
Gaussian Processes

Edwin V. Bonilla

Machine Learning Summer School

October 1st, 2010

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 1 / 70

The Book

Carl Edward Rasmussen and Christopher K. I. Williams

All chapters available online along with software and datasets:
http://www.gaussianprocess.org/gpml

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 2 / 70

http://www.gaussianprocess.org/gpml

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwixi

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

The Prediction Problem

Learn mapping x→ f(x) from observations {(xi,yi)}
N
i=1.

x

y

What parameterization?

f(x) =
∑
iwiφi(x)

Flexibility v generalization

What basis functions?
How many?

What about Neural nets?

How to avoid overfitting? (cf regularization)

Confidence on our predictions?

We can address these issues in a principled way with Gaussian Processes

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 3 / 70

Demo

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

PRIOR

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

DATA AND POSTERIOR

Smooth functions

Closeness in input space → closeness in output space

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 4 / 70

Why Gaussian Processes

Parametric models constrain the class of functions we consider

Flexibility (no underfitting) due to non-parametric nature

Generalization (no overfitting)

Bayesian, distribution over functions: prior, likelihood, posterior

How can we do computations with infinite vectors?
I “Efficient” Inference due to consistency (Gaussian distributions)

Characteristics of the functions can be learned from data
I Covariance function: smoothness, stationarity, length-scale
I Hyperparameter learning

Many standard regression models are special cases of GPs

GP models also applicable to non-regression settings

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 5 / 70

Why Gaussian Processes

Parametric models constrain the class of functions we consider

Flexibility (no underfitting) due to non-parametric nature

Generalization (no overfitting)

Bayesian, distribution over functions: prior, likelihood, posterior

How can we do computations with infinite vectors?
I “Efficient” Inference due to consistency (Gaussian distributions)

Characteristics of the functions can be learned from data
I Covariance function: smoothness, stationarity, length-scale
I Hyperparameter learning

Many standard regression models are special cases of GPs

GP models also applicable to non-regression settings

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 5 / 70

Why Gaussian Processes

Parametric models constrain the class of functions we consider

Flexibility (no underfitting) due to non-parametric nature

Generalization (no overfitting)

Bayesian, distribution over functions: prior, likelihood, posterior

How can we do computations with infinite vectors?
I “Efficient” Inference due to consistency (Gaussian distributions)

Characteristics of the functions can be learned from data
I Covariance function: smoothness, stationarity, length-scale
I Hyperparameter learning

Many standard regression models are special cases of GPs

GP models also applicable to non-regression settings

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 5 / 70

Why Gaussian Processes

Parametric models constrain the class of functions we consider

Flexibility (no underfitting) due to non-parametric nature

Generalization (no overfitting)

Bayesian, distribution over functions: prior, likelihood, posterior

How can we do computations with infinite vectors?
I “Efficient” Inference due to consistency (Gaussian distributions)

Characteristics of the functions can be learned from data
I Covariance function: smoothness, stationarity, length-scale
I Hyperparameter learning

Many standard regression models are special cases of GPs

GP models also applicable to non-regression settings

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 5 / 70

Why Gaussian Processes

Parametric models constrain the class of functions we consider

Flexibility (no underfitting) due to non-parametric nature

Generalization (no overfitting)

Bayesian, distribution over functions: prior, likelihood, posterior

How can we do computations with infinite vectors?
I “Efficient” Inference due to consistency (Gaussian distributions)

Characteristics of the functions can be learned from data
I Covariance function: smoothness, stationarity, length-scale
I Hyperparameter learning

Many standard regression models are special cases of GPs

GP models also applicable to non-regression settings

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 5 / 70

Why Gaussian Processes

Parametric models constrain the class of functions we consider

Flexibility (no underfitting) due to non-parametric nature

Generalization (no overfitting)

Bayesian, distribution over functions: prior, likelihood, posterior

How can we do computations with infinite vectors?
I “Efficient” Inference due to consistency (Gaussian distributions)

Characteristics of the functions can be learned from data
I Covariance function: smoothness, stationarity, length-scale
I Hyperparameter learning

Many standard regression models are special cases of GPs

GP models also applicable to non-regression settings

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 5 / 70

Outline

1 The Gaussian Distribution

2 Bayesian Linear Regression

3 Gaussian Processes for Regression

4 Gaussian Processes for Classification

5 Approximations for Large Datasets

6 Current Research

7 Conclusions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 6 / 70

1 The Gaussian Distribution

2 Bayesian Linear Regression

3 Gaussian Processes for Regression

4 Gaussian Processes for Classification

5 Approximations for Large Datasets

6 Current Research

7 Conclusions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 7 / 70

The Gaussian Distribution
1D Example

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

µ =0, σ
2
 = 1

µ =2, σ
2
 = 4

µ =2, σ
2
 = 0.1

p(x) = 1√
2πσ2

exp
(
− 1

2σ2 (x− µ)
2
)

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

µ =0, σ
2
 = 1

µ =2, σ
2
 = 4

µ =2, σ
2
 = 0.1

F(x) =
∫x
−∞N(z|µ,σ2)dz

In general: p(x) = N(x|µ, Σ) =
1

|2πΣ|1/2
exp

(
−

1

2
(x − µ)TΣ−1(x − µ)

)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 8 / 70

The Gaussian Distribution
1D Example

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

µ =0, σ
2
 = 1

µ =2, σ
2
 = 4

µ =2, σ
2
 = 0.1

p(x) = 1√
2πσ2

exp
(
− 1

2σ2 (x− µ)
2
) −10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

µ =0, σ
2
 = 1

µ =2, σ
2
 = 4

µ =2, σ
2
 = 0.1

F(x) =
∫x
−∞N(z|µ,σ2)dz

In general: p(x) = N(x|µ, Σ) =
1

|2πΣ|1/2
exp

(
−

1

2
(x − µ)TΣ−1(x − µ)

)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 8 / 70

The Gaussian Distribution
1D Example

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

µ =0, σ
2
 = 1

µ =2, σ
2
 = 4

µ =2, σ
2
 = 0.1

p(x) = 1√
2πσ2

exp
(
− 1

2σ2 (x− µ)
2
) −10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

µ =0, σ
2
 = 1

µ =2, σ
2
 = 4

µ =2, σ
2
 = 0.1

F(x) =
∫x
−∞N(z|µ,σ2)dz

In general: p(x) = N(x|µ, Σ) =
1

|2πΣ|1/2
exp

(
−

1

2
(x − µ)TΣ−1(x − µ)

)
Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 8 / 70

The Gaussian Distribution
2D Example

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p(x1, x2) ∼ N(µ, Σ)
Joint

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(x1)
Marginal

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

p(x1|x2)
Conditional

The marginal and the conditional distributions are also Gaussians:(
x1

x2

)
∼N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT12 Σ22

])
x1 ∼N(x1|µ1, Σ11)

x1|x2 ∼N(x1|µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 ΣT12)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 9 / 70

The Gaussian Distribution
2D Example

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p(x1, x2) ∼ N(µ, Σ)
Joint

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(x1)
Marginal

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

p(x1|x2)
Conditional

The marginal and the conditional distributions are also Gaussians:(
x1

x2

)
∼N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT12 Σ22

])
x1 ∼N(x1|µ1, Σ11)

x1|x2 ∼N(x1|µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 ΣT12)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 9 / 70

The Gaussian Distribution
2D Example

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p(x1, x2) ∼ N(µ, Σ)
Joint

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(x1)
Marginal

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

p(x1|x2)
Conditional

The marginal and the conditional distributions are also Gaussians:(
x1

x2

)
∼N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT12 Σ22

])
x1 ∼N(x1|µ1, Σ11)

x1|x2 ∼N(x1|µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 ΣT12)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 9 / 70

The Gaussian Distribution
2D Example

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p(x1, x2) ∼ N(µ, Σ)
Joint

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(x1)
Marginal

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

p(x1|x2)
Conditional

The marginal and the conditional distributions are also Gaussians:

(
x1

x2

)
∼N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT12 Σ22

])
x1 ∼N(x1|µ1, Σ11)

x1|x2 ∼N(x1|µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 ΣT12)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 9 / 70

The Gaussian Distribution
2D Example

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p(x1, x2) ∼ N(µ, Σ)
Joint

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(x1)
Marginal

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

p(x1|x2)
Conditional

The marginal and the conditional distributions are also Gaussians:(
x1

x2

)
∼N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT12 Σ22

])

x1 ∼N(x1|µ1, Σ11)

x1|x2 ∼N(x1|µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 ΣT12)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 9 / 70

The Gaussian Distribution
2D Example

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p(x1, x2) ∼ N(µ, Σ)
Joint

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(x1)
Marginal

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

p(x1|x2)
Conditional

The marginal and the conditional distributions are also Gaussians:(
x1

x2

)
∼N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT12 Σ22

])
x1 ∼N(x1|µ1, Σ11)

x1|x2 ∼N(x1|µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 ΣT12)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 9 / 70

The Gaussian Distribution
2D Example

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p(x1, x2) ∼ N(µ, Σ)
Joint

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(x1)
Marginal

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

p(x1|x2)
Conditional

The marginal and the conditional distributions are also Gaussians:(
x1

x2

)
∼N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT12 Σ22

])
x1 ∼N(x1|µ1, Σ11)

x1|x2 ∼N(x1|µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 ΣT12)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 9 / 70

The Gaussian Distribution
Covariance and Precision Matrices

p(x) = N(x|µ, Σ) =
1

|2πΣ|1/2
exp

(
−

1

2
(x − µ)TΣ−1(x − µ)

)
Σ : is the covariance matrix

Σ−1 : is the precision matrix

An entry Σ−1
ij = 0 indicates that the variables i and j are

conditionally independent given all the other variables.

An entry Σij = 0 indicates that the variables i and j are
marginally independent given all the other variables.

Marginalizing out a variable leaves Σ unchanged but changes Σ−1.
I This is crucial when parameterizing a Gaussian process.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 10 / 70

The Gaussian Distribution
Covariance and Precision Matrices

p(x) = N(x|µ, Σ) =
1

|2πΣ|1/2
exp

(
−

1

2
(x − µ)TΣ−1(x − µ)

)
Σ : is the covariance matrix

Σ−1 : is the precision matrix

An entry Σ−1
ij = 0 indicates that the variables i and j are

conditionally independent given all the other variables.

An entry Σij = 0 indicates that the variables i and j are
marginally independent given all the other variables.

Marginalizing out a variable leaves Σ unchanged but changes Σ−1.
I This is crucial when parameterizing a Gaussian process.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 10 / 70

The Gaussian Distribution
Covariance and Precision Matrices

p(x) = N(x|µ, Σ) =
1

|2πΣ|1/2
exp

(
−

1

2
(x − µ)TΣ−1(x − µ)

)
Σ : is the covariance matrix

Σ−1 : is the precision matrix

An entry Σ−1
ij = 0 indicates that the variables i and j are

conditionally independent given all the other variables.

An entry Σij = 0 indicates that the variables i and j are
marginally independent given all the other variables.

Marginalizing out a variable leaves Σ unchanged but changes Σ−1.
I This is crucial when parameterizing a Gaussian process.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 10 / 70

The Gaussian Distribution
Covariance and Precision Matrices

p(x) = N(x|µ, Σ) =
1

|2πΣ|1/2
exp

(
−

1

2
(x − µ)TΣ−1(x − µ)

)
Σ : is the covariance matrix

Σ−1 : is the precision matrix

An entry Σ−1
ij = 0 indicates that the variables i and j are

conditionally independent given all the other variables.

An entry Σij = 0 indicates that the variables i and j are
marginally independent given all the other variables.

Marginalizing out a variable leaves Σ unchanged but changes Σ−1.
I This is crucial when parameterizing a Gaussian process.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 10 / 70

Gaussian Quiz

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 11 / 70

1 The Gaussian Distribution

2 Bayesian Linear Regression

3 Gaussian Processes for Regression

4 Gaussian Processes for Classification

5 Approximations for Large Datasets

6 Current Research

7 Conclusions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 12 / 70

The Standard Linear Regression Model
Notation and Settings

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : x
f(x)→ y

Model f(x) =
∑D
i=1wixi = wTx

Noise y = f(x) + η with η ∼ N(η|0,σ2)

Likelihood y|f(x) ∼ N(y|f(x),σ2) = N(y|wTx,σ2)

Thus, the data-likelihood is given by:

p(y|X, w) =

N∏
i=1

p(yi|xi, w) =

N∏
i=1

N(yi|w
Txi,σ

2)

= N(y|XTw,σ2I)

We need do to inference on w.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 13 / 70

The Standard Linear Regression Model
Notation and Settings

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : x
f(x)→ y

Model f(x) =
∑D
i=1wixi = wTx

Noise y = f(x) + η with η ∼ N(η|0,σ2)

Likelihood y|f(x) ∼ N(y|f(x),σ2) = N(y|wTx,σ2)

Thus, the data-likelihood is given by:

p(y|X, w) =

N∏
i=1

p(yi|xi, w) =

N∏
i=1

N(yi|w
Txi,σ

2)

= N(y|XTw,σ2I)

We need do to inference on w.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 13 / 70

The Standard Linear Regression Model
Notation and Settings

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : x
f(x)→ y

Model f(x) =
∑D
i=1wixi = wTx

Noise y = f(x) + η with η ∼ N(η|0,σ2)

Likelihood y|f(x) ∼ N(y|f(x),σ2) = N(y|wTx,σ2)

Thus, the data-likelihood is given by:

p(y|X, w) =

N∏
i=1

p(yi|xi, w) =

N∏
i=1

N(yi|w
Txi,σ

2)

= N(y|XTw,σ2I)

We need do to inference on w.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 13 / 70

The Standard Linear Regression Model
Notation and Settings

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : x
f(x)→ y

Model f(x) =
∑D
i=1wixi = wTx

Noise y = f(x) + η with η ∼ N(η|0,σ2)

Likelihood y|f(x) ∼ N(y|f(x),σ2) = N(y|wTx,σ2)

Thus, the data-likelihood is given by:

p(y|X, w) =

N∏
i=1

p(yi|xi, w) =

N∏
i=1

N(yi|w
Txi,σ

2)

= N(y|XTw,σ2I)

We need do to inference on w.
Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 13 / 70

Bayesian Linear Regression
Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

w ∼ N(w|0, Σw)

Then the posterior distribution over the weights is given by:

p(w|X, y) =
p(w) p(y|X, w)

p(y|X)

= N(w|w̄, A−1)

where w̄ = 1
σ2 A−1Xy, and A = (1

σ2 XXT + Σ−1
w).

Mean of posterior is equal to its mode

MAP solution (non-Bayesian): negative log prior as penalty term
This penalized maximum likelihood is known as ridge regression

I Consider Σw = λI Then :

w̄ = (XXT +
1

λ
σ2I)−1Xy

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 14 / 70

Bayesian Linear Regression
Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

w ∼ N(w|0, Σw)

Then the posterior distribution over the weights is given by:

p(w|X, y) =
p(w) p(y|X, w)

p(y|X)

= N(w|w̄, A−1)

where w̄ = 1
σ2 A−1Xy, and A = (1

σ2 XXT + Σ−1
w).

Mean of posterior is equal to its mode

MAP solution (non-Bayesian): negative log prior as penalty term
This penalized maximum likelihood is known as ridge regression

I Consider Σw = λI Then :

w̄ = (XXT +
1

λ
σ2I)−1Xy

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 14 / 70

Bayesian Linear Regression
Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

w ∼ N(w|0, Σw)

Then the posterior distribution over the weights is given by:

p(w|X, y) =
p(w) p(y|X, w)

p(y|X)

= N(w|w̄, A−1)

where w̄ = 1
σ2 A−1Xy, and A = (1

σ2 XXT + Σ−1
w).

Mean of posterior is equal to its mode

MAP solution (non-Bayesian): negative log prior as penalty term
This penalized maximum likelihood is known as ridge regression

I Consider Σw = λI Then :

w̄ = (XXT +
1

λ
σ2I)−1Xy

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 14 / 70

Bayesian Linear Regression
Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

w ∼ N(w|0, Σw)

Then the posterior distribution over the weights is given by:

p(w|X, y) =
p(w) p(y|X, w)

p(y|X)

= N(w|w̄, A−1)

where w̄ = 1
σ2 A−1Xy, and A = (1

σ2 XXT + Σ−1
w).

Mean of posterior is equal to its mode

MAP solution (non-Bayesian): negative log prior as penalty term

This penalized maximum likelihood is known as ridge regression
I Consider Σw = λI Then :

w̄ = (XXT +
1

λ
σ2I)−1Xy

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 14 / 70

Bayesian Linear Regression
Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

w ∼ N(w|0, Σw)

Then the posterior distribution over the weights is given by:

p(w|X, y) =
p(w) p(y|X, w)

p(y|X)

= N(w|w̄, A−1)

where w̄ = 1
σ2 A−1Xy, and A = (1

σ2 XXT + Σ−1
w).

Mean of posterior is equal to its mode

MAP solution (non-Bayesian): negative log prior as penalty term
This penalized maximum likelihood is known as ridge regression

I Consider Σw = λI Then :

w̄ = (XXT +
1

λ
σ2I)−1Xy

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 14 / 70

Bayesian Linear Regression
Predictive Distribution

We are interested in making predictions at a new test point x∗
In fact we obtain the predictive distribution by averaging over all
possible parameter values (weighted by their posterior probabilities):

p(f∗|x∗, X, y) =

∫
p(f∗|x∗, w)p(w|X, y) dw = N(f∗|xT∗ w̄, xT∗A−1x∗)

I Predictive mean: linear combination of weights’ posterior mean
I Predictive variance: grows with the magnitude of the test point

Point predictions: Need to consider the expected loss (or risk):

yopt = argmin
ypred

∫
L(f∗,ypred)p(f∗|x∗, X, y)df∗

I e.g. Square loss L = (ypred − f∗)2

I c.f. Empirical risk minimization (ERM)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 15 / 70

Bayesian Linear Regression
Predictive Distribution

We are interested in making predictions at a new test point x∗
In fact we obtain the predictive distribution by averaging over all
possible parameter values (weighted by their posterior probabilities):

p(f∗|x∗, X, y) =

∫
p(f∗|x∗, w)p(w|X, y) dw = N(f∗|xT∗ w̄, xT∗A−1x∗)

I Predictive mean: linear combination of weights’ posterior mean
I Predictive variance: grows with the magnitude of the test point

Point predictions: Need to consider the expected loss (or risk):

yopt = argmin
ypred

∫
L(f∗,ypred)p(f∗|x∗, X, y)df∗

I e.g. Square loss L = (ypred − f∗)2

I c.f. Empirical risk minimization (ERM)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 15 / 70

Bayesian Linear Regression Example

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Prior Weights

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Likelihood

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Posterior Weights

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 16 / 70

Bayesian Linear Regression Example

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Prior Weights

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Likelihood

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x: Input

y
:
T

a
rg

e
t

Observed Data

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Posterior Weights

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 16 / 70

Bayesian Linear Regression Example

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Prior Weights

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Likelihood

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x: Input

y
:
T

a
rg

e
t

Observed Data

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Posterior Weights

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 16 / 70

Bayesian Linear Regression Example

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Prior Weights

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Likelihood

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x: Input

y
:
T

a
rg

e
t

Observed Data

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Posterior Weights

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 16 / 70

Bayesian Linear Regression Example

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Prior Weights

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Likelihood

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x: Input

y
:
T

a
rg

e
t

Predictive Distribution

w
1
: Intercept

w
2
:
S

lo
p
e

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Posterior Weights

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 16 / 70

Non-linear Feature Spaces

Consider the model f(x) =
∑D′
i=1wiφi(x) = wTφ(x)

I Each φi(x) is a (non-linear) feature on x, e.g. x1, x2, x2
1, x2

2, x1x2 . . .
I We have a non-linear mapping but a linear-in-the-parameters model
I The number of these features can be very large, i.e. D′ � D

All the Bayesian analysis is similar to the standard linear model:

p(f∗|x∗, X, y) = N(f∗|σ−2φT∗A−1Φy,φT∗A−1φ∗)

where: φ∗ = φ(x∗), Φ = Φ(X), and A = (1
σ2 ΦΦT + Σ−1

w)

I Note we need to invert A of ? dimensions.

We can rewrite the predictive distribution as:

p(f∗|x∗, X, y) = N(f∗|kT∗ K̃−1y,k?? − kT∗ K̃−1k∗)

where k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗, and K̃ = ΦTΣwΦ + σ2I

I Now we need to invert K̃ of ? dimensions GP prediction

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 17 / 70

Non-linear Feature Spaces

Consider the model f(x) =
∑D′
i=1wiφi(x) = wTφ(x)

I Each φi(x) is a (non-linear) feature on x, e.g. x1, x2, x2
1, x2

2, x1x2 . . .
I We have a non-linear mapping but a linear-in-the-parameters model
I The number of these features can be very large, i.e. D′ � D

All the Bayesian analysis is similar to the standard linear model:

p(f∗|x∗, X, y) = N(f∗|σ−2φT∗A−1Φy,φT∗A−1φ∗)

where: φ∗ = φ(x∗), Φ = Φ(X), and A = (1
σ2 ΦΦT + Σ−1

w)

I Note we need to invert A of ? dimensions.

We can rewrite the predictive distribution as:

p(f∗|x∗, X, y) = N(f∗|kT∗ K̃−1y,k?? − kT∗ K̃−1k∗)

where k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗, and K̃ = ΦTΣwΦ + σ2I

I Now we need to invert K̃ of ? dimensions GP prediction

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 17 / 70

Non-linear Feature Spaces

Consider the model f(x) =
∑D′
i=1wiφi(x) = wTφ(x)

I Each φi(x) is a (non-linear) feature on x, e.g. x1, x2, x2
1, x2

2, x1x2 . . .
I We have a non-linear mapping but a linear-in-the-parameters model
I The number of these features can be very large, i.e. D′ � D

All the Bayesian analysis is similar to the standard linear model:

p(f∗|x∗, X, y) = N(f∗|σ−2φT∗A−1Φy,φT∗A−1φ∗)

where: φ∗ = φ(x∗), Φ = Φ(X), and A = (1
σ2 ΦΦT + Σ−1

w)
I Note we need to invert A of ? dimensions.

We can rewrite the predictive distribution as:

p(f∗|x∗, X, y) = N(f∗|kT∗ K̃−1y,k?? − kT∗ K̃−1k∗)

where k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗, and K̃ = ΦTΣwΦ + σ2I

I Now we need to invert K̃ of ? dimensions GP prediction

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 17 / 70

Non-linear Feature Spaces

Consider the model f(x) =
∑D′
i=1wiφi(x) = wTφ(x)

I Each φi(x) is a (non-linear) feature on x, e.g. x1, x2, x2
1, x2

2, x1x2 . . .
I We have a non-linear mapping but a linear-in-the-parameters model
I The number of these features can be very large, i.e. D′ � D

All the Bayesian analysis is similar to the standard linear model:

p(f∗|x∗, X, y) = N(f∗|σ−2φT∗A−1Φy,φT∗A−1φ∗)

where: φ∗ = φ(x∗), Φ = Φ(X), and A = (1
σ2 ΦΦT + Σ−1

w)
I Note we need to invert A of ? dimensions.

We can rewrite the predictive distribution as:

p(f∗|x∗, X, y) = N(f∗|kT∗ K̃−1y,k?? − kT∗ K̃−1k∗)

where k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗, and K̃ = ΦTΣwΦ + σ2I

I Now we need to invert K̃ of ? dimensions GP prediction

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 17 / 70

Non-linear Feature Spaces

Consider the model f(x) =
∑D′
i=1wiφi(x) = wTφ(x)

I Each φi(x) is a (non-linear) feature on x, e.g. x1, x2, x2
1, x2

2, x1x2 . . .
I We have a non-linear mapping but a linear-in-the-parameters model
I The number of these features can be very large, i.e. D′ � D

All the Bayesian analysis is similar to the standard linear model:

p(f∗|x∗, X, y) = N(f∗|σ−2φT∗A−1Φy,φT∗A−1φ∗)

where: φ∗ = φ(x∗), Φ = Φ(X), and A = (1
σ2 ΦΦT + Σ−1

w)
I Note we need to invert A of ? dimensions.

We can rewrite the predictive distribution as:

p(f∗|x∗, X, y) = N(f∗|kT∗ K̃−1y,k?? − kT∗ K̃−1k∗)

where k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗, and K̃ = ΦTΣwΦ + σ2I

I Now we need to invert K̃ of ? dimensions GP prediction

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 17 / 70

The Kernel Trick

Note that in:

k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗ and K̃ = ΦTΣwΦ + σ2I

the features always enter in the form φ(x)TΣwφ(x′)

This is an inner product wrt Σw

As Σw is PD we can rewrite:

φ(x)TΣwφ(x′) = φ(x)TΣ
1/2
w Σ

1/2
w φ(x′)

= (Σ
1/2
w φ(x)︸ ︷︷ ︸
ψ(x)

)T (Σ
1/2
w φ(x′)︸ ︷︷ ︸
ψ(x′)

)

κ(x, x′) = ψ(x) ·ψ(x′)

κ(·, ·) is called a kernel or covariance function

We can replace all occurrences of inner products by κ(·, ·)
We do not need to compute the feature vectors explicitly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 18 / 70

The Kernel Trick

Note that in:

k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗ and K̃ = ΦTΣwΦ + σ2I

the features always enter in the form φ(x)TΣwφ(x′)
This is an inner product wrt Σw

As Σw is PD we can rewrite:

φ(x)TΣwφ(x′) = φ(x)TΣ
1/2
w Σ

1/2
w φ(x′)

= (Σ
1/2
w φ(x)︸ ︷︷ ︸
ψ(x)

)T (Σ
1/2
w φ(x′)︸ ︷︷ ︸
ψ(x′)

)

κ(x, x′) = ψ(x) ·ψ(x′)

κ(·, ·) is called a kernel or covariance function

We can replace all occurrences of inner products by κ(·, ·)
We do not need to compute the feature vectors explicitly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 18 / 70

The Kernel Trick

Note that in:

k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗ and K̃ = ΦTΣwΦ + σ2I

the features always enter in the form φ(x)TΣwφ(x′)
This is an inner product wrt Σw

As Σw is PD we can rewrite:

φ(x)TΣwφ(x′) = φ(x)TΣ
1/2
w Σ

1/2
w φ(x′)

= (Σ
1/2
w φ(x)︸ ︷︷ ︸
ψ(x)

)T (Σ
1/2
w φ(x′)︸ ︷︷ ︸
ψ(x′)

)

κ(x, x′) = ψ(x) ·ψ(x′)

κ(·, ·) is called a kernel or covariance function

We can replace all occurrences of inner products by κ(·, ·)
We do not need to compute the feature vectors explicitly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 18 / 70

The Kernel Trick

Note that in:

k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗ and K̃ = ΦTΣwΦ + σ2I

the features always enter in the form φ(x)TΣwφ(x′)
This is an inner product wrt Σw

As Σw is PD we can rewrite:

φ(x)TΣwφ(x′) = φ(x)TΣ
1/2
w Σ

1/2
w φ(x′)

= (Σ
1/2
w φ(x)︸ ︷︷ ︸
ψ(x)

)T (Σ
1/2
w φ(x′)︸ ︷︷ ︸
ψ(x′)

)

κ(x, x′) = ψ(x) ·ψ(x′)

κ(·, ·) is called a kernel or covariance function

We can replace all occurrences of inner products by κ(·, ·)
We do not need to compute the feature vectors explicitly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 18 / 70

The Kernel Trick

Note that in:

k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗ and K̃ = ΦTΣwΦ + σ2I

the features always enter in the form φ(x)TΣwφ(x′)
This is an inner product wrt Σw

As Σw is PD we can rewrite:

φ(x)TΣwφ(x′) = φ(x)TΣ
1/2
w Σ

1/2
w φ(x′)

= (Σ
1/2
w φ(x)︸ ︷︷ ︸
ψ(x)

)T (Σ
1/2
w φ(x′)︸ ︷︷ ︸
ψ(x′)

)

κ(x, x′) = ψ(x) ·ψ(x′)

κ(·, ·) is called a kernel or covariance function

We can replace all occurrences of inner products by κ(·, ·)

We do not need to compute the feature vectors explicitly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 18 / 70

The Kernel Trick

Note that in:

k∗ = ΦTΣwφ∗, k?? = φT∗Σwφ∗ and K̃ = ΦTΣwΦ + σ2I

the features always enter in the form φ(x)TΣwφ(x′)
This is an inner product wrt Σw

As Σw is PD we can rewrite:

φ(x)TΣwφ(x′) = φ(x)TΣ
1/2
w Σ

1/2
w φ(x′)

= (Σ
1/2
w φ(x)︸ ︷︷ ︸
ψ(x)

)T (Σ
1/2
w φ(x′)︸ ︷︷ ︸
ψ(x′)

)

κ(x, x′) = ψ(x) ·ψ(x′)

κ(·, ·) is called a kernel or covariance function

We can replace all occurrences of inner products by κ(·, ·)
We do not need to compute the feature vectors explicitly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 18 / 70

From a Prior over Weights to a Prior over Functions

Consider the kinds of functions that can be generated from a set of
basis functions with random weights.

The f(x) at a particular point is a random variable:

f(x) = wTφ(x) with w ∼ N(w|0, Σw)

defined as a linear combination of Gaussian random variables.

A collection of these random variables indexed by x:
f(x1), . . . , f(xN), define a stochastic process in a consistent way.

The mean and the covariance function for this stochastic process is
given by:

Ew[f(x)] = 0

Ew[f(x)f(x′)] = φT (x)Σwφ(x′)

The Bayesian linear model is a Gaussian process

I The Function values corresponding to any number of inputs have a
joint Gaussian distribution.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 19 / 70

From a Prior over Weights to a Prior over Functions

Consider the kinds of functions that can be generated from a set of
basis functions with random weights.

The f(x) at a particular point is a random variable:

f(x) = wTφ(x) with w ∼ N(w|0, Σw)

defined as a linear combination of Gaussian random variables.

A collection of these random variables indexed by x:
f(x1), . . . , f(xN), define a stochastic process in a consistent way.

The mean and the covariance function for this stochastic process is
given by:

Ew[f(x)] = 0

Ew[f(x)f(x′)] = φT (x)Σwφ(x′)

The Bayesian linear model is a Gaussian process

I The Function values corresponding to any number of inputs have a
joint Gaussian distribution.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 19 / 70

From a Prior over Weights to a Prior over Functions

Consider the kinds of functions that can be generated from a set of
basis functions with random weights.

The f(x) at a particular point is a random variable:

f(x) = wTφ(x) with w ∼ N(w|0, Σw)

defined as a linear combination of Gaussian random variables.

A collection of these random variables indexed by x:
f(x1), . . . , f(xN), define a stochastic process in a consistent way.

The mean and the covariance function for this stochastic process is
given by:

Ew[f(x)] = 0

Ew[f(x)f(x′)] = φT (x)Σwφ(x′)

The Bayesian linear model is a Gaussian process

I The Function values corresponding to any number of inputs have a
joint Gaussian distribution.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 19 / 70

From a Prior over Weights to a Prior over Functions

Consider the kinds of functions that can be generated from a set of
basis functions with random weights.

The f(x) at a particular point is a random variable:

f(x) = wTφ(x) with w ∼ N(w|0, Σw)

defined as a linear combination of Gaussian random variables.

A collection of these random variables indexed by x:
f(x1), . . . , f(xN), define a stochastic process in a consistent way.

The mean and the covariance function for this stochastic process is
given by:

Ew[f(x)] = 0

Ew[f(x)f(x′)] = φT (x)Σwφ(x′)

The Bayesian linear model is a Gaussian process

I The Function values corresponding to any number of inputs have a
joint Gaussian distribution.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 19 / 70

From a Prior over Weights to a Prior over Functions

Consider the kinds of functions that can be generated from a set of
basis functions with random weights.

The f(x) at a particular point is a random variable:

f(x) = wTφ(x) with w ∼ N(w|0, Σw)

defined as a linear combination of Gaussian random variables.

A collection of these random variables indexed by x:
f(x1), . . . , f(xN), define a stochastic process in a consistent way.

The mean and the covariance function for this stochastic process is
given by:

Ew[f(x)] = 0

Ew[f(x)f(x′)] = φT (x)Σwφ(x′)

The Bayesian linear model is a Gaussian process

I The Function values corresponding to any number of inputs have a
joint Gaussian distribution.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 19 / 70

From a Prior over Weights to a Prior over Functions

Consider the kinds of functions that can be generated from a set of
basis functions with random weights.

The f(x) at a particular point is a random variable:

f(x) = wTφ(x) with w ∼ N(w|0, Σw)

defined as a linear combination of Gaussian random variables.

A collection of these random variables indexed by x:
f(x1), . . . , f(xN), define a stochastic process in a consistent way.

The mean and the covariance function for this stochastic process is
given by:

Ew[f(x)] = 0

Ew[f(x)f(x′)] = φT (x)Σwφ(x′)

The Bayesian linear model is a Gaussian process
I The Function values corresponding to any number of inputs have a

joint Gaussian distribution.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 19 / 70

Sample Functions from the Linear Model

1 Define φi(x) = exp(−1
2(x− µi)

2), for i = 1, 2, 3

2 Construct Φ(i, j) = φi(xj), for i = 1, 2, 3

3 Draw w ∼ N(w|0, I)

4 Draw f = ΦTw

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 20 / 70

Sample Functions from the Linear Model

1 Define φi(x) = exp(−1
2(x− µi)

2), for i = 1, 2, 3

2 Construct Φ(i, j) = φi(xj), for i = 1, 2, 3

3 Draw w ∼ N(w|0, I)

4 Draw f = ΦTw

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 20 / 70

Sample Functions from the Linear Model

1 Define φi(x) = exp(−1
2(x− µi)

2), for i = 1, 2, 3

2 Construct Φ(i, j) = φi(xj), for i = 1, 2, 3

3 Draw w ∼ N(w|0, I)

4 Draw f = ΦTw

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 20 / 70

1 The Gaussian Distribution

2 Bayesian Linear Regression

3 Gaussian Processes for Regression

4 Gaussian Processes for Classification

5 Approximations for Large Datasets

6 Current Research

7 Conclusions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 21 / 70

Function-space View

Gaussian Process (GP)

f(x) is a Gaussian process if for any finite subset of points x1, . . . , xN, the
function values f(x1), . . . , f(xN) follow a Gaussian distribution.

f(x) ∼ GP(µ(x), κ(x, x ′)),

µ(x) = E[f(x)],
κ(x, x ′) = E[(f(x) − µ(x))(f(x ′) − µ(x ′))],

µ(x): mean function, consider µ(x) ≡ 0

κ(x, x ′): parameterized covariance function, notion of similarity

Stochastic process: collection of random variables

These variables are the values of the function f(x) indexed by the set
of all possible input

Consistency: marginalization property
(f1, f2) ∼ N(f |µ, Σ)→ f1 ∼ N(f1|µ1,Σ11)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 22 / 70

Function-space View

Gaussian Process (GP)

f(x) is a Gaussian process if for any finite subset of points x1, . . . , xN, the
function values f(x1), . . . , f(xN) follow a Gaussian distribution.

f(x) ∼ GP(µ(x), κ(x, x ′)),

µ(x) = E[f(x)],
κ(x, x ′) = E[(f(x) − µ(x))(f(x ′) − µ(x ′))],

µ(x): mean function, consider µ(x) ≡ 0

κ(x, x ′): parameterized covariance function, notion of similarity

Stochastic process: collection of random variables

These variables are the values of the function f(x) indexed by the set
of all possible input

Consistency: marginalization property
(f1, f2) ∼ N(f |µ, Σ)→ f1 ∼ N(f1|µ1,Σ11)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 22 / 70

Function-space View

Gaussian Process (GP)

f(x) is a Gaussian process if for any finite subset of points x1, . . . , xN, the
function values f(x1), . . . , f(xN) follow a Gaussian distribution.

f(x) ∼ GP(µ(x), κ(x, x ′)),

µ(x) = E[f(x)],
κ(x, x ′) = E[(f(x) − µ(x))(f(x ′) − µ(x ′))],

µ(x): mean function, consider µ(x) ≡ 0

κ(x, x ′): parameterized covariance function, notion of similarity

Stochastic process: collection of random variables

These variables are the values of the function f(x) indexed by the set
of all possible input

Consistency: marginalization property
(f1, f2) ∼ N(f |µ, Σ)→ f1 ∼ N(f1|µ1,Σ11)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 22 / 70

Function-space View

Gaussian Process (GP)

f(x) is a Gaussian process if for any finite subset of points x1, . . . , xN, the
function values f(x1), . . . , f(xN) follow a Gaussian distribution.

f(x) ∼ GP(µ(x), κ(x, x ′)),

µ(x) = E[f(x)],
κ(x, x ′) = E[(f(x) − µ(x))(f(x ′) − µ(x ′))],

µ(x): mean function, consider µ(x) ≡ 0

κ(x, x ′): parameterized covariance function, notion of similarity

Stochastic process: collection of random variables

These variables are the values of the function f(x) indexed by the set
of all possible input

Consistency: marginalization property
(f1, f2) ∼ N(f |µ, Σ)→ f1 ∼ N(f1|µ1,Σ11)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 22 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs
I A crucial component in GPs
I Intuitively, it describes the notion of similarity
I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs

I A crucial component in GPs
I Intuitively, it describes the notion of similarity
I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs
I A crucial component in GPs

I Intuitively, it describes the notion of similarity
I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs
I A crucial component in GPs
I Intuitively, it describes the notion of similarity

I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs
I A crucial component in GPs
I Intuitively, it describes the notion of similarity
I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs
I A crucial component in GPs
I Intuitively, it describes the notion of similarity
I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs
I A crucial component in GPs
I Intuitively, it describes the notion of similarity
I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs
I A crucial component in GPs
I Intuitively, it describes the notion of similarity
I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Covariance Function

It specifies the covariance between pairs of random variables:

Cov(f(xp), f(xq)) = κ(xp, xq)

I Covariance between outputs as a function of the inputs
I A crucial component in GPs
I Intuitively, it describes the notion of similarity
I It can be parametrized and we can learn its hyperparameters from data

The matrix K such that Ki,j = κ(xi, xj) all pairwise input points is
known as the covariance matrix or Gram matrix.

it must generate a positive semidefinite (PSD) matrix at any subset
of points, i.e. bTKb > 0, ∀b ∈ RN

Stationary: ϕ(x − x′) - translation invariant

Isotropic: ϕ(‖x − x′‖)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 23 / 70

The Squared Exponential (SE) Covariance Function

κ(x, x′) = σ2
s exp

(
−

1

2
(x − x′)TC(x − x′)

)

σ2
s is the signal variance

C is a symmetric matrix that can have different parameterizations

C = `−2I: isotropic SE

C = diag(`)−2 with ` = (`1, . . . , `D): Automatic Relevance
Determination (ARD)

Each `j is known as the characteristic length-scale: distance for which
the function values are expected to vary significantly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 24 / 70

The Squared Exponential (SE) Covariance Function

κ(x, x′) = σ2
s exp

(
−

1

2
(x − x′)TC(x − x′)

)

σ2
s is the signal variance

C is a symmetric matrix that can have different parameterizations

C = `−2I: isotropic SE

C = diag(`)−2 with ` = (`1, . . . , `D): Automatic Relevance
Determination (ARD)

Each `j is known as the characteristic length-scale: distance for which
the function values are expected to vary significantly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 24 / 70

The Squared Exponential (SE) Covariance Function

κ(x, x′) = σ2
s exp

(
−

1

2
(x − x′)TC(x − x′)

)

σ2
s is the signal variance

C is a symmetric matrix that can have different parameterizations

C = `−2I: isotropic SE

C = diag(`)−2 with ` = (`1, . . . , `D): Automatic Relevance
Determination (ARD)

Each `j is known as the characteristic length-scale: distance for which
the function values are expected to vary significantly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 24 / 70

The Squared Exponential (SE) Covariance Function

κ(x, x′) = σ2
s exp

(
−

1

2
(x − x′)TC(x − x′)

)

σ2
s is the signal variance

C is a symmetric matrix that can have different parameterizations

C = `−2I: isotropic SE

C = diag(`)−2 with ` = (`1, . . . , `D): Automatic Relevance
Determination (ARD)

Each `j is known as the characteristic length-scale: distance for which
the function values are expected to vary significantly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 24 / 70

The Squared Exponential (SE) Covariance Function

κ(x, x′) = σ2
s exp

(
−

1

2
(x − x′)TC(x − x′)

)

σ2
s is the signal variance

C is a symmetric matrix that can have different parameterizations

C = `−2I: isotropic SE

C = diag(`)−2 with ` = (`1, . . . , `D): Automatic Relevance
Determination (ARD)

Each `j is known as the characteristic length-scale: distance for which
the function values are expected to vary significantly

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 24 / 70

The Squared Exponential (SE) Covariance Function
Example

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

` = 1, σ2
s = 1

` = 0.1, σ2
s = 1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

` = 1, σ2
s = 4 ` = 0.1, σ2

s = 4

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 25 / 70

The Squared Exponential (SE) Covariance Function
Example

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

` = 1, σ2
s = 1 ` = 0.1, σ2

s = 1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

` = 1, σ2
s = 4 ` = 0.1, σ2

s = 4

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 25 / 70

The Squared Exponential (SE) Covariance Function
Example

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

` = 1, σ2
s = 1 ` = 0.1, σ2

s = 1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

` = 1, σ2
s = 4

` = 0.1, σ2
s = 4

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 25 / 70

The Squared Exponential (SE) Covariance Function
Example

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

` = 1, σ2
s = 1 ` = 0.1, σ2

s = 1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Input x

O
u

tp
u

t
y

` = 1, σ2
s = 4 ` = 0.1, σ2

s = 4

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 25 / 70

Standard GP Regression Model: Predictions (1)

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions f∗ = f(x∗) at x∗

Prior f(x) ∼ GP(0, κ(x, x′))

Noise y = f(x) + η η ∼ N(0,σ2
n)

The joint distribution of y and f∗ is a Gaussian

We simply need to figure out the covariance structure:
Cov(yp,yq) = κ(xp, xq) + σ

2
nδpq → Cov(y) = K(X, X) + σ2

nI

To get the posterior on f∗ we need to constrain this distribution to
agree with the observed data (X, y)

This is achieved simply by conditioning: p(f∗|X, y, x∗)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 26 / 70

Standard GP Regression Model: Predictions (1)

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions f∗ = f(x∗) at x∗

Prior f(x) ∼ GP(0, κ(x, x′))

Noise y = f(x) + η η ∼ N(0,σ2
n)

The joint distribution of y and f∗ is a Gaussian

We simply need to figure out the covariance structure:
Cov(yp,yq) = κ(xp, xq) + σ

2
nδpq → Cov(y) = K(X, X) + σ2

nI

To get the posterior on f∗ we need to constrain this distribution to
agree with the observed data (X, y)

This is achieved simply by conditioning: p(f∗|X, y, x∗)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 26 / 70

Standard GP Regression Model: Predictions (1)

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions f∗ = f(x∗) at x∗

Prior f(x) ∼ GP(0, κ(x, x′))

Noise y = f(x) + η η ∼ N(0,σ2
n)

The joint distribution of y and f∗ is a Gaussian

We simply need to figure out the covariance structure:
Cov(yp,yq) = κ(xp, xq) + σ

2
nδpq → Cov(y) = K(X, X) + σ2

nI

To get the posterior on f∗ we need to constrain this distribution to
agree with the observed data (X, y)

This is achieved simply by conditioning: p(f∗|X, y, x∗)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 26 / 70

Standard GP Regression Model: Predictions (1)

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions f∗ = f(x∗) at x∗

Prior f(x) ∼ GP(0, κ(x, x′))

Noise y = f(x) + η η ∼ N(0,σ2
n)

The joint distribution of y and f∗ is a Gaussian

We simply need to figure out the covariance structure:
Cov(yp,yq) = κ(xp, xq) + σ

2
nδpq → Cov(y) = K(X, X) + σ2

nI

To get the posterior on f∗ we need to constrain this distribution to
agree with the observed data (X, y)

This is achieved simply by conditioning: p(f∗|X, y, x∗)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 26 / 70

Standard GP Regression Model: Predictions (1)

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions f∗ = f(x∗) at x∗

Prior f(x) ∼ GP(0, κ(x, x′))

Noise y = f(x) + η η ∼ N(0,σ2
n)

The joint distribution of y and f∗ is a Gaussian

We simply need to figure out the covariance structure:
Cov(yp,yq) = κ(xp, xq) + σ

2
nδpq → Cov(y) = K(X, X) + σ2

nI

To get the posterior on f∗ we need to constrain this distribution to
agree with the observed data (X, y)

This is achieved simply by conditioning: p(f∗|X, y, x∗)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 26 / 70

Standard GP Regression Model: Predictions (1)

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions f∗ = f(x∗) at x∗

Prior f(x) ∼ GP(0, κ(x, x′))

Noise y = f(x) + η η ∼ N(0,σ2
n)

The joint distribution of y and f∗ is a Gaussian

We simply need to figure out the covariance structure:
Cov(yp,yq) = κ(xp, xq) + σ

2
nδpq → Cov(y) = K(X, X) + σ2

nI

To get the posterior on f∗ we need to constrain this distribution to
agree with the observed data (X, y)

This is achieved simply by conditioning: p(f∗|X, y, x∗)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 26 / 70

Standard GP Regression Model: Predictions (1)

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ R

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions f∗ = f(x∗) at x∗

Prior f(x) ∼ GP(0, κ(x, x′))

Noise y = f(x) + η η ∼ N(0,σ2
n)

The joint distribution of y and f∗ is a Gaussian

We simply need to figure out the covariance structure:
Cov(yp,yq) = κ(xp, xq) + σ

2
nδpq → Cov(y) = K(X, X) + σ2

nI

To get the posterior on f∗ we need to constrain this distribution to
agree with the observed data (X, y)

This is achieved simply by conditioning: p(f∗|X, y, x∗)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 26 / 70

Standard GP Regression Model: Predictions (2)

[
y
f∗

]
∼ N

(
0,

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) κ(x∗x∗)

)

Denoting k∗ = K(X, x∗) and K̃ = K(X, X) + σ2
nI then:

f∗|X, y, x∗ ∼ N(E[f∗],V[f∗]),
E[f∗] = kT∗ K̃−1y,

V[f∗] = κ(x∗, x∗) − kT∗ K̃−1k∗.

E[f∗]: Linear combination of N observations, i.e. linear predictor

Say α = (K + σ2
nI)−1y then: E[f∗] =

∑N
i=1 αiκ(xi, x∗) is a linear

combination of N kernel functions: Representer theorem

We encountered this predictive distribution before Go to Linear Model

V[f∗] does not depend on y

In fact we have a Gaussian posterior process

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 27 / 70

Standard GP Regression Model: Predictions (2)

[
y
f∗

]
∼ N

(
0,

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) κ(x∗x∗)

)
Denoting k∗ = K(X, x∗) and K̃ = K(X, X) + σ2

nI

then:

f∗|X, y, x∗ ∼ N(E[f∗],V[f∗]),
E[f∗] = kT∗ K̃−1y,

V[f∗] = κ(x∗, x∗) − kT∗ K̃−1k∗.

E[f∗]: Linear combination of N observations, i.e. linear predictor

Say α = (K + σ2
nI)−1y then: E[f∗] =

∑N
i=1 αiκ(xi, x∗) is a linear

combination of N kernel functions: Representer theorem

We encountered this predictive distribution before Go to Linear Model

V[f∗] does not depend on y

In fact we have a Gaussian posterior process

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 27 / 70

Standard GP Regression Model: Predictions (2)

[
y
f∗

]
∼ N

(
0,

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) κ(x∗x∗)

)
Denoting k∗ = K(X, x∗) and K̃ = K(X, X) + σ2

nI then:

f∗|X, y, x∗ ∼ N(E[f∗],V[f∗]),
E[f∗] = kT∗ K̃−1y,

V[f∗] = κ(x∗, x∗) − kT∗ K̃−1k∗.

E[f∗]: Linear combination of N observations, i.e. linear predictor

Say α = (K + σ2
nI)−1y then: E[f∗] =

∑N
i=1 αiκ(xi, x∗) is a linear

combination of N kernel functions: Representer theorem

We encountered this predictive distribution before Go to Linear Model

V[f∗] does not depend on y

In fact we have a Gaussian posterior process

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 27 / 70

Standard GP Regression Model: Predictions (2)

[
y
f∗

]
∼ N

(
0,

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) κ(x∗x∗)

)
Denoting k∗ = K(X, x∗) and K̃ = K(X, X) + σ2

nI then:

f∗|X, y, x∗ ∼ N(E[f∗],V[f∗]),
E[f∗] = kT∗ K̃−1y,

V[f∗] = κ(x∗, x∗) − kT∗ K̃−1k∗.

E[f∗]: Linear combination of N observations, i.e. linear predictor

Say α = (K + σ2
nI)−1y then: E[f∗] =

∑N
i=1 αiκ(xi, x∗) is a linear

combination of N kernel functions: Representer theorem

We encountered this predictive distribution before Go to Linear Model

V[f∗] does not depend on y

In fact we have a Gaussian posterior process

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 27 / 70

Standard GP Regression Model: Predictions (2)

[
y
f∗

]
∼ N

(
0,

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) κ(x∗x∗)

)
Denoting k∗ = K(X, x∗) and K̃ = K(X, X) + σ2

nI then:

f∗|X, y, x∗ ∼ N(E[f∗],V[f∗]),
E[f∗] = kT∗ K̃−1y,

V[f∗] = κ(x∗, x∗) − kT∗ K̃−1k∗.

E[f∗]: Linear combination of N observations, i.e. linear predictor

Say α = (K + σ2
nI)−1y then: E[f∗] =

∑N
i=1 αiκ(xi, x∗) is a linear

combination of N kernel functions: Representer theorem

We encountered this predictive distribution before Go to Linear Model

V[f∗] does not depend on y

In fact we have a Gaussian posterior process

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 27 / 70

Standard GP Regression Model: Predictions (2)

[
y
f∗

]
∼ N

(
0,

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) κ(x∗x∗)

)
Denoting k∗ = K(X, x∗) and K̃ = K(X, X) + σ2

nI then:

f∗|X, y, x∗ ∼ N(E[f∗],V[f∗]),
E[f∗] = kT∗ K̃−1y,

V[f∗] = κ(x∗, x∗) − kT∗ K̃−1k∗.

E[f∗]: Linear combination of N observations, i.e. linear predictor

Say α = (K + σ2
nI)−1y then: E[f∗] =

∑N
i=1 αiκ(xi, x∗) is a linear

combination of N kernel functions: Representer theorem

We encountered this predictive distribution before Go to Linear Model

V[f∗] does not depend on y

In fact we have a Gaussian posterior process

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 27 / 70

Standard GP Regression Model: Predictions (2)

[
y
f∗

]
∼ N

(
0,

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) κ(x∗x∗)

)
Denoting k∗ = K(X, x∗) and K̃ = K(X, X) + σ2

nI then:

f∗|X, y, x∗ ∼ N(E[f∗],V[f∗]),
E[f∗] = kT∗ K̃−1y,

V[f∗] = κ(x∗, x∗) − kT∗ K̃−1k∗.

E[f∗]: Linear combination of N observations, i.e. linear predictor

Say α = (K + σ2
nI)−1y then: E[f∗] =

∑N
i=1 αiκ(xi, x∗) is a linear

combination of N kernel functions: Representer theorem

We encountered this predictive distribution before Go to Linear Model

V[f∗] does not depend on y

In fact we have a Gaussian posterior process

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 27 / 70

Standard GP Regression Model: Predictions (2)

[
y
f∗

]
∼ N

(
0,

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) κ(x∗x∗)

)
Denoting k∗ = K(X, x∗) and K̃ = K(X, X) + σ2

nI then:

f∗|X, y, x∗ ∼ N(E[f∗],V[f∗]),
E[f∗] = kT∗ K̃−1y,

V[f∗] = κ(x∗, x∗) − kT∗ K̃−1k∗.

E[f∗]: Linear combination of N observations, i.e. linear predictor

Say α = (K + σ2
nI)−1y then: E[f∗] =

∑N
i=1 αiκ(xi, x∗) is a linear

combination of N kernel functions: Representer theorem

We encountered this predictive distribution before Go to Linear Model

V[f∗] does not depend on y

In fact we have a Gaussian posterior process

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 27 / 70

The Graphical Model for GPs

Graphical model for Gaussian Process

fn

f3

f2

f1 f∗1

f∗2

f∗3

xnyn

x3

y3

x2

y2

x1

y1

y∗
1

x∗
1

y∗
2

x∗
2

y∗
3

x∗
3

Square nodes are observed (clamped),
round nodes stochastic (free).

All pairs of latent variables are con-
nected.

Predictions y∗ depend only on the corre-
sponding single latent f ∗.

Notice, that adding a triplet x∗
m f ∗m y∗m

does not influence the distribution. This
is guaranteed by the marginalization
property of the GP.

This explains why we can make inference using a finite amount of computation!

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 21 / 55

Figure from Carl Rasmussen’s slides

Observations y depend on their corresponding latent function f

The marginalization property implies that adding a new x∗i , f∗i , y∗i
does not affect the distribution

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 28 / 70

The Graphical Model for GPs

Graphical model for Gaussian Process

fn

f3

f2

f1 f∗1

f∗2

f∗3

xnyn

x3

y3

x2

y2

x1

y1

y∗
1

x∗
1

y∗
2

x∗
2

y∗
3

x∗
3

Square nodes are observed (clamped),
round nodes stochastic (free).

All pairs of latent variables are con-
nected.

Predictions y∗ depend only on the corre-
sponding single latent f ∗.

Notice, that adding a triplet x∗
m f ∗m y∗m

does not influence the distribution. This
is guaranteed by the marginalization
property of the GP.

This explains why we can make inference using a finite amount of computation!

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 21 / 55

Figure from Carl Rasmussen’s slides

Observations y depend on their corresponding latent function f

The marginalization property implies that adding a new x∗i , f∗i , y∗i
does not affect the distribution

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 28 / 70

The Graphical Model for GPs

Graphical model for Gaussian Process

fn

f3

f2

f1 f∗1

f∗2

f∗3

xnyn

x3

y3

x2

y2

x1

y1

y∗
1

x∗
1

y∗
2

x∗
2

y∗
3

x∗
3

Square nodes are observed (clamped),
round nodes stochastic (free).

All pairs of latent variables are con-
nected.

Predictions y∗ depend only on the corre-
sponding single latent f ∗.

Notice, that adding a triplet x∗
m f ∗m y∗m

does not influence the distribution. This
is guaranteed by the marginalization
property of the GP.

This explains why we can make inference using a finite amount of computation!

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 21 / 55

Figure from Carl Rasmussen’s slides

Observations y depend on their corresponding latent function f

The marginalization property implies that adding a new x∗i , f∗i , y∗i
does not affect the distribution

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 28 / 70

The Graphical Model for GPs

Graphical model for Gaussian Process

fn

f3

f2

f1 f∗1

f∗2

f∗3

xnyn

x3

y3

x2

y2

x1

y1

y∗
1

x∗
1

y∗
2

x∗
2

y∗
3

x∗
3

Square nodes are observed (clamped),
round nodes stochastic (free).

All pairs of latent variables are con-
nected.

Predictions y∗ depend only on the corre-
sponding single latent f ∗.

Notice, that adding a triplet x∗
m f ∗m y∗m

does not influence the distribution. This
is guaranteed by the marginalization
property of the GP.

This explains why we can make inference using a finite amount of computation!

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 21 / 55

Figure from Carl Rasmussen’s slides

Observations y depend on their corresponding latent function f

The marginalization property implies that adding a new x∗i , f∗i , y∗i
does not affect the distribution

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 28 / 70

Model Selection

It includes the discrete choice of the functional form for the
covariance function and the values for the hyper-parameters.

E.g. for the SE: κ(x, x′) = σ2
s exp

(
−1

2(x − x′)TC(x − x′)T
)

the
parameters are σ2

s and the parameters of C

However, we will refer to the set of hyper-parameters θ as the
parameters of the covariance and the noise variance σ2

n

We can do cross-validation (potential problems?)

We focus here on the so-called type II maximum likelihood, i.e. we
want to maximize the marginal likelihood.

Integrate out the “parameters” of the GP: (which parameters?)

p(y|X,θ) =

∫
p(y|f , X,θ)p(f |X,θ)df

= N(y|0, K + σ2I)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 29 / 70

Model Selection

It includes the discrete choice of the functional form for the
covariance function and the values for the hyper-parameters.

E.g. for the SE: κ(x, x′) = σ2
s exp

(
−1

2(x − x′)TC(x − x′)T
)

the
parameters are σ2

s and the parameters of C

However, we will refer to the set of hyper-parameters θ as the
parameters of the covariance and the noise variance σ2

n

We can do cross-validation (potential problems?)

We focus here on the so-called type II maximum likelihood, i.e. we
want to maximize the marginal likelihood.

Integrate out the “parameters” of the GP: (which parameters?)

p(y|X,θ) =

∫
p(y|f , X,θ)p(f |X,θ)df

= N(y|0, K + σ2I)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 29 / 70

Model Selection

It includes the discrete choice of the functional form for the
covariance function and the values for the hyper-parameters.

E.g. for the SE: κ(x, x′) = σ2
s exp

(
−1

2(x − x′)TC(x − x′)T
)

the
parameters are σ2

s and the parameters of C

However, we will refer to the set of hyper-parameters θ as the
parameters of the covariance and the noise variance σ2

n

We can do cross-validation (potential problems?)

We focus here on the so-called type II maximum likelihood, i.e. we
want to maximize the marginal likelihood.

Integrate out the “parameters” of the GP: (which parameters?)

p(y|X,θ) =

∫
p(y|f , X,θ)p(f |X,θ)df

= N(y|0, K + σ2I)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 29 / 70

Model Selection

It includes the discrete choice of the functional form for the
covariance function and the values for the hyper-parameters.

E.g. for the SE: κ(x, x′) = σ2
s exp

(
−1

2(x − x′)TC(x − x′)T
)

the
parameters are σ2

s and the parameters of C

However, we will refer to the set of hyper-parameters θ as the
parameters of the covariance and the noise variance σ2

n

We can do cross-validation (potential problems?)

We focus here on the so-called type II maximum likelihood, i.e. we
want to maximize the marginal likelihood.

Integrate out the “parameters” of the GP: (which parameters?)

p(y|X,θ) =

∫
p(y|f , X,θ)p(f |X,θ)df

= N(y|0, K + σ2I)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 29 / 70

Model Selection

It includes the discrete choice of the functional form for the
covariance function and the values for the hyper-parameters.

E.g. for the SE: κ(x, x′) = σ2
s exp

(
−1

2(x − x′)TC(x − x′)T
)

the
parameters are σ2

s and the parameters of C

However, we will refer to the set of hyper-parameters θ as the
parameters of the covariance and the noise variance σ2

n

We can do cross-validation (potential problems?)

We focus here on the so-called type II maximum likelihood, i.e. we
want to maximize the marginal likelihood.

Integrate out the “parameters” of the GP: (which parameters?)

p(y|X,θ) =

∫
p(y|f , X,θ)p(f |X,θ)df

= N(y|0, K + σ2I)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 29 / 70

Model Selection

It includes the discrete choice of the functional form for the
covariance function and the values for the hyper-parameters.

E.g. for the SE: κ(x, x′) = σ2
s exp

(
−1

2(x − x′)TC(x − x′)T
)

the
parameters are σ2

s and the parameters of C

However, we will refer to the set of hyper-parameters θ as the
parameters of the covariance and the noise variance σ2

n

We can do cross-validation (potential problems?)

We focus here on the so-called type II maximum likelihood, i.e. we
want to maximize the marginal likelihood.

Integrate out the “parameters” of the GP: (which parameters?)

p(y|X,θ) =

∫
p(y|f , X,θ)p(f |X,θ)df

= N(y|0, K + σ2I)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 29 / 70

Model Selection

It includes the discrete choice of the functional form for the
covariance function and the values for the hyper-parameters.

E.g. for the SE: κ(x, x′) = σ2
s exp

(
−1

2(x − x′)TC(x − x′)T
)

the
parameters are σ2

s and the parameters of C

However, we will refer to the set of hyper-parameters θ as the
parameters of the covariance and the noise variance σ2

n

We can do cross-validation (potential problems?)

We focus here on the so-called type II maximum likelihood, i.e. we
want to maximize the marginal likelihood.

Integrate out the “parameters” of the GP: (which parameters?)

p(y|X,θ) =

∫
p(y|f , X,θ)p(f |X,θ)df

= N(y|0, K + σ2I)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 29 / 70

Log Marginal Likelihood

L = log p(y|X,θ)

= −
1

2
yT (K + σ2

nI)−1y︸ ︷︷ ︸
data-fit

−
1

2
log|K + σ2

nI|︸ ︷︷ ︸
complexity

−
N

2
log 2π︸ ︷︷ ︸

normaliz.

Isotropic SE

σ2
s = 1, σ2

n = 0.01

` = 1

N = 20

10
−1

10
0

10
1

−100

−50

0

50

Length−scale

L
o

g
 p

ro
b
a

b
ili

ty

Data−fit
Complexity
Total

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 30 / 70

Log Marginal Likelihood

L = log p(y|X,θ)

= −
1

2
yT (K + σ2

nI)−1y︸ ︷︷ ︸
data-fit

−
1

2
log|K + σ2

nI|︸ ︷︷ ︸
complexity

−
N

2
log 2π︸ ︷︷ ︸

normaliz.

Isotropic SE

σ2
s = 1, σ2

n = 0.01

` = 1

N = 20

10
−1

10
0

10
1

−100

−50

0

50

Length−scale

L
o

g
 p

ro
b
a

b
ili

ty

Data−fit
Complexity
Total

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 30 / 70

Log Marginal Likelihood

L = log p(y|X,θ)

= −
1

2
yT (K + σ2

nI)−1y︸ ︷︷ ︸
data-fit

−
1

2
log|K + σ2

nI|︸ ︷︷ ︸
complexity

−
N

2
log 2π︸ ︷︷ ︸

normaliz.

Isotropic SE

σ2
s = 1, σ2

n = 0.01

` = 1

N = 20

10
−1

10
0

10
1

−100

−50

0

50

Length−scale

L
o

g
 p

ro
b

a
b

ili
ty

Data−fit
Complexity
Total

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 30 / 70

Hyper-parameter Learning

Let K̃ = K + σ2
nI:

∂L

∂θi
=

1

2
yT K̃−1 ∂K̃

∂θi
K̃−1y −

1

2
tr

(
K̃−1 ∂K̃

∂θi

)

=
1

2
tr

(
(ααT − K̃−1)

∂K̃

∂θi

)

where α = K̃−1y.

Can use gradient-based optimization

General approach and only needs derivatives of the covariance

Such principled “kernel” learning does not exist in standard SVM

Non-convex optimization

Multiple local optima correspond to different explanations of the data

Computational Requirements?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 31 / 70

Hyper-parameter Learning

Let K̃ = K + σ2
nI:

∂L

∂θi
=

1

2
yT K̃−1 ∂K̃

∂θi
K̃−1y −

1

2
tr

(
K̃−1 ∂K̃

∂θi

)

=
1

2
tr

(
(ααT − K̃−1)

∂K̃

∂θi

)

where α = K̃−1y.

Can use gradient-based optimization

General approach and only needs derivatives of the covariance

Such principled “kernel” learning does not exist in standard SVM

Non-convex optimization

Multiple local optima correspond to different explanations of the data

Computational Requirements?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 31 / 70

Hyper-parameter Learning

Let K̃ = K + σ2
nI:

∂L

∂θi
=

1

2
yT K̃−1 ∂K̃

∂θi
K̃−1y −

1

2
tr

(
K̃−1 ∂K̃

∂θi

)

=
1

2
tr

(
(ααT − K̃−1)

∂K̃

∂θi

)

where α = K̃−1y.

Can use gradient-based optimization

General approach and only needs derivatives of the covariance

Such principled “kernel” learning does not exist in standard SVM

Non-convex optimization

Multiple local optima correspond to different explanations of the data

Computational Requirements?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 31 / 70

Hyper-parameter Learning

Let K̃ = K + σ2
nI:

∂L

∂θi
=

1

2
yT K̃−1 ∂K̃

∂θi
K̃−1y −

1

2
tr

(
K̃−1 ∂K̃

∂θi

)

=
1

2
tr

(
(ααT − K̃−1)

∂K̃

∂θi

)

where α = K̃−1y.

Can use gradient-based optimization

General approach and only needs derivatives of the covariance

Such principled “kernel” learning does not exist in standard SVM

Non-convex optimization

Multiple local optima correspond to different explanations of the data

Computational Requirements?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 31 / 70

Hyper-parameter Learning

Let K̃ = K + σ2
nI:

∂L

∂θi
=

1

2
yT K̃−1 ∂K̃

∂θi
K̃−1y −

1

2
tr

(
K̃−1 ∂K̃

∂θi

)

=
1

2
tr

(
(ααT − K̃−1)

∂K̃

∂θi

)

where α = K̃−1y.

Can use gradient-based optimization

General approach and only needs derivatives of the covariance

Such principled “kernel” learning does not exist in standard SVM

Non-convex optimization

Multiple local optima correspond to different explanations of the data

Computational Requirements?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 31 / 70

Hyper-parameter Learning

Let K̃ = K + σ2
nI:

∂L

∂θi
=

1

2
yT K̃−1 ∂K̃

∂θi
K̃−1y −

1

2
tr

(
K̃−1 ∂K̃

∂θi

)

=
1

2
tr

(
(ααT − K̃−1)

∂K̃

∂θi

)

where α = K̃−1y.

Can use gradient-based optimization

General approach and only needs derivatives of the covariance

Such principled “kernel” learning does not exist in standard SVM

Non-convex optimization

Multiple local optima correspond to different explanations of the data

Computational Requirements?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 31 / 70

Hyper-parameter Learning

Let K̃ = K + σ2
nI:

∂L

∂θi
=

1

2
yT K̃−1 ∂K̃

∂θi
K̃−1y −

1

2
tr

(
K̃−1 ∂K̃

∂θi

)

=
1

2
tr

(
(ααT − K̃−1)

∂K̃

∂θi

)

where α = K̃−1y.

Can use gradient-based optimization

General approach and only needs derivatives of the covariance

Such principled “kernel” learning does not exist in standard SVM

Non-convex optimization

Multiple local optima correspond to different explanations of the data

Computational Requirements?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 31 / 70

Automatic Relevance Determination (ARD)

Inverse of the length-scale determines the relevance of the dimension.

The larger the length-scale the more irrelevant the corresponding
input is.

Learned lengh-scale for irrelevant dimension: 1.0557× 105

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 32 / 70

Automatic Relevance Determination (ARD)

Inverse of the length-scale determines the relevance of the dimension.

The larger the length-scale the more irrelevant the corresponding
input is.

Learned lengh-scale for irrelevant dimension: 1.0557× 105

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 32 / 70

Automatic Relevance Determination (ARD)

Inverse of the length-scale determines the relevance of the dimension.

The larger the length-scale the more irrelevant the corresponding
input is.

Learned lengh-scale for irrelevant dimension: 1.0557× 105

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 32 / 70

Automatic Relevance Determination (ARD)

Inverse of the length-scale determines the relevance of the dimension.

The larger the length-scale the more irrelevant the corresponding
input is.

Learned lengh-scale for irrelevant dimension: 1.0557× 105

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 32 / 70

Other Covariance Functions: Matérn Covariance

κ(x, x′) =
21−ν

Γ(ν)

(√
2ν‖x − x′‖

`

)ν
Kν

(√
2ν‖x − x′‖

`

)
where Kν is a modified Bessel function and ν > 0, ` > 0.

−5 0 5
−3

−2

−1

0

1

2

3

x: Input

y
:

T
a

rg
e

t

ν=1/2 ν=3/2 ν=5/2

` = 1

Stationary, Isotropic

ν = 1/2:

κ(x, x′) = exp(− |x−x′|
`)

I Very rough process
I Brownian motion
I Ornstein-Uhlenbeck (D=1)

ν→∞: SE covariance

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 33 / 70

Other Covariance Functions: Matérn Covariance

κ(x, x′) =
21−ν

Γ(ν)

(√
2ν‖x − x′‖

`

)ν
Kν

(√
2ν‖x − x′‖

`

)
where Kν is a modified Bessel function and ν > 0, ` > 0.

−5 0 5
−3

−2

−1

0

1

2

3

x: Input

y
:

T
a

rg
e

t

ν=1/2 ν=3/2 ν=5/2

` = 1

Stationary, Isotropic

ν = 1/2:

κ(x, x′) = exp(− |x−x′|
`)

I Very rough process
I Brownian motion
I Ornstein-Uhlenbeck (D=1)

ν→∞: SE covariance

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 33 / 70

Other Covariance Functions: Matérn Covariance

κ(x, x′) =
21−ν

Γ(ν)

(√
2ν‖x − x′‖

`

)ν
Kν

(√
2ν‖x − x′‖

`

)
where Kν is a modified Bessel function and ν > 0, ` > 0.

−5 0 5
−3

−2

−1

0

1

2

3

x: Input

y
:

T
a

rg
e

t

ν=1/2 ν=3/2 ν=5/2

` = 1

Stationary, Isotropic

ν = 1/2:

κ(x, x′) = exp(− |x−x′|
`)

I Very rough process
I Brownian motion
I Ornstein-Uhlenbeck (D=1)

ν→∞: SE covariance

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 33 / 70

Other Covariance Functions: Matérn Covariance

κ(x, x′) =
21−ν

Γ(ν)

(√
2ν‖x − x′‖

`

)ν
Kν

(√
2ν‖x − x′‖

`

)
where Kν is a modified Bessel function and ν > 0, ` > 0.

−5 0 5
−3

−2

−1

0

1

2

3

x: Input

y
:

T
a

rg
e

t

ν=1/2 ν=3/2 ν=5/2

` = 1

Stationary, Isotropic

ν = 1/2:

κ(x, x′) = exp(− |x−x′|
`)

I Very rough process
I Brownian motion
I Ornstein-Uhlenbeck (D=1)

ν→∞: SE covariance

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 33 / 70

Other Covariance Functions: Matérn Covariance

κ(x, x′) =
21−ν

Γ(ν)

(√
2ν‖x − x′‖

`

)ν
Kν

(√
2ν‖x − x′‖

`

)
where Kν is a modified Bessel function and ν > 0, ` > 0.

−5 0 5
−3

−2

−1

0

1

2

3

x: Input

y
:

T
a

rg
e

t

ν=1/2 ν=3/2 ν=5/2

` = 1

Stationary, Isotropic

ν = 1/2:

κ(x, x′) = exp(− |x−x′|
`)

I Very rough process
I Brownian motion
I Ornstein-Uhlenbeck (D=1)

ν→∞: SE covariance

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 33 / 70

Other Covariance Functions: Rational Quadratic

κ(x, x′) =
(

1 +
‖x − x′‖2

2α`2

)−α

with α > 0, ` > 0.
can be seen as an infinite sum of squared exponential (SE) covariance
functions with different characteristic length-scales.

−5 0 5
−3

−2

−1

0

1

2

x: Input

y
:

T
a

rg
e

t

α=1/2

α=2

with α→∞ is the SE covariance with length-scale `.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 34 / 70

Other Covariance Functions: Rational Quadratic

κ(x, x′) =
(

1 +
‖x − x′‖2

2α`2

)−α

with α > 0, ` > 0.
can be seen as an infinite sum of squared exponential (SE) covariance
functions with different characteristic length-scales.

−5 0 5
−3

−2

−1

0

1

2

x: Input

y
:

T
a

rg
e

t

α=1/2

α=2

with α→∞ is the SE covariance with length-scale `.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 34 / 70

Other Covariance Functions: Rational Quadratic

κ(x, x′) =
(

1 +
‖x − x′‖2

2α`2

)−α

with α > 0, ` > 0.
can be seen as an infinite sum of squared exponential (SE) covariance
functions with different characteristic length-scales.

−5 0 5
−3

−2

−1

0

1

2

x: Input

y
:

T
a

rg
e

t

α=1/2

α=2

with α→∞ is the SE covariance with length-scale `.
Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 34 / 70

Other Covariance Functions: Neural Network Covariance

Consider a neural network with one hidden layer and NH hidden units.

Under certain assumptions the corresponding stochastic process will
converge to a Gaussian Process as NH →∞.

For a specific settings of the transfer function of the neural net:

κ(x, x′) =
2

π
sin−1

(
2x̃TΣx̃′√

(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)

)

−5 0 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x: Input

y
:
T

a
rg

e
t

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 35 / 70

Other Covariance Functions: Periodic, Smooth Functions

We can create a distribution over periodic functions of x by using the
mapping u(x) = (cos(x), sin(x)) and then use the SE covariance on u
space. This gives rise to:

κ(x, x′) = exp

(
−

2 sin2(x−x
′

2)

`2

)

−5 0 5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x: Input

y
:
T

a
rg

e
t

This is called warping and can also be used to introduce non-stationarity.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 36 / 70

Other Covariance Functions: Periodic, Smooth Functions

We can create a distribution over periodic functions of x by using the
mapping u(x) = (cos(x), sin(x)) and then use the SE covariance on u
space. This gives rise to:

κ(x, x′) = exp

(
−

2 sin2(x−x
′

2)

`2

)

−5 0 5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x: Input

y
:
T

a
rg

e
t

This is called warping and can also be used to introduce non-stationarity.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 36 / 70

Other Covariance Functions: Periodic, Smooth Functions

We can create a distribution over periodic functions of x by using the
mapping u(x) = (cos(x), sin(x)) and then use the SE covariance on u
space. This gives rise to:

κ(x, x′) = exp

(
−

2 sin2(x−x
′

2)

`2

)

−5 0 5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x: Input

y
:
T

a
rg

e
t

This is called warping and can also be used to introduce non-stationarity.
Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 36 / 70

1 The Gaussian Distribution

2 Bayesian Linear Regression

3 Gaussian Processes for Regression

4 Gaussian Processes for Classification

5 Approximations for Large Datasets

6 Current Research

7 Conclusions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 37 / 70

Gaussian Process Classification: Introduction

Targets are discrete

Examples: face recognition, digit recognition

We want probabilistic classifications

Can use decision theory for point prediction and e.g. zero-one loss

Unlike the regression setting, in GP classification the non-Gaussian
likelihood makes things analytically intractable

Need approximations to the posterior, e.g. Laplace

Generative v discriminative + and −?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 38 / 70

Gaussian Process Classification: Introduction

Targets are discrete

Examples: face recognition, digit recognition

We want probabilistic classifications

Can use decision theory for point prediction and e.g. zero-one loss

Unlike the regression setting, in GP classification the non-Gaussian
likelihood makes things analytically intractable

Need approximations to the posterior, e.g. Laplace

Generative v discriminative + and −?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 38 / 70

Gaussian Process Classification: Introduction

Targets are discrete

Examples: face recognition, digit recognition

We want probabilistic classifications

Can use decision theory for point prediction and e.g. zero-one loss

Unlike the regression setting, in GP classification the non-Gaussian
likelihood makes things analytically intractable

Need approximations to the posterior, e.g. Laplace

Generative v discriminative + and −?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 38 / 70

Gaussian Process Classification: Introduction

Targets are discrete

Examples: face recognition, digit recognition

We want probabilistic classifications

Can use decision theory for point prediction and e.g. zero-one loss

Unlike the regression setting, in GP classification the non-Gaussian
likelihood makes things analytically intractable

Need approximations to the posterior, e.g. Laplace

Generative v discriminative + and −?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 38 / 70

Gaussian Process Classification: Introduction

Targets are discrete

Examples: face recognition, digit recognition

We want probabilistic classifications

Can use decision theory for point prediction and e.g. zero-one loss

Unlike the regression setting, in GP classification the non-Gaussian
likelihood makes things analytically intractable

Need approximations to the posterior, e.g. Laplace

Generative v discriminative + and −?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 38 / 70

Gaussian Process Classification: Introduction

Targets are discrete

Examples: face recognition, digit recognition

We want probabilistic classifications

Can use decision theory for point prediction and e.g. zero-one loss

Unlike the regression setting, in GP classification the non-Gaussian
likelihood makes things analytically intractable

Need approximations to the posterior, e.g. Laplace

Generative v discriminative + and −?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 38 / 70

Gaussian Process Classification: Introduction

Targets are discrete

Examples: face recognition, digit recognition

We want probabilistic classifications

Can use decision theory for point prediction and e.g. zero-one loss

Unlike the regression setting, in GP classification the non-Gaussian
likelihood makes things analytically intractable

Need approximations to the posterior, e.g. Laplace

Generative v discriminative + and −?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 38 / 70

Linear Models for Classification

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ {−1,+1}

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions at x∗
Model : p(y = +1|X, w) = σ(wTx)

Two popular approaches:

Logistic Regression σ(z) =
1

1 + exp(−z)

Probit Regression: σ(z) =

∫z
−∞N(x|0, 1)dx

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 39 / 70

Linear Models for Classification

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ {−1,+1}

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions at x∗
Model : p(y = +1|X, w) = σ(wTx)

Two popular approaches:

Logistic Regression σ(z) =
1

1 + exp(−z)

Probit Regression: σ(z) =

∫z
−∞N(x|0, 1)dx

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 39 / 70

Linear Models for Classification

Data : D = {(xi,yi)}
N
i=1, x ∈ RD, y ∈ {−1,+1}

Input : (X)D×N, Targets: (y)N×1

Goal : Make predictions at x∗
Model : p(y = +1|X, w) = σ(wTx)

Two popular approaches:

Logistic Regression σ(z) =
1

1 + exp(−z)

Probit Regression: σ(z) =

∫z
−∞N(x|0, 1)dx

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 39 / 70

MAP Approach

As in Bayesian linear regression we can use the prior:

w ∼ N(w|0, Σw).

However, the full posterior does not have a simple analytical form. We
write down the un-normalized log-posterior:

LMAP =

N∑
i=1

logσ(yifi) −
1

2
wTΣ−1

w w,

Where fi
def
= wTxi. This objective function is concave and finding its

maximum is “easy”, e.g. using Newton’s method, so called IRLS (iterative
reweighted least squares)

Multi-class case is addressed with a softmax function.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 40 / 70

MAP Approach

As in Bayesian linear regression we can use the prior:

w ∼ N(w|0, Σw).

However, the full posterior does not have a simple analytical form. We
write down the un-normalized log-posterior:

LMAP =

N∑
i=1

logσ(yifi) −
1

2
wTΣ−1

w w,

Where fi
def
= wTxi.

This objective function is concave and finding its
maximum is “easy”, e.g. using Newton’s method, so called IRLS (iterative
reweighted least squares)

Multi-class case is addressed with a softmax function.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 40 / 70

MAP Approach

As in Bayesian linear regression we can use the prior:

w ∼ N(w|0, Σw).

However, the full posterior does not have a simple analytical form. We
write down the un-normalized log-posterior:

LMAP =

N∑
i=1

logσ(yifi) −
1

2
wTΣ−1

w w,

Where fi
def
= wTxi. This objective function is concave and finding its

maximum is “easy”, e.g. using Newton’s method, so called IRLS (iterative
reweighted least squares)

Multi-class case is addressed with a softmax function.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 40 / 70

MAP Approach

As in Bayesian linear regression we can use the prior:

w ∼ N(w|0, Σw).

However, the full posterior does not have a simple analytical form. We
write down the un-normalized log-posterior:

LMAP =

N∑
i=1

logσ(yifi) −
1

2
wTΣ−1

w w,

Where fi
def
= wTxi. This objective function is concave and finding its

maximum is “easy”, e.g. using Newton’s method, so called IRLS (iterative
reweighted least squares)

Multi-class case is addressed with a softmax function.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 40 / 70

Gaussian Process Classification (GPC)

1 Place prior over the latent functions f(x)

2 Squash this through a sigmoid function: p(y = +1|x) = σ(f(x))

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

x

L
a
te

n
t
F

u
n
c
ti
o
n
 f
(x

)

Sample from a GP

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
+

1
|x

)

σ(f(x)) = 1
1+e−f(x)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 41 / 70

Gaussian Process Classification (GPC)

1 Place prior over the latent functions f(x)

2 Squash this through a sigmoid function: p(y = +1|x) = σ(f(x))

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

x

L
a
te

n
t
F

u
n
c
ti
o
n
 f
(x

)

Sample from a GP

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
+

1
|x

)

σ(f(x)) = 1
1+e−f(x)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 41 / 70

GPC Inference

1 Compute predictive distribution of latent functions:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

I Analytically intractable

2 Compute probabilistic predictions:

p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

I Analytic solution for the probit model
I Require numerical approximations (1D) integral for other sigmoid

functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 42 / 70

GPC Inference

1 Compute predictive distribution of latent functions:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

I Analytically intractable

2 Compute probabilistic predictions:

p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

I Analytic solution for the probit model
I Require numerical approximations (1D) integral for other sigmoid

functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 42 / 70

GPC Inference

1 Compute predictive distribution of latent functions:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

I Analytically intractable

2 Compute probabilistic predictions:

p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

I Analytic solution for the probit model
I Require numerical approximations (1D) integral for other sigmoid

functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 42 / 70

GPC Inference

1 Compute predictive distribution of latent functions:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

I Analytically intractable

2 Compute probabilistic predictions:

p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

I Analytic solution for the probit model

I Require numerical approximations (1D) integral for other sigmoid
functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 42 / 70

GPC Inference

1 Compute predictive distribution of latent functions:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

I Analytically intractable

2 Compute probabilistic predictions:

p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

I Analytic solution for the probit model
I Require numerical approximations (1D) integral for other sigmoid

functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 42 / 70

The Laplace Approximation

Idea: Find a Gaussian approximation to p(z) = 1
Zf(z), where Z is

unknown. We centre the Gaussian approximation at the mode of p(z).

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

−2 −1 0 1 2 3 4
0

10

20

30

40

Figures by Christopher M. Bishop (MLPR, 2006)

Left : p(z) ∝ exp(−z2/2)σ(20z+ 4) and corresponding Gaussian
approximation.

Right : Negative logarithms of the corresponding curves.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 43 / 70

The Laplace Approximation

Idea: Find a Gaussian approximation to p(z) = 1
Zf(z), where Z is

unknown. We centre the Gaussian approximation at the mode of p(z).

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

−2 −1 0 1 2 3 4
0

10

20

30

40

Figures by Christopher M. Bishop (MLPR, 2006)

Left : p(z) ∝ exp(−z2/2)σ(20z+ 4) and corresponding Gaussian
approximation.

Right : Negative logarithms of the corresponding curves.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 43 / 70

The Laplace Approximation

Idea: Find a Gaussian approximation to p(z) = 1
Zf(z), where Z is

unknown. We centre the Gaussian approximation at the mode of p(z).

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

−2 −1 0 1 2 3 4
0

10

20

30

40

Figures by Christopher M. Bishop (MLPR, 2006)

Left : p(z) ∝ exp(−z2/2)σ(20z+ 4) and corresponding Gaussian
approximation.

Right : Negative logarithms of the corresponding curves.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 43 / 70

The Laplace Approximation to the GP Binary Classifier

Gaussian approximation

p(f |D,θ) ≈ N(f |̂f ,A−1)

where: f̂ = argmaxf p(f |D,θ) = argmaxf p(D|f ,θ)p(f |θ) and
A is the Hessian of the negative log-posterior evaluated at f̂ .

Hence we focus on the maximization of:

ψ(f) = log p(y|f) −
1

2
fTK−1f −

1

2
log|K|−

N

2
log 2π

Using Newton’s method we obtain the following update:

fnew = (W + K−1)−1

(
∂log p(y|f)

∂f
+ Wf

)
with Wpq =

∂2log p(y|f)

∂fp∂fq
.

Constraint on A? What does this imply?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 44 / 70

The Laplace Approximation to the GP Binary Classifier

Gaussian approximation

p(f |D,θ) ≈ N(f |̂f ,A−1)

where: f̂ = argmaxf p(f |D,θ) = argmaxf p(D|f ,θ)p(f |θ) and
A is the Hessian of the negative log-posterior evaluated at f̂ .

Hence we focus on the maximization of:

ψ(f) = log p(y|f) −
1

2
fTK−1f −

1

2
log|K|−

N

2
log 2π

Using Newton’s method we obtain the following update:

fnew = (W + K−1)−1

(
∂log p(y|f)

∂f
+ Wf

)
with Wpq =

∂2log p(y|f)

∂fp∂fq
.

Constraint on A? What does this imply?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 44 / 70

The Laplace Approximation to the GP Binary Classifier

Gaussian approximation

p(f |D,θ) ≈ N(f |̂f ,A−1)

where: f̂ = argmaxf p(f |D,θ) = argmaxf p(D|f ,θ)p(f |θ) and
A is the Hessian of the negative log-posterior evaluated at f̂ .

Hence we focus on the maximization of:

ψ(f) = log p(y|f) −
1

2
fTK−1f −

1

2
log|K|−

N

2
log 2π

Using Newton’s method we obtain the following update:

fnew = (W + K−1)−1

(
∂log p(y|f)

∂f
+ Wf

)
with Wpq =

∂2log p(y|f)

∂fp∂fq
.

Constraint on A? What does this imply?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 44 / 70

The Laplace Approximation to the GP Binary Classifier

Gaussian approximation

p(f |D,θ) ≈ N(f |̂f ,A−1)

where: f̂ = argmaxf p(f |D,θ) = argmaxf p(D|f ,θ)p(f |θ) and
A is the Hessian of the negative log-posterior evaluated at f̂ .

Hence we focus on the maximization of:

ψ(f) = log p(y|f) −
1

2
fTK−1f −

1

2
log|K|−

N

2
log 2π

Using Newton’s method we obtain the following update:

fnew = (W + K−1)−1

(
∂log p(y|f)

∂f
+ Wf

)
with Wpq =

∂2log p(y|f)

∂fp∂fq
.

Constraint on A? What does this imply?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 44 / 70

The Lapace Approximation to GPC

Convergence and Uniqueness:

Note that W is a diagonal matrix due to iid assumption

for concave likelihood functions the un-normalized log posterior has a
unique maximum

Once we have found the maximum posterior f̂ by using the above iteration
we can show that:

p(f |D,θ) ≈ N(f |̂f , (W + K−1)−1).

When is this approximation a good/bad idea?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 45 / 70

Posterior and Predictive Distributions

Recalling the posterior distribution:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

Hence, under Laplace approximation:

E[f∗|X, y, x∗] = k(x∗)TK−1f̂

V[f∗|X, y, x∗] = κ(x∗, x∗) − kT∗ (K + W−1)−1k∗

For predictions we have two alternatives:

Average π̄∗ = p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

MAP π̂∗ = σ(E[f∗|y])
They provide the same prediction when concerned with most probable
classification

Full distribution is required if we are concerned with confidence in the
predictions (e.g. reject options)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 46 / 70

Posterior and Predictive Distributions

Recalling the posterior distribution:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

Hence, under Laplace approximation:

E[f∗|X, y, x∗] = k(x∗)TK−1f̂

V[f∗|X, y, x∗] = κ(x∗, x∗) − kT∗ (K + W−1)−1k∗

For predictions we have two alternatives:

Average π̄∗ = p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

MAP π̂∗ = σ(E[f∗|y])
They provide the same prediction when concerned with most probable
classification

Full distribution is required if we are concerned with confidence in the
predictions (e.g. reject options)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 46 / 70

Posterior and Predictive Distributions

Recalling the posterior distribution:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

Hence, under Laplace approximation:

E[f∗|X, y, x∗] = k(x∗)TK−1f̂

V[f∗|X, y, x∗] = κ(x∗, x∗) − kT∗ (K + W−1)−1k∗

For predictions we have two alternatives:

Average π̄∗ = p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

MAP π̂∗ = σ(E[f∗|y])

They provide the same prediction when concerned with most probable
classification

Full distribution is required if we are concerned with confidence in the
predictions (e.g. reject options)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 46 / 70

Posterior and Predictive Distributions

Recalling the posterior distribution:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

Hence, under Laplace approximation:

E[f∗|X, y, x∗] = k(x∗)TK−1f̂

V[f∗|X, y, x∗] = κ(x∗, x∗) − kT∗ (K + W−1)−1k∗

For predictions we have two alternatives:

Average π̄∗ = p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

MAP π̂∗ = σ(E[f∗|y])
They provide the same prediction when concerned with most probable
classification

Full distribution is required if we are concerned with confidence in the
predictions (e.g. reject options)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 46 / 70

Posterior and Predictive Distributions

Recalling the posterior distribution:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f |X, y)df

Hence, under Laplace approximation:

E[f∗|X, y, x∗] = k(x∗)TK−1f̂

V[f∗|X, y, x∗] = κ(x∗, x∗) − kT∗ (K + W−1)−1k∗

For predictions we have two alternatives:

Average π̄∗ = p(y∗ = +1|X, y, x∗) =
∫
σ(f∗)p(f∗|X, y, x∗)df∗

MAP π̂∗ = σ(E[f∗|y])
They provide the same prediction when concerned with most probable
classification

Full distribution is required if we are concerned with confidence in the
predictions (e.g. reject options)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 46 / 70

Marginal Likelihood and hyper-parameter learning

We can also apply the Laplace approximation to the marginal likelihood:

log p(y|X,θ) ≈ −
1

2
log|KW + I|−

1

2
f̂TK−1f̂ + log p(y|̂f)

Predictive probability as a function of the length-scale ` = 0.1, 0.2, 0.3:

0.25

0.25

0.25

0.25

0.25

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.75

0.25

0.25

0.25

0.25

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.75

0.75 0.25

0.25

0.5

0.5

0.5
0.5

0.5

0.5

0.75

Do we spend too much effort in modeling f?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 47 / 70

1 The Gaussian Distribution

2 Bayesian Linear Regression

3 Gaussian Processes for Regression

4 Gaussian Processes for Classification

5 Approximations for Large Datasets

6 Current Research

7 Conclusions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 48 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):

I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:

I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):

I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:

I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):

I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:

I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):
I Exact when run for N iterations

I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:

I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):
I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)

I Not good enough

ML Approach:

I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):
I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:

I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):
I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:

I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):
I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:
I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)

I Apply matrix computational tricks (e.g. block inverses, Woodbury’s
formula)

I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):
I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:
I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)

I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):
I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:
I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)

I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

GPR’s Computational Complexity

Prediction: We need to compute the inverse of K̃ = K + σ2
nI, which

scales O(N3)

In fact, we need to solve the linear system: K̃b = y

Iterative solutions of Linear Systems (e.g. conjugate gradients):
I Exact when run for N iterations
I Approximate when run for I < N iterations: O(IN2)
I Not good enough

ML Approach:
I Get a suitable decomposition of K̃ (e.g. using Ñ inducing points)
I Apply matrix computational tricks (e.g. block inverses, Woodbury’s

formula)
I Computations are usually O(Ñ2N)
I Good enough?

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 49 / 70

Subset of Data-points (SD)

Simplest approach: throw data away

Keep the GP predictor on smaller set of size Ñ→ O(Ñ3)

Ñ data-points can be selected at random

Alternatively, they can be selected in a greedy fashion in order to
optimize an objective function.

Lawrence et al (NIPS, 2003) propose the use of differential entropy:

∆j
def
= H[p(fj)] −H[p

new(fj)]

=
1

2
(1 + vj/σ

2
n),

where vj is the posterior variance before the inclusion of the
corresponding data-point.

I Simply choose the site with largest variance!
I Overall complexity: O(Ñ2N)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 50 / 70

Subset of Data-points (SD)

Simplest approach: throw data away

Keep the GP predictor on smaller set of size Ñ→ O(Ñ3)

Ñ data-points can be selected at random

Alternatively, they can be selected in a greedy fashion in order to
optimize an objective function.

Lawrence et al (NIPS, 2003) propose the use of differential entropy:

∆j
def
= H[p(fj)] −H[p

new(fj)]

=
1

2
(1 + vj/σ

2
n),

where vj is the posterior variance before the inclusion of the
corresponding data-point.

I Simply choose the site with largest variance!
I Overall complexity: O(Ñ2N)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 50 / 70

Subset of Data-points (SD)

Simplest approach: throw data away

Keep the GP predictor on smaller set of size Ñ→ O(Ñ3)

Ñ data-points can be selected at random

Alternatively, they can be selected in a greedy fashion in order to
optimize an objective function.

Lawrence et al (NIPS, 2003) propose the use of differential entropy:

∆j
def
= H[p(fj)] −H[p

new(fj)]

=
1

2
(1 + vj/σ

2
n),

where vj is the posterior variance before the inclusion of the
corresponding data-point.

I Simply choose the site with largest variance!
I Overall complexity: O(Ñ2N)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 50 / 70

Subset of Data-points (SD)

Simplest approach: throw data away

Keep the GP predictor on smaller set of size Ñ→ O(Ñ3)

Ñ data-points can be selected at random

Alternatively, they can be selected in a greedy fashion in order to
optimize an objective function.

Lawrence et al (NIPS, 2003) propose the use of differential entropy:

∆j
def
= H[p(fj)] −H[p

new(fj)]

=
1

2
(1 + vj/σ

2
n),

where vj is the posterior variance before the inclusion of the
corresponding data-point.

I Simply choose the site with largest variance!
I Overall complexity: O(Ñ2N)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 50 / 70

Subset of Data-points (SD)

Simplest approach: throw data away

Keep the GP predictor on smaller set of size Ñ→ O(Ñ3)

Ñ data-points can be selected at random

Alternatively, they can be selected in a greedy fashion in order to
optimize an objective function.

Lawrence et al (NIPS, 2003) propose the use of differential entropy:

∆j
def
= H[p(fj)] −H[p

new(fj)]

=
1

2
(1 + vj/σ

2
n),

where vj is the posterior variance before the inclusion of the
corresponding data-point.

I Simply choose the site with largest variance!
I Overall complexity: O(Ñ2N)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 50 / 70

Subset of Data-points (SD)

Simplest approach: throw data away

Keep the GP predictor on smaller set of size Ñ→ O(Ñ3)

Ñ data-points can be selected at random

Alternatively, they can be selected in a greedy fashion in order to
optimize an objective function.

Lawrence et al (NIPS, 2003) propose the use of differential entropy:

∆j
def
= H[p(fj)] −H[p

new(fj)]

=
1

2
(1 + vj/σ

2
n),

where vj is the posterior variance before the inclusion of the
corresponding data-point.

I Simply choose the site with largest variance!

I Overall complexity: O(Ñ2N)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 50 / 70

Subset of Data-points (SD)

Simplest approach: throw data away

Keep the GP predictor on smaller set of size Ñ→ O(Ñ3)

Ñ data-points can be selected at random

Alternatively, they can be selected in a greedy fashion in order to
optimize an objective function.

Lawrence et al (NIPS, 2003) propose the use of differential entropy:

∆j
def
= H[p(fj)] −H[p

new(fj)]

=
1

2
(1 + vj/σ

2
n),

where vj is the posterior variance before the inclusion of the
corresponding data-point.

I Simply choose the site with largest variance!
I Overall complexity: O(Ñ2N)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 50 / 70

GP Approximations: A Unifying Framework

!"!"!"

!"

##" #$" #%" #&"

Full GP (no approximations). All
latent functions are fully connected.

!"!"!"

!"

##" #$" #%" #&"

Traning and test values are
conditionally independent given u

The joint prior is modified through the inducing variables u1, . . . ,uÑ:

p(f∗, f) ≈ q(f∗, f)
def
=

∫
q(f∗|u)q(f |u)p(u)du

q(f |u) is the training conditional and q(f∗|u) is the test conditional.

Most approximation methods can be defined by:

Different specifications of these conditionals.

Different Xu: Subset of training/test points, new x points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 51 / 70

GP Approximations: A Unifying Framework

!"!"!"

!"

##" #$" #%" #&"

Full GP (no approximations). All
latent functions are fully connected.

!"!"!"

!"

##" #$" #%" #&"

Traning and test values are
conditionally independent given u

The joint prior is modified through the inducing variables u1, . . . ,uÑ:

p(f∗, f) ≈ q(f∗, f)
def
=

∫
q(f∗|u)q(f |u)p(u)du

q(f |u) is the training conditional and q(f∗|u) is the test conditional.

Most approximation methods can be defined by:

Different specifications of these conditionals.

Different Xu: Subset of training/test points, new x points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 51 / 70

GP Approximations: A Unifying Framework

!"!"!"

!"

##" #$" #%" #&"

Full GP (no approximations). All
latent functions are fully connected.

!"!"!"

!"

##" #$" #%" #&"

Traning and test values are
conditionally independent given u

The joint prior is modified through the inducing variables u1, . . . ,uÑ:

p(f∗, f) =

∫
p(f∗, f |u)p(u)du with p(u) = N(0, Ku,u)

p(f∗, f) ≈ q(f∗, f)
def
=

∫
q(f∗|u)q(f |u)p(u)du

q(f |u) is the training conditional and q(f∗|u) is the test conditional.

Most approximation methods can be defined by:

Different specifications of these conditionals.
Different Xu: Subset of training/test points, new x points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 51 / 70

GP Approximations: A Unifying Framework

!"!"!"

!"

##" #$" #%" #&"

Full GP (no approximations). All
latent functions are fully connected.

!"!"!"

!"

##" #$" #%" #&"

Traning and test values are
conditionally independent given u

The joint prior is modified through the inducing variables u1, . . . ,uÑ:

p(f∗, f) ≈ q(f∗, f)
def
=

∫
q(f∗|u)q(f |u)p(u)du

q(f |u) is the training conditional and q(f∗|u) is the test conditional.

Most approximation methods can be defined by:

Different specifications of these conditionals.

Different Xu: Subset of training/test points, new x points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 51 / 70

Subset of Regressors (SR)

It can be shown that the mean GP predictor can be obtained by assuming:

Prior : α ∼ N(0, K−1)

Model : f(x∗) =
∑N
i=1 αik(x∗, xi)

We can truncate the number of regressors needed:

fSR(x∗) = kT∗αu with αu ∼ N(0, K−1
u,u)

This implies that there is a deterministic relation between f∗ and u:

qSR(f |u) = N(Kf ,uK−1
u,uu, 0) qSR(f∗|u) = N(K∗,uK−1

u,uu, 0)

Hence the predictive distribution is given by:

qSR(f∗|y) = N(K∗,uΣ−1Ku,f y, K∗,uΣ−1Ku,∗)

where Σ = Ku,f Kf ,u + σ
2
nKu,u.

This method corresponds to a degenerate GP prior
Complexity: O(Ñ2N) initially and O(Ñ) and O(Ñ2) per test
predictive mean and variance.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 52 / 70

Subset of Regressors (SR)

It can be shown that the mean GP predictor can be obtained by assuming:

Prior : α ∼ N(0, K−1)

Model : f(x∗) =
∑N
i=1 αik(x∗, xi)

We can truncate the number of regressors needed:

fSR(x∗) = kT∗αu with αu ∼ N(0, K−1
u,u)

This implies that there is a deterministic relation between f∗ and u:

qSR(f |u) = N(Kf ,uK−1
u,uu, 0) qSR(f∗|u) = N(K∗,uK−1

u,uu, 0)

Hence the predictive distribution is given by:

qSR(f∗|y) = N(K∗,uΣ−1Ku,f y, K∗,uΣ−1Ku,∗)

where Σ = Ku,f Kf ,u + σ
2
nKu,u.

This method corresponds to a degenerate GP prior
Complexity: O(Ñ2N) initially and O(Ñ) and O(Ñ2) per test
predictive mean and variance.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 52 / 70

Subset of Regressors (SR)

It can be shown that the mean GP predictor can be obtained by assuming:

Prior : α ∼ N(0, K−1)

Model : f(x∗) =
∑N
i=1 αik(x∗, xi)

We can truncate the number of regressors needed:

fSR(x∗) = kT∗αu with αu ∼ N(0, K−1
u,u)

This implies that there is a deterministic relation between f∗ and u:

qSR(f |u) = N(Kf ,uK−1
u,uu, 0) qSR(f∗|u) = N(K∗,uK−1

u,uu, 0)

Hence the predictive distribution is given by:

qSR(f∗|y) = N(K∗,uΣ−1Ku,f y, K∗,uΣ−1Ku,∗)

where Σ = Ku,f Kf ,u + σ
2
nKu,u.

This method corresponds to a degenerate GP prior
Complexity: O(Ñ2N) initially and O(Ñ) and O(Ñ2) per test
predictive mean and variance.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 52 / 70

Subset of Regressors (SR)

It can be shown that the mean GP predictor can be obtained by assuming:

Prior : α ∼ N(0, K−1)

Model : f(x∗) =
∑N
i=1 αik(x∗, xi)

We can truncate the number of regressors needed:

fSR(x∗) = kT∗αu with αu ∼ N(0, K−1
u,u)

This implies that there is a deterministic relation between f∗ and u:

qSR(f |u) = N(Kf ,uK−1
u,uu, 0) qSR(f∗|u) = N(K∗,uK−1

u,uu, 0)

Hence the predictive distribution is given by:

qSR(f∗|y) = N(K∗,uΣ−1Ku,f y, K∗,uΣ−1Ku,∗)

where Σ = Ku,f Kf ,u + σ
2
nKu,u.

This method corresponds to a degenerate GP prior
Complexity: O(Ñ2N) initially and O(Ñ) and O(Ñ2) per test
predictive mean and variance.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 52 / 70

Subset of Regressors (SR)

It can be shown that the mean GP predictor can be obtained by assuming:

Prior : α ∼ N(0, K−1)

Model : f(x∗) =
∑N
i=1 αik(x∗, xi)

We can truncate the number of regressors needed:

fSR(x∗) = kT∗αu with αu ∼ N(0, K−1
u,u)

This implies that there is a deterministic relation between f∗ and u:

qSR(f |u) = N(Kf ,uK−1
u,uu, 0) qSR(f∗|u) = N(K∗,uK−1

u,uu, 0)

Hence the predictive distribution is given by:

qSR(f∗|y) = N(K∗,uΣ−1Ku,f y, K∗,uΣ−1Ku,∗)

where Σ = Ku,f Kf ,u + σ
2
nKu,u.

This method corresponds to a degenerate GP prior

Complexity: O(Ñ2N) initially and O(Ñ) and O(Ñ2) per test
predictive mean and variance.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 52 / 70

Subset of Regressors (SR)

It can be shown that the mean GP predictor can be obtained by assuming:

Prior : α ∼ N(0, K−1)

Model : f(x∗) =
∑N
i=1 αik(x∗, xi)

We can truncate the number of regressors needed:

fSR(x∗) = kT∗αu with αu ∼ N(0, K−1
u,u)

This implies that there is a deterministic relation between f∗ and u:

qSR(f |u) = N(Kf ,uK−1
u,uu, 0) qSR(f∗|u) = N(K∗,uK−1

u,uu, 0)

Hence the predictive distribution is given by:

qSR(f∗|y) = N(K∗,uΣ−1Ku,f y, K∗,uΣ−1Ku,∗)

where Σ = Ku,f Kf ,u + σ
2
nKu,u.

This method corresponds to a degenerate GP prior
Complexity: O(Ñ2N) initially and O(Ñ) and O(Ñ2) per test
predictive mean and variance.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 52 / 70

Projected Processes (PP)

qPP(f |u) = N(Kf ,uK−1
u,uu, 0) qPP(f∗|u) = p(f∗|u)

Inducing variables are a subset of training points

As in SR, it imposes a deterministic training conditional but (unlike
SR) it uses the exact test conditional.

Same predictive mean as SR but variances are never smaller

However, this definition implies that the covariances for training cases
and test cases are computed differently and therefore this method
does not correspond to a (consistent) GP.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 53 / 70

FITC, PITC and BCM

FITC : Fully independent training conditionals

PITC : Partially independent training conditionals

BCM : Bayesian Committee Machine

PP can make poor predictions in low noise

FITC does not impose a deterministic relation between f and u. It
uses a a diagonal covariance whose entries correspond to the diagonal
of the true training conditionals.

PITC uses block diagonal covariance to improve the approximation

BCM is the same as PITC where the choice of inducing variables
depend on the test points, i.e. transductive setting

I However, note that transduction cannot occur in exact GPs
I Drawback regarding complexity of transductive models?
I The choice of u should not be dictated only by the test points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 54 / 70

FITC, PITC and BCM

FITC : Fully independent training conditionals

PITC : Partially independent training conditionals

BCM : Bayesian Committee Machine

PP can make poor predictions in low noise

FITC does not impose a deterministic relation between f and u. It
uses a a diagonal covariance whose entries correspond to the diagonal
of the true training conditionals.

PITC uses block diagonal covariance to improve the approximation

BCM is the same as PITC where the choice of inducing variables
depend on the test points, i.e. transductive setting

I However, note that transduction cannot occur in exact GPs
I Drawback regarding complexity of transductive models?
I The choice of u should not be dictated only by the test points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 54 / 70

FITC, PITC and BCM

FITC : Fully independent training conditionals

PITC : Partially independent training conditionals

BCM : Bayesian Committee Machine

PP can make poor predictions in low noise

FITC does not impose a deterministic relation between f and u. It
uses a a diagonal covariance whose entries correspond to the diagonal
of the true training conditionals.

PITC uses block diagonal covariance to improve the approximation

BCM is the same as PITC where the choice of inducing variables
depend on the test points, i.e. transductive setting

I However, note that transduction cannot occur in exact GPs
I Drawback regarding complexity of transductive models?
I The choice of u should not be dictated only by the test points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 54 / 70

FITC, PITC and BCM

FITC : Fully independent training conditionals

PITC : Partially independent training conditionals

BCM : Bayesian Committee Machine

PP can make poor predictions in low noise

FITC does not impose a deterministic relation between f and u. It
uses a a diagonal covariance whose entries correspond to the diagonal
of the true training conditionals.

PITC uses block diagonal covariance to improve the approximation

BCM is the same as PITC where the choice of inducing variables
depend on the test points, i.e. transductive setting

I However, note that transduction cannot occur in exact GPs
I Drawback regarding complexity of transductive models?
I The choice of u should not be dictated only by the test points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 54 / 70

FITC, PITC and BCM

FITC : Fully independent training conditionals

PITC : Partially independent training conditionals

BCM : Bayesian Committee Machine

PP can make poor predictions in low noise

FITC does not impose a deterministic relation between f and u. It
uses a a diagonal covariance whose entries correspond to the diagonal
of the true training conditionals.

PITC uses block diagonal covariance to improve the approximation

BCM is the same as PITC where the choice of inducing variables
depend on the test points, i.e. transductive setting

I However, note that transduction cannot occur in exact GPs
I Drawback regarding complexity of transductive models?
I The choice of u should not be dictated only by the test points

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 54 / 70

Sparse GPs (Snelson and Ghahramani, 2006)

Same as FITC but the inducing inputs do not belong to the training
or test sets

Both the locations of the input points and the values of the
hyper-parameters are “learned” by optimization of the approximate
marginal likelihood.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 55 / 70

GP Approximations: Final Remarks

The order of computational complexity is identical for all methods
(except SD)

Hence, there is no “excuse for gross approximations”

Inconclusive experiments on real datasets (See e.g. Rassmussen and
Williams, 2006)

Similar methods for GP classification but we also need to deal with
non-Gaussian likelihoods (e.g. using Laplace)

I Derivatives of the marginal likelihood can get complicated

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 56 / 70

1 The Gaussian Distribution

2 Bayesian Linear Regression

3 Gaussian Processes for Regression

4 Gaussian Processes for Classification

5 Approximations for Large Datasets

6 Current Research

7 Conclusions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 57 / 70

Multi-task Learning (MTL)

General idea:
I Sharing information across tasks (Caruana, 1997)
I Very little data on test task
I Exam score prediction, compiler performance prediction, robot inverse

dynamics, multi-topic text categorisation, collaborative filtering,
multi-level modelling

Assuming task relatedness can be detrimental (Caruana, 1997; Baxter, 2000)

Task descriptors may be available (Bonilla et al, AISTATS 2007)

Tasks descriptors unavailable or difficult to define correctly
(Bonilla et al, NIPS 2008)

I e.g. Compiler performance prediction: code features, responses

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 58 / 70

Multi-task Learning (MTL)

General idea:
I Sharing information across tasks (Caruana, 1997)
I Very little data on test task
I Exam score prediction, compiler performance prediction, robot inverse

dynamics, multi-topic text categorisation, collaborative filtering,
multi-level modelling

Assuming task relatedness can be detrimental (Caruana, 1997; Baxter, 2000)

Task descriptors may be available (Bonilla et al, AISTATS 2007)

Tasks descriptors unavailable or difficult to define correctly
(Bonilla et al, NIPS 2008)

I e.g. Compiler performance prediction: code features, responses

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 58 / 70

Multi-task GP: Illustration

Sample functions for different values of tasks (on m axis) are correlated
(cf independent draws over sample functions)

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 59 / 70

Inter-task Tying by Hyper-parameter Sharing

f3

y1

θ

y3

f1

y2

f2

f1 f2

y1 y2

f3

y3

Other approaches

Our approach

Block diagonal covariance matrix, and each of the M blocks is
induced from the same kernel function (Minka and Picard, 1999;
Lawrence and Platt, 2004; Yu et al, 2005; Schwaighofer et al, 2005)

Our model: Observations on one task affect predictions on the others

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 60 / 70

Inter-task Tying by Hyper-parameter Sharing

f3

y1

θ

y3

f1

y2

f2 f1 f2

y1 y2

f3

y3

Other approaches Our approach

Block diagonal covariance matrix, and each of the M blocks is
induced from the same kernel function (Minka and Picard, 1999;
Lawrence and Platt, 2004; Yu et al, 2005; Schwaighofer et al, 2005)

Our model: Observations on one task affect predictions on the others

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 60 / 70

Inter-task Tying by Hyper-parameter Sharing

f3

y1

θ

y3

f1

y2

f2 f1 f2

y1 y2

f3

y3

Other approaches Our approach

Block diagonal covariance matrix, and each of the M blocks is
induced from the same kernel function (Minka and Picard, 1999;
Lawrence and Platt, 2004; Yu et al, 2005; Schwaighofer et al, 2005)

Our model: Observations on one task affect predictions on the others

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 60 / 70

Multi-task GP

We place a (zero mean) GP prior over the latent functions {f`}:

The Model

〈f`(x)fm(x ′)〉 = Kf`mkx(x, x ′) yi` ∼ N(f`(xi),σ
2
`),

Kf: PSD matrix that specifies the inter-task similarities

kx: Covariance function over inputs

σ2
`: Noise variance for the `th task.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 61 / 70

Multi-task GP

We place a (zero mean) GP prior over the latent functions {f`}:

The Model

〈f`(x)fm(x ′)〉 = Kf`mkx(x, x ′) yi` ∼ N(f`(xi),σ
2
`),

Kf: PSD matrix that specifies the inter-task similarities

kx: Covariance function over inputs

σ2
`: Noise variance for the `th task.

Additionally, kx:

stationary, correlation function

e.g. squared exponential

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 61 / 70

Multi-task GP

We place a (zero mean) GP prior over the latent functions {f`}:

The Model

〈f`(x)fm(x ′)〉 = Kf`mkx(x, x ′) yi` ∼ N(f`(xi),σ
2
`),

Kf: PSD matrix that specifies the inter-task similarities

kx: Covariance function over inputs

σ2
`: Noise variance for the `th task.

Additionally, kx:

stationary, correlation function

e.g. squared exponential

Correlations between tasks modelled directly via Kf

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 61 / 70

Multi-task GP Models

Kf can be:

Full non-parametric: General PSD matrix, e.g. Kf = (Lf)(Lf)T

Rank Constrained: e.g. Kf = (L̃f)(L̃f)T

Parametric: Kf induced via a covariance function on task descriptors
kf(t, t ′)

Block diagonal: Implements task clustering. Cluster structure can be
specified a priori. e.g. Kf is diagonal (all tasks are independent)

Mixture: All functions are independent except for one, which is a
mixed version of the others. Effective for transferring to a new task:

Kf =

(
I π

πT πTπ

)
,

where π are mixing proportions, and may depend on task descriptors.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 62 / 70

Multi-task GP Models

Kf can be:

Full non-parametric: General PSD matrix, e.g. Kf = (Lf)(Lf)T

Rank Constrained: e.g. Kf = (L̃f)(L̃f)T

Parametric: Kf induced via a covariance function on task descriptors
kf(t, t ′)

Block diagonal: Implements task clustering. Cluster structure can be
specified a priori. e.g. Kf is diagonal (all tasks are independent)

Mixture: All functions are independent except for one, which is a
mixed version of the others. Effective for transferring to a new task:

Kf =

(
I π

πT πTπ

)
,

where π are mixing proportions, and may depend on task descriptors.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 62 / 70

Multi-task GP Models

Kf can be:

Full non-parametric: General PSD matrix, e.g. Kf = (Lf)(Lf)T

Rank Constrained: e.g. Kf = (L̃f)(L̃f)T

Parametric: Kf induced via a covariance function on task descriptors
kf(t, t ′)

Block diagonal: Implements task clustering. Cluster structure can be
specified a priori. e.g. Kf is diagonal (all tasks are independent)

Mixture: All functions are independent except for one, which is a
mixed version of the others. Effective for transferring to a new task:

Kf =

(
I π

πT πTπ

)
,

where π are mixing proportions, and may depend on task descriptors.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 62 / 70

Multi-task GP Models

Kf can be:

Full non-parametric: General PSD matrix, e.g. Kf = (Lf)(Lf)T

Rank Constrained: e.g. Kf = (L̃f)(L̃f)T

Parametric: Kf induced via a covariance function on task descriptors
kf(t, t ′)

Block diagonal: Implements task clustering. Cluster structure can be
specified a priori. e.g. Kf is diagonal (all tasks are independent)

Mixture: All functions are independent except for one, which is a
mixed version of the others. Effective for transferring to a new task:

Kf =

(
I π

πT πTπ

)
,

where π are mixing proportions, and may depend on task descriptors.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 62 / 70

Multi-task GP Models

Kf can be:

Full non-parametric: General PSD matrix, e.g. Kf = (Lf)(Lf)T

Rank Constrained: e.g. Kf = (L̃f)(L̃f)T

Parametric: Kf induced via a covariance function on task descriptors
kf(t, t ′)

Block diagonal: Implements task clustering. Cluster structure can be
specified a priori. e.g. Kf is diagonal (all tasks are independent)

Mixture: All functions are independent except for one, which is a
mixed version of the others. Effective for transferring to a new task:

Kf =

(
I π

πT πTπ

)
,

where π are mixing proportions, and may depend on task descriptors.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 62 / 70

Learning Robot Inverse Dynamics (Chai et al, NIPS 2009)

τ: Torques needed at joints to
drive a trajectory x = (q, q̇, q̈)

Unfeasible analytical model,
e.g. friction, uncertainty in
physical parameters

Need to be controlled while
having different loads (tasks)

torque function changes as a function of the load on end effector

τmj (x) = zj(x)
Tρmj

Indep. GP prior 〈zjα(x)zj′α′(x′)〉 = δjj′δαα′kxj (x, x′)

⇓
MTGP prior 〈τmj (x)τm

′
j (x ′)〉 = (Kρj)mm ′k

x
j (x, x ′)

The MTGP model matches the correlations between torque functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 63 / 70

Learning Robot Inverse Dynamics (Chai et al, NIPS 2009)

τ: Torques needed at joints to
drive a trajectory x = (q, q̇, q̈)

Unfeasible analytical model,
e.g. friction, uncertainty in
physical parameters

Need to be controlled while
having different loads (tasks)

torque function changes as a function of the load on end effector

τmj (x) = zj(x)
Tρmj

Indep. GP prior 〈zjα(x)zj′α′(x′)〉 = δjj′δαα′kxj (x, x′)

⇓
MTGP prior 〈τmj (x)τm

′
j (x ′)〉 = (Kρj)mm ′k

x
j (x, x ′)

The MTGP model matches the correlations between torque functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 63 / 70

Learning Robot Inverse Dynamics (Chai et al, NIPS 2009)

τ: Torques needed at joints to
drive a trajectory x = (q, q̇, q̈)

Unfeasible analytical model,
e.g. friction, uncertainty in
physical parameters

Need to be controlled while
having different loads (tasks)

torque function changes as a function of the load on end effector

τmj (x) = zj(x)
Tρmj

Indep. GP prior 〈zjα(x)zj′α′(x′)〉 = δjj′δαα′kxj (x, x′)

⇓
MTGP prior 〈τmj (x)τm

′
j (x ′)〉 = (Kρj)mm ′k

x
j (x, x ′)

The MTGP model matches the correlations between torque functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 63 / 70

Learning Robot Inverse Dynamics (Chai et al, NIPS 2009)

τ: Torques needed at joints to
drive a trajectory x = (q, q̇, q̈)

Unfeasible analytical model,
e.g. friction, uncertainty in
physical parameters

Need to be controlled while
having different loads (tasks)

torque function changes as a function of the load on end effector

τmj (x) = zj(x)
Tρmj

Indep. GP prior 〈zjα(x)zj′α′(x′)〉 = δjj′δαα′kxj (x, x′)

⇓
MTGP prior 〈τmj (x)τm

′
j (x ′)〉 = (Kρj)mm ′k

x
j (x, x ′)

The MTGP model matches the correlations between torque functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 63 / 70

Learning Robot Inverse Dynamics (Chai et al, NIPS 2009)

τ: Torques needed at joints to
drive a trajectory x = (q, q̇, q̈)

Unfeasible analytical model,
e.g. friction, uncertainty in
physical parameters

Need to be controlled while
having different loads (tasks)

torque function changes as a function of the load on end effector

τmj (x) = zj(x)
Tρmj

Indep. GP prior 〈zjα(x)zj′α′(x′)〉 = δjj′δαα′kxj (x, x′)

⇓
MTGP prior 〈τmj (x)τm

′
j (x ′)〉 = (Kρj)mm ′k

x
j (x, x ′)

The MTGP model matches the correlations between torque functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 63 / 70

Learning Robot Inverse Dynamics (Chai et al, NIPS 2009)

τ: Torques needed at joints to
drive a trajectory x = (q, q̇, q̈)

Unfeasible analytical model,
e.g. friction, uncertainty in
physical parameters

Need to be controlled while
having different loads (tasks)

torque function changes as a function of the load on end effector

τmj (x) = zj(x)
Tρmj

Indep. GP prior 〈zjα(x)zj′α′(x′)〉 = δjj′δαα′kxj (x, x′)

⇓
MTGP prior 〈τmj (x)τm

′
j (x ′)〉 = (Kρj)mm ′k

x
j (x, x ′)

The MTGP model matches the correlations between torque functions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 63 / 70

Learning Robot Inverse Dynamics (Chai et al, NIPS 2009)

τ: Torques needed at joints to
drive a trajectory x = (q, q̇, q̈)

Unfeasible analytical model,
e.g. friction, uncertainty in
physical parameters

Need to be controlled while
having different loads (tasks)

torque function changes as a function of the load on end effector

τmj (x) = zj(x)
Tρmj

Indep. GP prior 〈zjα(x)zj′α′(x′)〉 = δjj′δαα′kxj (x, x′)

⇓
MTGP prior 〈τmj (x)τm

′
j (x ′)〉 = (Kρj)mm ′k

x
j (x, x ′)

The MTGP model matches the correlations between torque functions
Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 63 / 70

Other Non-Gaussian Likelihood Models

We have encountered this in GP classification

Ordinal regression: Chu and Ghahramani, JMLR 2005

Preference Learning: Chu and Ghahramani, ICML 2005

Preference Elicitation (PE): Bonilla et al, NIPS 2010 (to appear)
I Make optimal recommendations to users by actively querying their

preferences.
I Bayesian decision-theoretic PE approach
I Correlated GP prior over user’s latent utility functions
I Reduce elicitation burden by leveraging information from previous users

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 64 / 70

Latent Variable Models

The Gaussian Process Latent Variable Model (GPLVM; Lawrence, NIPS
2004) is a probabilistic model for non-linear dimensionality reduction.

Main idea: Some high-dimensional data can be embedded into a
low-dimensional non-linear manifold.

model each dimension of {xi}
N
i=1 with a corresponding latent point zi

through a non-linear mapping.

Use an independent GP for this mapping

Likelihood maximization in order to find the latent projection zi

GP models for pose estimation:
http://grail.cs.washington.edu/projects/styleik

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 65 / 70

http://grail.cs.washington.edu/projects/styleik

Modeling of Human Poses with GPLVM
Grochow et al, SIGGRAPH 2004

Style-Based Inverse Kinematics: Given a set of constraints, produce
the most likely pose.

Feature vectors are derived from pose information (e.g from mo-cap
data).

I joint angles, vertical orientation, velocity and accelerations.

The problem is inherently underdetermined but some poses are more
likely than others.

Low dimensional representations are learned from previous poses using
GPLVM

GPLVM predictive distribution is used in objective function to find
new poses given the constraints.

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 66 / 70

Pose Estimation Movies
From http://grail.cs.washington.edu/projects/styleik

Style Pitch

Image Pose Basketball

Style Track

Image Pose Baseball

Pose Track

Interpolation

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 67 / 70

http://grail.cs.washington.edu/projects/styleik

1 The Gaussian Distribution

2 Bayesian Linear Regression

3 Gaussian Processes for Regression

4 Gaussian Processes for Classification

5 Approximations for Large Datasets

6 Current Research

7 Conclusions

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 68 / 70

Conclusions and Future Directions

GPs as flexible non-parameteric Bayesian technique for regression,
classification and other machine learning problems.

The covariance function is a crucial component in GPs.

Analytic solutions for standard regression setting and approximate
inference for classification.

Computational issues dealt with through the idea of inducing variables

More work on design of covariance functions needed

Towards real large scale GPs

Dealing with non-standard settings, e.g. preference learning and
multi-task learning

Dealing with structured data

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 69 / 70

GP Quiz

Edwin Bonilla (MLSS) Gaussian Processes October 1st, 2010 70 / 70

	The Gaussian Distribution
	Bayesian Linear Regression
	Gaussian Processes for Regression
	Gaussian Processes for Classification
	Approximations for Large Datasets
	Current Research
	Conclusions

