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MOTIVATION [1]

Want to solve Ordinary Least Squares (OLS): θ̂n = arg minθ
1
2

n∑
i=1

(yi − θTxi )
2

Complexity
O(d2) using the Sherman-Morrison lemma or
O(d2.807) using the Strassen algorithm or O(d2.375) the
Coppersmith-Winograd algorithm

What we propose: Use online gradient descent (GD) to estimate θ̂t
Why:

Efficient with complexity of only O(d) (Well-known)
High probability bounds with explicit constants can be derived (not fully
known)
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MOTIVATION [2]

A TYPICAL LINEAR BANDIT ALGORITHM

Given: arms x in a compact subset D of Rd .
For n = 1,2, . . . do

STEP 1 Compute an OLS estimate θ̂n based on arms xi chosen and
losses yi seen so far, i = 1, . . . ,n − 1

STEP 2 Construct an ellipsoid B2
n centered at θ̂t

STEP 3 Choose xn that gives the minimum estimated loss over B2
n

STEP 4 Observe the reward yn.

OUR CONTRIBUTION

Use online GD in Step 1 and study the impact on regret performance:
STRONGLY-CONVEX ARMS no impact on regret (barring log-factors) vis-a-vis

PEGE algorithm
NON-STRONGLY CONVEX ARMS O

(
n1/5

)
deterioration of the regret vis-a-vis

ConfidenceBall algorithm
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OUTLINE

1 BANDITS WITH STRONGLY CONVEX ARMS
Random online algorithm for OLS
Regret bounds

2 BANDITS WITH NON-STRONGLY CONVEX ARMS
Random online-regularized algorithm
Regret bounds

3 CONCLUSIONS

5 / 19



Bandits with strongly convex arms

OUTLINE

1 BANDITS WITH STRONGLY CONVEX ARMS
Random online algorithm for OLS
Regret bounds

2 BANDITS WITH NON-STRONGLY CONVEX ARMS
Random online-regularized algorithm
Regret bounds

3 CONCLUSIONS

6 / 19



Bandits with strongly convex arms Random online algorithm for OLS

RANDOM ONLINE ALGORITHM

Pick a sample (xin , yin ) uniformly randomly from the set {(x1, y1), . . . , (xn, yn)}.
Update the iterate θn as

θn = θn−1 + γn(yin − θT
n−1xin )xin . (1)

We assume:
(A1) Boundedness of xn, i.e., supn ‖xn‖2 ≤ 1.
(A2) The noise {ξn} is i.i.d. and |ξn| ≤ 1,∀n.

(A3) For all n, λmin

(
1
n

n−1∑
i=1

xix T
i

)
≥ µ.a

aλmin(·) denotes the smallest eigenvalue of a matrix.
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Bandits with strongly convex arms Random online algorithm for OLS

ERROR BOUND

THEOREM

With γn = c/n and c > 1/(2µ), we have, for any δ > 0,

P

∥∥∥θn − θ̂n

∥∥∥
2
≤
√

Kµ,c
n

log
1
δ

+


∥∥∥θ0 − θ̂0

∥∥∥
2

nµc +
h1(n)√

n

 ≥ 1− δ. (2)

h1(n) hides log factors, Kµ,c depends on µ and c

By averaging the iterates, the dependency on µ can be removed while
obtaining optimal rate of convergence.
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Bandits with strongly convex arms Regret bounds

APPLICATION TO BANDITS1

Arms xn evolve in a set D ⊂ Rd such that a basis {b1, . . . ,bd} ∈ D for Rd

is known
Losses yn = ln(xn) satisfy E [ ln(xn)| xn] = x T

nθ
∗

Aim: minimise the expected cumulative regret:

Rn =
n∑

i=1

x T
i θ
∗ −min

x∈D
x Tθ∗

Assume: the ”best action” function G(θ) := arg minx∈D{θT
mdx} is smooth

1Rusmevichientong, Paat, and John N. Tsitsiklis. “Linearly parameterized bandits”.
Mathematics of Operations Research, 2010.
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Bandits with strongly convex arms Regret bounds

PEGE ALGORITHM WITH ONLINE GD

INPUT AND INITIALISATION
Get a basis {b1, . . . ,bd} ∈ D for Rd .
Set c = 4d

3λmin(
∑d

i=1 bi bT
i )

and θ0 = 0.

For m = 1,2, . . . do
EXPLORATION PHASE

For n = (m − 1)d to md − 1
1 Choose arm xn = bn mod md and observe yn.
2 Update θ as follows: θn = θn−1 + c

n ((yj − θT
n−1xj )xj ), where

j ∼ U(1, . . . ,n).
EXPLOITATION PHASE

Find x = G(θmd ) := arg minx∈D{θT
mdx}.

Choose arm x m times consecutively.
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Bandits with strongly convex arms Regret bounds

REGRET BOUND

We require the following extra assumptions from [Rusmevichientong 2010]
(A3’) A basis {b1, . . . ,bd} ∈ D for Rd is made known to the algorithm.
(A4) The function G : θ → arg minx∈D{θTx} is J-Lipschitz.

THEOREM

Under (A1), (A2), (A3’), and (A4), the cumulative regret Rn satisfies

Rn ≤ C1(‖θ∗‖2 + ‖θ∗‖−1
2 )h3(n)dn1/2,

where constant C1 depends on λmin(
∑d

i=1 bibT
i ) and J, and h3 hides log

factors.

11 / 19



Bandits with non-strongly convex arms

OUTLINE

1 BANDITS WITH STRONGLY CONVEX ARMS
Random online algorithm for OLS
Regret bounds

2 BANDITS WITH NON-STRONGLY CONVEX ARMS
Random online-regularized algorithm
Regret bounds

3 CONCLUSIONS
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Bandits with non-strongly convex arms Random online-regularized algorithm

ADAPTIVE REGULARIZATION

Problem: In many setting, λmin(Ān) ≥ µ may not hold.
Solution: adaptively regularize with λn

θ̃n := arg min
θ

1
2n

n∑
i=1

(yi − θTxi )
2 + λn ‖θ‖2

2

RANDOM ONLINE-REGULARIZED ALGORITHM

Shadow the solutions θ̃n more and more closely as n→∞ using θn as:

θn = θn−1 + γn((yin − θT
n−1xin )xin − λnθn−1), where in ∼ U(1, . . . ,n). (3)
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Bandits with non-strongly convex arms Random online-regularized algorithm

ERROR BOUND

For the bandit application, we need to bound θn − θ∗ in the An norm, where
An =

∑n−1
i=1 xix T

i + nλnId .

THEOREM

Under (A1)-(A2), with θ0 = 0 and step-sizes γn =
c

nα
with c >

1
2µ

and

regularisation parameter λn = µ/n1−α, with α ∈ (1/2,1), we have for any
δ > 0

P
(
‖θn − θ∗‖An,2 ≤ κn + β′n

)
≥ 1− δ,

where κn =

√
Kµ,c

n2α−1 log
1
δ
+

(
Cθ∗√

n
+

√
βn

n
+

h2(n)
n−α/4+1/2 +

h1(n)
nα−1/2

)
, Cθ∗ bounds

‖θ∗‖2, h2(n) = 2(
√
βnn−α/4 + 1) and βn = max

(
128d log n log

n2

δ
,

(
8
3

log
n2

δ

)2
)
.
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Bandits with non-strongly convex arms Regret bounds

CONFIDENCEBALL WITH ONLINE GD 2

Input and Initialisation
Choose µ and c so that µc > 1/2, α ∈ (1/2,1) and set θ0 = 0.

For n = 1,2, . . . do

1 Construct ellipsoid B2
n =

{
v : ‖v − θt‖An,2 ≤ κn + β′n

}
2 Choose xn that gives the minimum estimated loss over B2

n , i.e.,
xn = arg minx∈Dminv∈B2

n
v Tx

3 Observe loss yt .
4 Update θn using random online-regularized algorithm:

θn = θn−1 + cn−α((yin − θT
n−1xin )xin − µnα−1θn−1)

2Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade. ”Stochastic Linear
Optimization under Bandit Feedback.” COLT. 2008.
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Bandits with non-strongly convex arms Regret bounds

REGRET BOUND

THEOREM

Assuming an upper bound, Cθ∗ , for ‖θ∗‖2 is known and under (A1), (A2), and
(A4’), with γn = c/nα and λn = µ/n1−α where α = 4/5, the cumulative regret
RT satisfies

RT ≤ 2d
√

ln T T 1/2+1/5 w.p.1− δ.

Note:
A vanilla confidence ball algorithm has a complexity O(nd2) per time
step, whereas our proposed enhancement has complexity O(nd).
However, this comes at a loss of n1/5 in the regret Rn.
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Conclusions
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Conclusions

CONCLUSIONS

We proposed two schemes with randomisation for solving least squares
The first algorithm assumed strong convexity, while second uses adaptive
regularisation.
We provide bounds on the error both in expectation and high probability

We apply our schemes to the linear bandit algorithms PEGE and
ConfidenceBall

In both settings, there is a significant gains in complexity.
While there is no loss in regret for PEGE, in the ConfidenceBall algorithm
there is a deterioration of O(n1/5) in the regret.

Future work:
Whether the gap in the regret bound for ConfidenceBall algorithm can be
eliminated?
Experiments on news-feed application - coming soon!
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Conclusions

WHAT NEXT?
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