n .

OUR CONTRIBUTION

Use online GD in Step 1 and study the impact on regret performance:

STRONGLY-CONVEX ARMS no impact on regret (barring log-factors) vis-a-vis PEGE algorithm

Non-strongly convex arms $O(n^{1/5})$ deterioration of the regret vis-a-vis ConfidenceBall algorithm

BANDITS WITH STRONGLY CONVEX ARMS

- Random online algorithm for OLS
- Regret bounds

BANDITS WITH NON-STRONGLY CONVEX ARMS

- Random online-regularized algorithm
- Regret bounds

OUTLINE

BANDITS WITH STRONGLY CONVEX ARMS

- Random online algorithm for OLS
- Regret bounds

2 BANDITS WITH NON-STRONGLY CONVEX ARMS

- Random online-regularized algorithm
- Regret bounds

RANDOM ONLINE ALGORITHM

Pick a sample (x_{i_n}, y_{i_n}) uniformly randomly from the set $\{(x_1, y_1), \dots, (x_n, y_n)\}$. Update the iterate θ_n as

$$\theta_n = \theta_{n-1} + \gamma_n (\mathbf{y}_{i_n} - \theta_{n-1}^{\mathsf{T}} \mathbf{x}_{i_n}) \mathbf{x}_{i_n}.$$
(1)

1.

We assume:

(A1) Boundedness of
$$x_n$$
, i.e., $\sup_n ||x_n||_2 \le 1$
(A2) The noise $\{\xi_n\}$ is i.i.d. and $|\xi_n| \le 1, \forall n$.
(A3) For all n , $\lambda_{\min}\left(\frac{1}{n}\sum_{i=1}^{n-1} x_i x_i^{\mathsf{T}}\right) \ge \mu^{a}$.

 $a_{\lambda_{\min}}(\cdot)$ denotes the smallest eigenvalue of a matrix.

Error bound

THEOREM

With $\gamma_n = c/n$ and $c > 1/(2\mu)$, we have, for any $\delta > 0$,

$$P\left(\left\|\theta_n - \hat{\theta}_n\right\|_2 \le \sqrt{\frac{K_{\mu,c}}{n}\log\frac{1}{\delta}} + \left(\frac{\left\|\theta_0 - \hat{\theta}_0\right\|_2}{n^{\mu c}} + \frac{h_1(n)}{\sqrt{n}}\right)\right) \ge 1 - \delta.$$
 (2)

 $h_1(n)$ hides log factors, $K_{\mu,c}$ depends on μ and c

By averaging the iterates, the dependency on μ can be removed while obtaining optimal rate of convergence.

Rearet bounds

APPLICATION TO BANDITS¹

- Arms x_n evolve in a set $\mathcal{D} \subset \mathbb{R}^d$ such that a basis $\{b_1, \ldots, b_d\} \in \mathcal{D}$ for \mathbb{R}^d is known
- Losses $y_n = I_n(x_n)$ satisfy $E[I_n(x_n) | x_n] = x_n^T \theta^*$
- Aim: minimise the expected cumulative regret:

$$\mathbf{R}_n = \sum_{i=1}^n \mathbf{x}_i^{\mathsf{T}} \theta^* - \min_{\mathbf{x} \in \mathcal{D}} \mathbf{x}^{\mathsf{T}} \theta^*$$

• Assume: the "best action" function $G(\theta) := \arg \min_{x \in D} \{\theta_{md}^{\mathsf{T}} x\}$ is smooth

¹Rusmevichientong, Paat, and John N. Tsitsiklis. "Linearly parameterized bandits". Mathematics of Operations Research, 2010.

PEGE ALGORITHM WITH ONLINE GD

INPUT AND INITIALISATION

Get a basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d . Set $c = \frac{4d}{3\lambda_{\min}(\sum_{i=1}^d b_i b_i^T)}$ and $\theta_0 = 0$.

EXPLORATION PHASE

EXPLOITATION PHASE

Find $x = G(\theta_{md}) := \arg \min_{x \in D} \{\theta_{md}^{\mathsf{T}} x\}.$ Choose arm x m times consecutively.

REGRET BOUND

We require the following extra assumptions from [Rusmevichientong 2010]

(A3') A basis $\{b_1, \ldots, b_d\} \in \mathcal{D}$ for \mathbb{R}^d is made known to the algorithm.

(A4) The function $G: \theta \to \arg\min_{x \in \mathcal{D}} \{\theta^{\mathsf{T}}x\}$ is *J*-Lipschitz.

THEOREM

Under (A1), (A2), (A3'), and (A4), the cumulative regret R_n satisfies

$$R_n \leq C_1(\|\theta^*\|_2 + \|\theta^*\|_2^{-1})h_3(n)dn^{1/2},$$

where constant C_1 depends on $\lambda_{\min}(\sum_{i=1}^d b_i b_i^T)$ and J, and h_3 hides log factors.

OUTLINE

BANDITS WITH STRONGLY CONVEX ARMS

- Random online algorithm for OLS
- Regret bounds

BANDITS WITH NON-STRONGLY CONVEX ARMS

- Random online-regularized algorithm
- Regret bounds

ADAPTIVE REGULARIZATION

Problem: In many setting, $\lambda_{\min}(\bar{A}_n) \ge \mu$ may not hold. Solution: adaptively regularize with λ_n

$$\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \lambda_n \|\theta\|_2^2$$

RANDOM ONLINE-REGULARIZED ALGORITHM

Shadow the solutions $\tilde{\theta}_n$ more and more closely as $n \to \infty$ using θ_n as:

$$\theta_n = \theta_{n-1} + \gamma_n((y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} - \lambda_n \theta_{n-1}), \text{ where } i_n \sim \mathcal{U}(1, \dots, n).$$
(3)

Error bound

For the bandit application, we need to bound $\theta_n - \theta^*$ in the A_n norm, where $A_n = \sum_{i=1}^{n-1} x_i x_i^{\mathsf{T}} + n \lambda_n I_d$.

THEOREM

Under (A1)-(A2), with $\theta_0 = 0$ and step-sizes $\gamma_n = \frac{c}{n^{\alpha}}$ with $c > \frac{1}{2\mu}$ and regularisation parameter $\lambda_n = \mu/n^{1-\alpha}$, with $\alpha \in (1/2, 1)$, we have for any $\delta > 0$

$$P\left(\|\theta_n-\theta^*\|_{A_n,2}\leq\kappa_n+\beta'_n\right)\geq 1-\delta,$$

where
$$\kappa_n = \sqrt{\frac{K_{\mu,c}}{n^{2\alpha-1}}\log\frac{1}{\delta}} + \left(\frac{C_{\theta^*}}{\sqrt{n}} + \sqrt{\frac{\beta_n}{n}} + \frac{h_2(n)}{n^{-\alpha/4+1/2}} + \frac{h_1(n)}{n^{\alpha-1/2}}\right), C_{\theta^*} \text{ bounds}$$

 $\|\theta^*\|_2, h_2(n) = 2(\sqrt{\beta_n}n^{-\alpha/4} + 1) \text{ and } \beta_n = \max\left(128d\log n\log\frac{n^2}{\delta}, \left(\frac{8}{3}\log\frac{n^2}{\delta}\right)^2\right).$

Regret bounds

CONFIDENCEBALL WITH ONLINE GD²

Input and Initialisation

Choose μ and c so that $\mu c > 1/2$, $\alpha \in (1/2, 1)$ and set $\theta_0 = 0$.

For *n* = 1, 2, . . . do

- Construct ellipsoid $B_n^2 = \left\{ \mathbf{v} : \|\mathbf{v} \theta_t\|_{A_n, 2} \le \kappa_n + \beta'_n \right\}$
- Obcose x_n that gives the minimum estimated loss over B_n^2 , i.e., $x_n = \arg \min_{x \in D} \min_{v \in B_n^2} v^{\mathsf{T}} x$
- Observe loss y_t.
- **Output** Update θ_n using random online-regularized algorithm:

$$\theta_n = \theta_{n-1} + cn^{-\alpha}((y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} - \mu n^{\alpha-1} \theta_{n-1})$$

²Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade. "Stochastic Linear Optimization under Bandit Feedback." COLT. 2008.

REGRET BOUND

THEOREM

Assuming an upper bound, C_{θ^*} , for $\|\theta^*\|_2$ is known and under (A1), (A2), and (A4'), with $\gamma_n = c/n^{\alpha}$ and $\lambda_n = \mu/n^{1-\alpha}$ where $\alpha = 4/5$, the cumulative regret R_T satisfies

$$R_T \leq 2d\sqrt{\ln T} T^{1/2+1/5} w.p.1 - \delta.$$

Note:

- A vanilla confidence ball algorithm has a complexity O(nd²) per time step, whereas our proposed enhancement has complexity O(nd).
- However, this comes at a loss of $n^{1/5}$ in the regret R_n .

OUTLINE

BANDITS WITH STRONGLY CONVEX ARMS

- Random online algorithm for OLS
- Regret bounds

D BANDITS WITH NON-STRONGLY CONVEX ARMS

- Random online-regularized algorithm
- Regret bounds

CONCLUSIONS

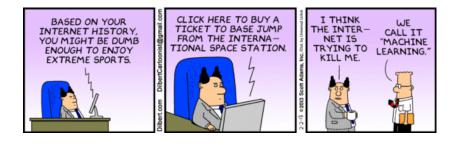
- We proposed two schemes with randomisation for solving least squares
 - The first algorithm assumed strong convexity, while second uses adaptive regularisation.
 - We provide bounds on the error both in expectation and high probability
- We apply our schemes to the linear bandit algorithms PEGE and ConfidenceBall
 - In both settings, there is a significant gains in complexity.
 - While there is no loss in regret for PEGE, in the ConfidenceBall algorithm there is a deterioration of $O(n^{1/5})$ in the regret.

• Future work:

- Whether the gap in the regret bound for ConfidenceBall algorithm can be eliminated?
- Experiments on news-feed application coming soon!

Conclusions

WHAT NEXT?



REFERENCES I

Prashanth L.A., Nathaniel Korda and Rémi Munos,

Analysis of stochastic approximation for efficient least squares regression and LSTD.

arXiv preprint arXiv:1306.2557, 2013.

Nathaniel Korda, Prashanth L.A. and Rémi Munos,

Online gradient descent for least squares regression: Non-asymptotic bounds and application to bandits.

arXiv preprint arXiv:1307.3176, 2013.