
MLSS Tutorial, October 2010, ANU Canberra

Deep belief nets

Marcus Frean
Victoria University of Wellington

Wellington, New Zealand
marcus.frean@vuw.ac.nz

Marcus Frean (VUW) MLSS, ANU, 2010 1 / 75



outline of this tutorial
1 motivations

I deep autoencoders
I deep belief nets

2 sigmoid belief nets
I why are they hard to train?
I could layer-by-layer training work?

3 Boltzmann machines
I why are they hard to train?
I the restricted Boltzmann machine (RBM)

4 deep belief nets
I how to do it
I why it works
I fine-tuning the result
I 2 applications: a classifier and an autoencoder

comment: I’ve included some detailed maths in these slides for later reference...
Marcus Frean (VUW) MLSS, ANU, 2010 2 / 75



back-propagation networks

Marcus Frean (VUW) MLSS, ANU, 2010 3 / 75



auto-encoder nets

Marcus Frean (VUW) MLSS, ANU, 2010 4 / 75



why haven’t deep auto-encoders worked?

all the hidden units interact

the gradient gets tiny as you
move away from the “output”
layer

Marcus Frean (VUW) MLSS, ANU, 2010 5 / 75



belief nets

A belief net is a directed acyclic
graph composed of stochastic
variables
We get to observe some of the
variables and would like to solve
two problems:

1 The inference problem: Infer the
states of unobserved variables

2 The learning problem: Adjust the
interactions between variables to
make the network more likely to
generate the observed data.

Marcus Frean (VUW) MLSS, ANU, 2010 6 / 75



factor graph of a belief network

In any graphical model, the joint
probability is simplified to be a
product of “factors” :

P (x) =
∏
i

i

In a belief net (directed graphical
model), those factors are conditional
probabilities associated with each
node:

i = P (xi|parentsi)

where xi is the “child” node in the
graph.

Marcus Frean (VUW) MLSS, ANU, 2010 7 / 75



parameterized belief networks

the factors in large belief nets are
still too big/powerful to learn with
finite data.

we can parameterize the factors:
e.g. the sigmoid function

i = P (xi|parentsi)

=
1

1 + e−φ
, for xi = 1

φ =
∑

j wijxj . This cuts down power of the “factor”, exponentially.

Marcus Frean (VUW) MLSS, ANU, 2010 8 / 75



what would a really interesting generative model for (say)
images look like?

stochastic

lots of units

several layers

easy to sample from

sigmoid belief net

an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75



stochastic neurons
input to the ith neuron:

φi =
∑
j

wjixj

probability of generating a 1:

pi =
1

1 + exp(−φi)

learning rule for making x more likely:

∆wji ∝ (xi − pi)xj

for a network of these:
it is easy to make particular
patterns more likely

Marcus Frean (VUW) MLSS, ANU, 2010 10 / 75



sampling from the joint
It is easy to sample from the prior
p(x) = p(h,v) of a sigmoidal belief
net:

p(x) = p(x1, x2 . . . xn)

=
∏
i

p(xi|parentsi)

so we sample from each layer in
turn, ending at the visible units.

Seems like an attractive generative model. How about learning?

Marcus Frean (VUW) MLSS, ANU, 2010 11 / 75



a general view of learning in graphical models
Notation: x for any node, v for visible, h for hidden.

data set D = {vn}, n = 1 . . . N

suppose v arise from a process involving a number of latent or
“hidden” variables h that are stochastic, mediated by some unknown
parameters w

For any given parameter settings w, there is a joint distribution over
x = (v,h), namely P (x | w)

Absolutely everything that follows is going to be conditioned on w
though, so we’ll usually just drop the “| w” from the r.h.s.

Marcus Frean (VUW) MLSS, ANU, 2010 12 / 75



normalised vs unnormalised probabilities
Denote probabilities by P , or by P ? if they are not yet normalised. For
example,

P (v,h) =
P ?(v,h)

Z
with Z =

∑
v

∑
h

P ?(v,h) (1)

The sum in Z is over all configurations (all possible vectors x), so in general
it’s likely to be intractable.

In some cases of interest it is easy to ensure P is normalized
(e.g. directed graphical models / belief nets).

But in many cases it’s easy to specify a plausible P ? yet hard to find
Z and set P (e.g. undirected graphical models)

Marcus Frean (VUW) MLSS, ANU, 2010 13 / 75



sum and product rules
Notice that by the sum rule,

P (v) =
∑
h

P (v,h) (2)

which is called the marginal probability of v. The sum is over all
configurations h, so potentially it could be hard to compute in the same
way that Z is.

Another useful relation is given by the product rule:

P (v | h) =
P (v,h)
P (v)

(3)

Marcus Frean (VUW) MLSS, ANU, 2010 14 / 75



remember..
The result we’re going to get here is COMPLETELY GENERAL - it applies to
any generative model having hidden variables.

But a particular example always helps:

In a sigmoidal belief net...

∂

∂wij
logP ?(x) = (xi − pi)xj︸ ︷︷ ︸

the ”delta rule”

where pi is the probability of a 1, and is given by the sigmoid function.

Marcus Frean (VUW) MLSS, ANU, 2010 15 / 75



log likelihood of a dataset of v
logL = logP (D)

=
∑
v∈D

logP (v)

=
∑
v∈D

log
(
P ?(v)/Z

)
← in terms of P ?

=
∑
v∈D

(
logP ?(v) − logZ

)
∝ 1

N

∑
v∈D

logP ?(v)︸ ︷︷ ︸
av. log likelihood per pattern

− logZ

The trick for finding the gradient of this: notice that
1 ∇w logP = (∇wP )/P and conversely,
2 ∇wP = P∇w logP .

Each term uses this trick once, in each direction...
Marcus Frean (VUW) MLSS, ANU, 2010 16 / 75



gradient of the first term (average of log P ?)

∂

∂w
logP ?(v) =

1
P ?(v)

∂

∂w
P ?(v) ← via trick 1

=
1

P ?(v)
∂

∂w

∑
h

P ?(v,h) ← sum rule

=
∑
h

1
P ?(v)

∂

∂w
P ?(v,h) ← reordering

=
∑
h

P ?(v,h)
P ?(v)

∂

∂w
logP ?(v,h) ← via trick 2

=
∑
h

P ?(h | v)︸ ︷︷ ︸
av. over posterior!

∂

∂w
logP ?(x) ← product rule

Marcus Frean (VUW) MLSS, ANU, 2010 17 / 75



gradient of the second term (log Z)
The second term is all about the normalisation factor, Z.
(NB. gradient will be automatically be zero in any belief net!)

∂

∂w
logZ =

1
Z

∂

∂w

∑
v

∑
h

P ?(v,h) ← trick 1

=
1
Z

∑
v

∑
h

∂

∂w
P ?(v,h)

=
1
Z

∑
v

∑
h

P ?(v,h)
∂

∂w
logP ?(v,h) ← trick 2

=
∑
v

∑
h

P (v,h)︸ ︷︷ ︸
average over joint!

∂

∂w
logP ?(v,h) ← via eqtn 1

Marcus Frean (VUW) MLSS, ANU, 2010 18 / 75



gradient as a whole
∂
∂w logL ∝

1
N

∑
v∈D︸ ︷︷ ︸

data

∑
h

P (h | v)︸ ︷︷ ︸
av. over posterior

∂

∂w
logP ?(x) −

∑
v,h

P (v,h)︸ ︷︷ ︸
av. over joint

∂

∂w
logP ?(x)

Both terms involve averaging over ∂
∂w logP ?(x).

Another way to write it:〈
∂
∂w logP ?(x)

〉
v∈D, h∼P (h|v)

−
〈

∂
∂w logP ?(x)

〉
x∼P (x)

clamped / wake phase unclamped / sleep / free phase
↑↑↑ conditioned hypotheses ↓↓↓ random fantasies

Marcus Frean (VUW) MLSS, ANU, 2010 19 / 75



example: sigmoid belief nets
For a belief net the joint is automatically normalised: Z is a constant 1

2nd term is zero!

for the weight wij from j into i, the gradient
∂logL
∂wij

= (xi − pi)xj

stochastic gradient ascent:

∆wij ∝ (xi − pi)xj︸ ︷︷ ︸
the ”delta rule”

So this is a stochastic version of the EM algorithm, that you may have
heard of. We iterate the following two steps:

E step: get samples from the posterior

M step: apply the learning rule that makes them more likely

Marcus Frean (VUW) MLSS, ANU, 2010 20 / 75



but...

we need to apply this using samples from the
posterior, not the prior

how to draw such samples?

filter some “ancestral” samples? no!

Gibbs sampling? maybe...

Marcus Frean (VUW) MLSS, ANU, 2010 21 / 75



Gibbs sampling
To draw samples from p(x) = p(x1, x2, . . . , xn):

1 choose i at random
2 choose xi from p(xi|x\i)

This results in a Markov Chain.

Running the chain for long enough −→ samples from p(x).

Marcus Frean (VUW) MLSS, ANU, 2010 22 / 75



Gibbs sampling in sigmoid belief nets
So what does p(xi|x\i) look like, in a sigmoid belief net?

two hidden ”causes”

visible node is observed...

Gibbs sampling for h1, h2:

p(h1 = 1|v = 1)

=
[
1 +

(1− f(b1)) f(w2)
f(b1) f(w1 + w2)

]−1

= yuck!

Gibbs sampler in sigmoid belief net:

slow, ugly

reason is ’explaining away’

Marcus Frean (VUW) MLSS, ANU, 2010 23 / 75



explaining away

Hidden states are

independent in the prior

dependent in the posterior

That dependence means sampling from
one hidden unit has to cause a change in
how all other hidden units update their
states.

But we are interested in nets with lots of
hidden units.

an inconvenient truth:

there’s no quick way to draw a sample from p(hidden|visible)

Marcus Frean (VUW) MLSS, ANU, 2010 24 / 75



SUMMARY: sigmoidal belief nets are...
easy to sample from as a generative model, but hard to learn

1 sampling from the posterior over hidden states is slow, due to
explaining away. This also makes them hard to use for recognition.

2 ‘deep’ layers learn nothing until the ‘shallow’ ones have settled, but
shallow layers have to learn while being driven by the deep layers
(chicken and egg...)

Let’s ignore the quibbles about slowness for a moment, and consider this
idea: one way around the second difficulty might be to train the first layer
as a simple BN first, and then the second layer, and so on.

Marcus Frean (VUW) MLSS, ANU, 2010 25 / 75



building a deep BN layer-by-layer
Here’s a way to train a multilayer sigmoid belief net:

1 start with a single layer only. The hidden
units are driven by bias inputs only. Train to
maximize the likelihood of generating the
training data.

2 freeze the weights in that layer, and replace
the hidden units’ bias inputs by a second
layer of weights.

3 train the second layer of weights to
maximize the likelihood.

4 and so on...

Question: what should the training set be for the second layer?

Marcus Frean (VUW) MLSS, ANU, 2010 26 / 75



aggregate posterior

Averaging over the training set,
we have an aggregate posterior
distribution:

pagg(h) =
∑
v∈D

p(h|v)

So the W1 weights end up at values that maximize the likelihood of
the data, given h sampled from the aggregate posterior distribution.
The hidden bias weights end up at values that approximate this
distribution, but their approximation to it is factorial.
The W1 weights get rewarded for finding values that make the
aggregate posterior more factorial.

Marcus Frean (VUW) MLSS, ANU, 2010 27 / 75



training the next layer

Q: what is the best thing that the
second layer could learn to do?

A: accurately generate the aggregate
posterior distribution over the layer 1
hidden units. It is the distribution that
makes the training data most likely,
given W1

Easy! For each visible pattern, we just collect one sample (or more)
from p(h|v).

This gives us a greedy, layer-wise procedure for training deep belief nets.

Marcus Frean (VUW) MLSS, ANU, 2010 28 / 75



a comment about factorial distributions
This greedy procedure doesn’t work at all well. Subsequent layers add
very little to what the first layer achieves, in modelling the data set. Why
not?

Consider some patterns v on a set of visible nodes.

If these came from a world where the components of each vector are
independent, then

p(v) = p(v1, v2 . . . vn) =
∏
i

p(vi)

and we say p(v) is factorial.
If p(v) is factorial, there is no point in having hidden units

... a model that included hidden units could do no better than a model with
just bias inputs to the visibles.

Marcus Frean (VUW) MLSS, ANU, 2010 29 / 75



why does greedy training fail for deep belief nets?
Notice:

The posterior p(h|v) is not factorial

The prior over h is factorial

Learning will reward weights W1 that make the aggregate posterior as
factorial as possible

But a factorial aggregrate posterior is the very last thing we want for a
greedy learning procedure, because it leaves nothing left for W2 to do!

prior distribution is factorial
−→W1 tries to learn features that are independent in the prior

but this is premature: we want to add another layer precisely because we
DON’T BELIEVE THIS!

Marcus Frean (VUW) MLSS, ANU, 2010 30 / 75



NEW IDEA: an undirected graphical model

Xi Xj factor
0 0 1
0 1 1
1 0 1
1 1 exp(Wij)

i.e. the factor between i and j is

exp(XiWijXj)

So the parameter W is increasing the probability of Xi and Xj being 1 at
the same time. A positive value with result in them becoming correlated.

A graphical model with this kind of factor is called a Boltzmann machine.

Marcus Frean (VUW) MLSS, ANU, 2010 31 / 75



Boltzmann machines
The joint is a product of the factors, so:

P ?(x) =
N∏
i=1

i∏
j=1

exp(xiwij xj) provided wii = 0

∴ logP ?(x) =
N∑
i=1

i∑
j=1

xiwij xj

and so the gradient of that is going to be just

∂

∂wij
logP ?(x) = xi xj

which is about as simple as you imagine.

Marcus Frean (VUW) MLSS, ANU, 2010 32 / 75



the learning rule for Boltzmann machines

∂

∂wij
logP ?(x) = xi xj

and so the gradient is

∆wij ∝
〈
xi xj

〉
v∈D, h∼P (h|v)

−
〈
xi xj

〉
x∼P (x)

clamped phase free phase

Hebbian learning anti-Hebbian

But to do it, we will need to produce samples from those two distributions.

Marcus Frean (VUW) MLSS, ANU, 2010 33 / 75



Gibbs sampling for Boltzmann machines
How does Gibbs sampling work for this case? It’s handy to write the state
as split up into xk and the rest, which is x\k. We choose a new state for
(say) xk from the distribution P (xk|x\k). What’s that? Well, we know

logP ?(x) =
N∑
i=1

i∑
j=1

xiwij xj =
1
2

N∑
i=1

N∑
j=1

xiwij xj

and xk appears once in each sum, so:

logP ?(xk,x\k) =
1
2

N∑
j=1

xkwkjxj +
1
2

N∑
i=1

xiwikxk

+ other terms that don’t involve k

Notice that this is zero in the case that xk = 0, so we have that

logP ?(xk = 1,x\k) =
1
2

N∑
j=1

wkjxj +
1
2

N∑
i=1

xiwik

Marcus Frean (VUW) MLSS, ANU, 2010 34 / 75



Provided wij = wji, this is

logP ?(xk = 1,x\k) =
∑
i

wkixi

from which it’s straightforward to normalise and arrive at

P (xk = 1 | x\k) =
1

1 + e−
P

i wkixi

So Gibbs sampling in a Boltzmann machine amounts to using the sigmoid
function of the weighted inputs - it’s a “neuron”!

ie. ”vanilla” neuron updates can be used to get samples from P (h | v) in
the clamped phase, as well as samples from P (h,v) in the free phase.

Marcus Frean (VUW) MLSS, ANU, 2010 35 / 75



The Boltzmann machine is a recurrent neural network

symmetric weights

no self-connections

we’ve ignored biases, but
they’re good too

Marcus Frean (VUW) MLSS, ANU, 2010 36 / 75



learning in Boltzmann machines
The learning rule turned out to be:

∆wij = η
[
〈xi xj〉P data

x
− 〈xi xj〉Px

]
learning in Boltzmann machines

clamped phase: “clamp” each training pattern to the units, do Gibbs
sampling on the hidden units, and accumulate the Hebbian changes.

unclamped phase: do Gibbs sampling on all units, and accumulate
anti-Hebbian changes.

could think of free phase as a single markov chain run without
“clamping” and take lots of samples, or

could do it one on the end of each clamped phase.

Marcus Frean (VUW) MLSS, ANU, 2010 37 / 75



so much for the euphoria
This sounds great in theory.

Practice is a little different.

Having to resort to MCMC for both phases is disastrous: we’re trying to
climb a hill by using the difference between two noisy estimates!

Nonetheless this is the only option available in fully-connected Boltzmann
machines, which completely suck as a result.

Marcus Frean (VUW) MLSS, ANU, 2010 38 / 75



summary
sigmoid belief net Boltzmann machine

factors sigmoid(φ) exp(xiwijxj)

P ? already normalised,
so no second term.

needs normalization,
so Z matters...

P (h|v),
clamped
phase

hard to draw samples
from

hard to draw samples
from

P (v,h), free
phase

easy to draw samples
from (and no need to!)

hard to draw samples
from

Gibbs ugly sigmoid(φ)

verdict: pretty hopeless completely useless

Marcus Frean (VUW) MLSS, ANU, 2010 39 / 75



the problem
The gradient estimate is the difference between two noisy estimates, each
of which requires sampling from a long MCMC chain, (after waiting for it to
reach equilibrium).

This learning algorithm is beautiful but glacially slow in practice.

Despite their intuitive appeal as generative models, and their tempting
similarities with biological neural nets, Boltzmann machines seemed
doomed to the scrap heap, until recently.

We’re going to do two tricks to make Boltzmann machines practical
devices:

1 restrict the connectivity.
2 use a new learning algorithm to train the weights.

and then we’re going to show how to use them to solve the towers problem
of sigmoid belief nets...

Marcus Frean (VUW) MLSS, ANU, 2010 40 / 75



trick # 1: restrict the connections
Assume visible units are one layer, and hidden units are another.

Throw out all the connections within each layer.

hj ⊥⊥ hk | v
the posterior P (h | v) factors
c.f. in a belief net, the prior P (h) factors

no explaining away

Marcus Frean (VUW) MLSS, ANU, 2010 41 / 75



Alternating Gibbs sampling

Since none of the units within a layer are interconnected, we can do Gibbs
sampling by updating the whole layer at a time.

(with time running from left −→ right)

Marcus Frean (VUW) MLSS, ANU, 2010 42 / 75



learning in an RBM

Repeat for all data:
1 start with a training vector on the visible units
2 then alternate between updating all the hidden units in parallel and

updating all the visible units in parallel

∆wij = η
[
〈vi hj〉0 − 〈vi hj〉∞

]
restricted connectivity is trick #1:

it saves waiting for equilibrium in the clamped phase.

Marcus Frean (VUW) MLSS, ANU, 2010 43 / 75



trick # 2: curtail the Markov chain during learning

Repeat for all data:
1 start with a training vector on the visible units
2 update all the hidden units in parallel
3 update all the visible units in parallel to get a “reconstruction”
4 update the hidden units again

∆wij = η
[
〈vi hj〉0 − 〈vi hj〉1

]
This is not following the correct gradient, but works well in practice. Geoff
Hinton calls it learning by “contrastive divergence”.

Marcus Frean (VUW) MLSS, ANU, 2010 44 / 75



why does this work?
Starting at a data point, the Markov chain wanders off...
The Bolzmann machine learning rule takes some of the probability mass
from where the chain wanders to, and puts it back on the data point:

(fig from “Minimum Probability Flow Learning” Sohl-Dickstein, Battaglino & DeWeese, 2009)

Contrastive Divergence just doesn’t wait for it to wander far: the direction
of wandering is apparent after a few steps, and that’s good enough.

trick #2: contrastive divergence

this saves waiting for equilibrium in the unclamped phase.

Marcus Frean (VUW) MLSS, ANU, 2010 45 / 75



RBM summary
Two tricks were used to make Boltzmann machines practical devices:

restrict the wiring

This saves waiting for
equilibrium in the clamped
phase.

truncate the Markov chain
This saves waiting for equi-
librium in the unclamped
phase.

(contrastive divergence)

Marcus Frean (VUW) MLSS, ANU, 2010 46 / 75



e.g. training data for a single class

Marcus Frean (VUW) MLSS, ANU, 2010 47 / 75



e.g. RBM trained on a single class
Weights after training on a single class:

Notice how each neuron has identified a different feature.

Samples (long run of alternating Gibbs sampling):

Marcus Frean (VUW) MLSS, ANU, 2010 48 / 75



some reconstructions

from a model trained
with “2” examples

STARTING IMAGE

from a model trained
with “3” examples

Marcus Frean (VUW) MLSS, ANU, 2010 49 / 75



greedy, layer-wise learning?

an idea:
take samples from the aggre-
gate posterior and use them
to train another layer (and
then another... and so on).

To generate data, we could
1 run alternating Gibbs

sampling for a while on
the top layer, and then

2 do a top-down pass to
the visible layer.

This gives us a deep belief net (with an RBM as the top layer).
Marcus Frean (VUW) MLSS, ANU, 2010 50 / 75



greedy, layer-wise learning?

But why would we expect this to do any
better than the more obvious procedure of
using single-layer sigmoid belief nets in the
same way?

Two ideas that help understanding:

1 RBMs are already deep BNs...
2 RBMs don’t try to force the aggregate

posterior to be factorial...

Marcus Frean (VUW) MLSS, ANU, 2010 51 / 75



1: RBMs are infinitely deep belief nets

sampling from this is the same as sampling
from the network on the right.

Marcus Frean (VUW) MLSS, ANU, 2010 52 / 75



in fact, all of these are the same animal...

So when we train an RBM, we’re really training an∞ly deep sigmoid
belief net!

It’s just that the weights of all layers are tied.

Marcus Frean (VUW) MLSS, ANU, 2010 53 / 75



un-tie the weights from layer 2 to∞

If we freeze the first RBM,
and then train another RBM
atop it, we are untying the
weights of layers 2+ in the∞
net (which remain tied
together).

Marcus Frean (VUW) MLSS, ANU, 2010 54 / 75



un-tie the weights from layer 3 to∞

and ditto for the 3rd layer...

Marcus Frean (VUW) MLSS, ANU, 2010 55 / 75



greedy, layer-wise learning?

But why would we expect this to do any
better than the more obvious procedure of
using single-layer sigmoid belief nets in the
same way?

Two ideas that help understanding:

1 RBMs are already deep BNs...
2 RBMs don’t try to force the aggregate

posterior to be factorial...

Marcus Frean (VUW) MLSS, ANU, 2010 56 / 75



2: RBMs don’t make the aggregate posterior ∼factorial

in a 1-layer sigmoid belief net:

The prior over hiddens is factorial, but the posterior isn’t.

Tries to make the aggregate posterior factorial.

...leaves little for subsequent layers to do.

in a restricted Boltzmann machine:
The posterior over hiddens is factorial, but the prior isn’t.

DOESN’T try to force the aggregate posterior to be factorial.

...leaves more for the next layer to do.

Marcus Frean (VUW) MLSS, ANU, 2010 57 / 75



aside: natural distribution?
What kinds of distributions are RBMs well-suited for?

A single RBM and appropriate weights can generate any desired
distribution over the visible units, if we give it enough hidden units
(≈ 2# visible).

The probability of the joint state in an RBM is

P (v,h|W) ∝ exp(hTWv)

and so

P (v|W) ∝
∑
h

exp(hTWv)

Marcus Frean (VUW) MLSS, ANU, 2010 58 / 75



aside: natural distribution?
Carefully tracking terms (!), in log space this leads to:

logP (v|W) = w0?︸︷︷︸
biases

·v +
∑
j

log(1 + ewj?·v) + constant

where wj? is the vector of weights between the jth hidden unit and the
visible units.

a linear trend across the input space

a sum of functions of form f = log(1 + eφ). This is zero for φ < 0 and
the identity function for φ > 0, with a smooth transition.

Each hidden unit represents a “feature” characterised by the direction of its
weight vector wj?

The hidden unit makes states that are aligned with this vector more likely.

Marcus Frean (VUW) MLSS, ANU, 2010 59 / 75



aside: natural distribution?
RBMs seem predisposed to capture distributions consisting of
conjunctions of high probability features.

They should find it difficult to capture distributions that have ‘probability
holes’ in them, since they can only add thresholded ramps together. To
make a ‘hole’, they essentially have to add probability mass everywhere
else.

But this needs to be taken with a grain of salt. David MacKay and I tried
training RBMs (using the exact gradient) to learn “parity” distribution
problems: exponentially many probability holes.

Incredibly, an RBM with 6 hidden units can learn the parity distribution on 6
visible units perfectly! It does this by arranging a set of of 6 ramps in just
the right way to get high probability mass on all 32 of the desired patterns,
while staying low for the 32 undesirable ones.

Marcus Frean (VUW) MLSS, ANU, 2010 60 / 75



an RBM with 6 hidden units doing 6 bit parity

Marcus Frean (VUW) MLSS, ANU, 2010 61 / 75



samples from a 2 layer network

Marcus Frean (VUW) MLSS, ANU, 2010 62 / 75



training data for multiple classes

Marcus Frean (VUW) MLSS, ANU, 2010 63 / 75



weights after training on multiple classes

Marcus Frean (VUW) MLSS, ANU, 2010 64 / 75



samples from RBM trained on multiple classes

1st layer RBM alone with 2nd layer RBM

Marcus Frean (VUW) MLSS, ANU, 2010 65 / 75



fine-tuning with the wake-sleep algorithm
So far, the up and down weights have been symmetric, as required by the
Boltzmann machine learning algorithm. And we didn’t change the lower
levels after “freezing” them.

wake: do a bottom-up pass, starting with a pattern from the training
set. Use the delta rule to make this more likely under the generative
model.

sleep: do a top-down pass, starting from an equilibrium sample from
the top RBM. Use the delta rule to make this more likely under the
recognition model.

[CD version: start top RBM at the sample from the wake phase, and don’t
wait for equilibrium before doing the top-down pass].

wake-sleep learning algorithm

unties the recognition weights from the generative ones

Marcus Frean (VUW) MLSS, ANU, 2010 66 / 75



application # 1: classification
We can make a dedicated digit-model by including a “1-of-10” softmax unit
in the RBM at the top:

The soft-max unit could be considered another “visible” unit, if we have
labelled data available. Otherwise treat it as another hidden unit.

Marcus Frean (VUW) MLSS, ANU, 2010 67 / 75



Samples generated by running the top-level RBM with one label clamped.
There are 100 iterations of alternating Gibbs sampling between samples.

Marcus Frean (VUW) MLSS, ANU, 2010 68 / 75



demo

http://www.cs.toronto.edu/~hinton/adi/index.htm

Marcus Frean (VUW) MLSS, ANU, 2010 69 / 75

http://www.cs.toronto.edu/~hinton/adi/index.htm


application # 2: autoencoding
basic training unrolling fine-tuning

In this case the fine-tuning is done with back-prop!

Marcus Frean (VUW) MLSS, ANU, 2010 70 / 75



example: autoencoding digits

Notice: again, the fine tuning (by back-prop this time) achieves its effect by
untying the generative and recognition weights.

Marcus Frean (VUW) MLSS, ANU, 2010 71 / 75



example: autoencoding digits

Codes for digits, produced by taking
the first 2 principal components.

Codes from a 784-1000-500-250-2
autoencoder.

Marcus Frean (VUW) MLSS, ANU, 2010 72 / 75



example: autoencoding documents

Hinton & Salakhutdinov, Science, 2007

Marcus Frean (VUW) MLSS, ANU, 2010 73 / 75



semantic hashing
Suppose the input is (say) word counts from documents
Suppose the bottleneck is (say) 32 binary neurons
Surprised? cf. 20 questions...
That’s a 32-bit hashcode of the document
It’s a “semantic” hash: similar documents will have similar codes
We can navigate to documents that are “one question away”
(without knowing what the question is..!)

Salakhutdinov & Hinton, 2007Marcus Frean (VUW) MLSS, ANU, 2010 74 / 75



summary
1 motivations
2 sigmoid belief nets

I why are they hard to train?
I could layer-by-layer training work?

3 Boltzmann machines
I why are they hard to train?
I the restricted Boltzmann machine (RBM)

4 deep belief nets
I how to do it
I why it works
I fine-tuning the result [Key: untying the weights]
I 2 applications: a classifier and an autoencoder

Marcus Frean (VUW) MLSS, ANU, 2010 75 / 75


