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Background

Deep learning has (re-)emerged as having important research
and commercial value

Deep belief networks and related approaches have led this
charge

Kernels are sometimes refered to as ‘shallow’

Aim of this talk is to:

Discuss what we mean by deep learning
Describe a number of ways in which kernel learning has been
made ‘deeper’
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Why Shallow Learning?

Kernels learn non-linear functions in the input space so would
appear to be as flexible as deep learning systems

However, they actually implement linear functions in the
kernel defined feature space:

x 7−→fixed φ(x) 7−→learned 〈w, φ(x)〉

so that the learning (of w) only occurs in one ‘layer’.

This is contrasted with deep learning where parameters are
spread across several layers typically with non-linear transfer
functions

Learning of the deeper layers is often unsupervised with the
final classifier trained with the earlier layers fixed
Hence, we are effectively pre-learning a representation – this
would be analogous to learning the kernel
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What happens in practice?

In practice we typically do perform some learning of the
kernel:

fix some hyper-parameters via some heuristic (e.g. width σ of
a Gaussian kernel)
use cross-validation to adapt the hyperparameter to optimise
performance of the task (classification, regression, etc)

In some respects this undermines the more principled approach
espoused by kernel methods based on generalisation bounds:

standard generalisation bounds no longer apply if we choose
the feature space based on the training data
even test set bounds will be invalidated if we include the
testing data in the representation learning phase

Often more sophisticated representations encode ‘deep’ prior
knowledge, but are ‘learned’ by trial and error

for example the histograms of patch cluster presence used in
an object detection system
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Aim of this talk

Present a number of promising directions that tick (some of)
the following boxes:

Learn a (kernel) representation possibly tuned to the main
learning task
Provide any analysis of the resulting system that supports its
design and bounds its performance
Provide empirical evidence that supports the approach on real
world data

the different contributions may appear disjointed but I hope a
convincing and coherent story will emerge:

deep-er learning of kernels is alive and kicking!
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Matching pursuit

Matching pursuit greedily chooses training examples that
determine directions in feature space that are well-suited to
some task and then deflates

Analysis combining sparse reconstruction with generalisation
error bounds gives first bounds on performance in learnt
subspace

Allows different criteria for selection to be implemented in one
framework, eg sparse PCA, classification, regression, canonical
correlation analysis, etc. and all come with bounds

? Hussain, Z., Shawe-Taylor, J., Hardoon, D.R. and Dhanjal, C (2011)

Design and Generalization Analysis of Orthogonal Matching Pursuit

Algorithms, IEEE Trans on Information Theory, 57, 5326–5341.
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Matching pursuit bound plot
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Figure : Bound plot for sparse KCCA using 1-dimension.
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Kernels from Probabilistic Models

If we consider learning a representation as pre-processing
stage, it is natural to consider modelling the data with a
probabilistic model

There are then two main methods of defining kernels from
probabilistic models:

Averaging over a model class - i.e. each model gives one
feature:

κ(x , z) =
∑
m∈M

P(x |m)P(z |m)PM(m)

also known as the marginalisation kernel.
Fisher kernels for cases where the model is determined by a
real parameter vector

Give example of Fisher kernel
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Fisher kernels

We assume the model is parametrised according to some
parameters: consider the simple example of a 1-dim Gaussian
distribution parametrised by µ and σ:

M =

{
P(x |θ) =

1√
2πσ

exp

(
−(x − µ)2

2σ2

)
: θ = (µ, σ) ∈ R2

}
.

The Fisher score vector is the derivative of the log likelihood
of an input x wrt the parameters:

logL(µ,σ) (x) = −(x − µ)2

2σ2
− 1

2
log (2πσ) .
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Fisher kernels

Hence the score vector is given by:

g
(
θ0, x

)
=

(
(x − µ0)

σ2
0

,
(x − µ0)2

σ3
0

− 1

2σ0

)
.

Taking µ0 = 0 and σ0 = 1 the feature embedding is given by:
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Fisher kernels
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String kernels as Fisher kernels

We can consider a Markov model of generating text
conditioned on the previous n-characters

Taking the uniform distribution model gives the class of string
kernels - but these can now be learned based on a corpus

can extend to probabilistic Finite State Automata learned
from the corpus

results competitive with tfidf BoWs on Reuters, with some
improvements in average precision

? C. Saunders, J. Shawe-Taylor and A. Vinokourov (2003) String Kernels,

Fisher Kernels and Finite State Automata, NIPS 15.
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Multiple kernel learning

MKL puts a 1-norm constraint on a linear combination of
kernels:{

κ(x, x′) =
N∑
t=1

ztκt(x, x
′) : zt ≥ 0,

N∑
t=1

zt = 1

}

and trains an SVM while optimizing zt – a convex problem

obtain corresponding bound (using convex hull bound for
Rademacher complexity):

P(y 6= sgn(g(x)))

≤ 1

mγ

m∑
i=1

ξi +
1

γ
R̂m

(
N⋃
t=1

Ft

)
+ 3

√
ln(2/δ)

2m

where Ft = {x→ 〈w, φt (x)〉 : ‖w‖ ≤ 1}.
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Rademacher complexity

The Rademacher complexity provides a way of measuring the
complexity of a function class F by testing how well on average it
can align with random noise:

R̂m(F) = Eσ

[
sup
f ∈F

2

m

m∑
i=1

σi f (xi )

]
.

is known as the Rademacher complexity of the function class F .
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Bounding MKL

Need a bound on
R̂m

(
F =

N⋃
t=1

Ft

)
McDiarmid gives with probability 1− δ0 of a random selection
of σ∗:

R̂m(F) ≤ 2

m
sup
f ∈F

m∑
i=1

σ∗i f (xi ) + 4

√
ln(1/δt)

2m

and
2

m
sup
f ∈Ft

m∑
i=1

σ∗i f (xi ) ≤ R̂m(Ft) + 4

√
ln(1/δt)

2m

with probability 1− δt

Shawe-Taylor Deep-er Kernels



Bounding MKL

Need a bound on
R̂m

(
F =

N⋃
t=1

Ft

)
McDiarmid gives with probability 1− δ0 of a random selection
of σ∗:

R̂m(F) ≤ 2

m
sup
f ∈F

m∑
i=1

σ∗i f (xi ) + 4

√
ln(1/δt)

2m

and
2

m
sup
f ∈Ft

m∑
i=1

σ∗i f (xi ) ≤ R̂m(Ft) + 4

√
ln(1/δt)

2m

with probability 1− δt

Shawe-Taylor Deep-er Kernels



Bounding MKL

Hence taking δt = δ/2(N + 1) for t = 0, . . . ,N

R̂m

(
F =

N⋃
t=1

Ft

)

≤ 2

m
sup
f ∈F

m∑
i=1

σ∗i f (xi ) + 4

√
ln(2(N + 1)/δ)

2m

≤ 2

m
max

1≤t≤N
sup
f ∈Ft

m∑
i=1

σ∗i f (xi ) + 4

√
ln(2(N + 1)/δ)

2m

≤ 2

m
max

1≤t≤N
R̂m(Ft) + 8

√
ln(2(N + 1)/δ)

2m

with probability 1− δ/2.
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Bounding MKL

This gives an overall bound on the generalisation of MKL of

P(y 6= sgn(g(x))) ≤ 1

mγ

m∑
i=1

ξi +
2

γm
max

1≤t≤N

√
tr(Kt) +

8

√
ln(2(N + 1)/δ)

2m
+ 3

√
ln(4/δ)

2m

where Kt is the t-th kernel matrix.

Bound gives only a logarithmic (additive) dependence on the
number of kernels.

? Zakria Hussain and John Shawe-Taylor (2011) Improved Loss Bounds

For Multiple Kernel Learning, Proceedings of AISTATS, 370-377.
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Experimental results with large-scale MKL

Vedaldi et al. have applied to the PASCAL Visual Objects
Challenge (VOC 2007) data and

improvements over the winners of the challenge in 17 out of
the 20 categories
in more than half of the categories the increase in average
precision was over 25%
have also scaled effectively to millions of kernels

? A. Vedaldi, V. Gulshan, M. Varma and A. Zisserman. Multiple kernels for

object detection. In Proceedings CVPR, Kyoto, Japan, September 2009.
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Linear programming boosting

Replacing the 2-norm regularisation of the SVM with a 1-norm
gives a linear programme: can solve its dual using an iterative
method:

1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j? that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j?) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j?}
5 Solve dual restricted to set J to give ui , β
6 Go to 2

Note that ui is a distribution on the examples
Each j added acts like an additional weak learner
f (j) is simply the weighted classification accuracy
Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound
Guaranteed convergence and soft stopping criteria
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Linear Programming MKL

Column generation gives efficient MKL if we can pick the best
weak learner in each Ft efficiently:

sup
f ∈Ft

m∑
i=1

uiyi f (xi ) = sup
w:‖w‖≤1

m∑
i=1

uiyi 〈w, φt(xi )〉

= sup
w:‖w‖≤1

〈
w,

m∑
i=1

uiyiφt(xi )

〉

=

∥∥∥∥∥
m∑
i=1

uiyiφt(xi )

∥∥∥∥∥
=

√
u′YKtYu =: Nt

easily computable from the kernel matrices (note that u is
sparse after first iteration and can also be chosen sparse at the
start).
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MKL Algorithmics

The optimal weak learner from Ft is realised by the weight
vector that achieves the supremum

w =

∑m
i=1 uiyiφt(xi )

‖
∑m

i=1 uiyiφt(xi )‖

which has dual representation:

αi =
1

Nt
uiyi

Hence, can use the linear programming boosting approach to
implement multiple kernel learning.

More generally can view the u vector as a signal to refine
other representations
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Learning Fisher kernels

As an example consider Fisher kernels over a parametrised
probabilistic model

Signal u can be used to optimise the kernel by adjusting the
parameters of the model

Using HMMs for modelling time series data this approach was
applied to forecasting foreign exchange rates.

Some encouraging results

? Sewell, M., Shawe-Taylor, J. (2012). Forecasting foreign exchange rates
using kernel methods. Expert Systems with Applications 39(9), 7652-7662

? Fletcher, T. and Shawe-Taylor, J. (2012) MKL with Fisher Kernels for

High Frequency Currency Prediction, Computational Economics
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High Frequency Currency Prediction, Computational Economics
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Non-linear Feature Selection

There is an interesting result that relates kernel target
alignment to maximal covariance with the output√

E(x,y)∼P,(x′,y ′)∼P [yy ′κ(x, x′)] =

= sup
w:‖w‖≤1

E(x,y)∼P [y〈w, φ(x)〉]

Suggests defining the contribution of a feature as

ci = ES∼Si
[
E(x,y)∼P,(x′,y ′)∼P [yy ′κS(x, x′)]

]
−

ES ′∼S\i
[
E(x,y)∼P,(x′,y ′)∼P [yy ′κS ′(x, x

′)]
]
,

where Si and S\i are distributions over fixed size sets of
features.
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Example

Consider 200-dimensional function that is XOR of the first two
features. Take Gaussian kernel - gives results after successive
cullings:

0 50 100 150 200 250
−2

0

2

4
x 10

−4 Iteration 1: 200 features

0 50 100 150 200 250
−4

−2

0

2
x 10

−4 Iteration 2: 150 features

0 50 100 150 200 250
−2

−1

0

1

2
x 10

−4 Iteration 3: 112 features

0 50 100 150 200 250
−2

0

2

4
x 10

−4 Iteration 4: 84 features

0 50 100 150 200 250
−5

0

5

10
x 10

−4 Iteration 5: 63 features

Shawe-Taylor Deep-er Kernels



Analysis

Some properties:

Irrelevant features make negative contribution

Chances of relevant feature being in bottom quarter of the
ranked contributions on a sufficiently large random sample is
arbitrarily small

Hence, can cull 25% of bottom ranked features without
risking losing good features

possibility of locking in features that appear in top 25%
consisitently
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Results

On artificial data

Dataset Algorithm Accuracy Features Precision Recall
Linear Weston randSel 97.7 ± 2.0 3.0 ± 0.0 91.8 ± 23.1 72.0 ± 16.6

BaHsic 97.3 ± 3.1 5.0 ± 0.0 91.5 ± 19.4 70.7 ± 14.9
FoHsic 97.1 ± 3.1 6.0 ± 0.0 95.9 ± 12.0 74.7 ± 17.7
Corr. Coeff. 92.4 ± 7.8 4.0 ± 0.0 96.1 ± 15.1 76.0 ± 15.5
Stab. Sel. 97.3 ± 3.1 2.0 ± 0.0 100.0 ± 0.0 40.0 ± 0.0
RFE 95.3 ± 3.9 5.0 ± 0.0 66.9 ± 33.7 56.0 ± 13.5

Non-Linear Weston randSel 99.0 ± 1.4 5.0 ± 0.0 100.0 ± 0.0 89.3 ± 12.8
BaHsic 99.8 ± 0.9 4.0 ± 0.0 100.0 ± 0.0 80.0 ± 7.6
FoHsic 99.8 ± 0.9 4.0 ± 0.0 100.0 ± 0.0 82.7 ± 7.0
Corr. Coeff. 56.2 ± 6.8 21.0 ± 0.0 1.7 ± 2.5 18.7 ± 31.6
Stab. Sel. 50.0 ± 7.1 2.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
RFE 98.9 ± 2.7 5.0 ± 0.0 97.8 ± 5.9 100.0 ± 0.0

XOR randSel 95.7 ± 3.3 2.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
BaHsic 95.7 ± 3.3 2.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
FoHsic 52.0 ± 6.5 53.0 ± 0.0 9.4 ± 25.3 36.7 ± 44.2
Corr. Coeff. 58.1 ± 14.9 8.0 ± 0.0 10.4 ± 10.3 50.0 ± 42.3
Stab. Sel. 49.3 ± 11.1 2.0 ± 0.0 13.3 ± 22.9 13.3 ± 22.9
RFE 91.8 ± 12.1 2.0 ± 0.0 96.7 ± 12.9 96.7 ± 12.9
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Results

On real world omic and microarray data

Dataset Algorithm Accuracy Features Dataset Algorithm Accuracy Features
TB randSel 82.9 ± 8.4 64.6 ± 70.3 TB randSel 82.0 ± 8.6 42.0 ± 47.7
Task 1 BaHsic 81.7 ± 9.0 74.7 ± 101.3 Task 2 BaHsic 81.1 ± 8.9 33.1 ± 40.6

FoHsic 81.3 ± 9.4 68.0 ± 66.5 FoHsic 80.6 ± 10.8 31.1 ± 35.3
Corr. Coeff. 82.4 ± 8.8 123.6 ± 85.8 Corr. Coeff. 82.7 ± 9.4 73.4 ± 55.5
Stab. Sel. 82.9 ± 7.3 121.7 ± 56.4 Stab. Sel. 80.7 ± 8.4 137.3 ± 154.7
RFE 81.9 ± 8.0 236.2 ± 160.2 RFE 80.2 ± 9.1 82.4 ± 139.9

TB randSel 86.0 ± 8.1 45.3 ± 33.6 TB randSel 87.6 ± 4.9 58.5 ± 93.8
Task 3 BaHsic 85.6 ± 9.5 53.3 ± 39.5 Micro BaHsic 86.1 ± 6.4 61.2 ± 94.7

FoHsic 85.6 ± 8.8 53.6 ± 44.7 Array FoHsic 85.2 ± 7.9 52.5 ± 92.9
Corr. Coeff. 85.4 ± 8.8 132.9 ± 89.7 Corr. Coeff. 84.1 ± 6.6 143.5 ± 114.2
Stab. Sel. 84.1 ± 9.6 60.0 ± 47.9 Stab. Sel. 87.1 ± 5.9 161.8 ± 136.0
RFE 83.9 ± 9.2 43.5 ± 71.6 RFE 85.7 ± 6.8 158.0 ± 137.6
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Results

Have applied to Deep learning challenge (Black Box Learning
Challenge 2013)

Initial sparse filtering step (Jiquan et al., 2011) – just one
preprocessing layer

performed the culling steps described above

used the LPBoost MKL method to combine the corresponding
kernels created

Method was third in the final ranking (scored 0.685 vs
winning score of 0.702)
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Summary and Conclusions

Learning deep representations is important for analysis of real
data

Many kernel practitioners are using deep learning but typically
in a relatively ad-hoc manner

Attempts to use more principled methods have been rewarded
with considerable success

There is already a range of theoretical results relating to
deep-er learning kernel methods that place the approaches on
a firm-er footing
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