Microsoft'

Research

Revisiting Globally Sorted Indexes for Efficient Document Retrieval

Fan Zhang, Shuming Shi, Hao Yan, Ji-Rong Wen
Microsoft Research Asia
Nankai University
Polytechnic Institute of New York University

Outline

- Introduction \& background
- Our algorithms
- Experimental results
- Conclusion

Improve Query Efficiency

- Massive parallelism
- Caching
- Index compression
- Early termination
- Avoid scanning and evaluating entire indexes

Standard Query Processing

- Inverted lists

New

$$
3,16,17,24,111,127,156,777,11437, \ldots, 12457
$$

York
$15,16,17,24,88,97,100,156,1234,4356, \ldots, 12457$
City

- Query processing
- Evaluate all intersected docs in the lists
- Return top-k docs with highest scores
- DAAT/TAAT
- How can we avoid evaluating the entire listsisicrosoft

Research

Basic Idea of Early Termination

- Original lists

Things To Be Considered

- Ranking function
- What type of scores : document/term/query dependent
- Context Information : structured information, anchor, title, etc
- How to combine those scores

Index Organization

Query Processing Strategy

Scores and Ranking Function

- Global scores
- Document-dependent (or term-independent)
- E.g., Pagerank, static rank
- Local scores
- Term-dependent scores (e.g. BM25)
- Query-dependent scores (e.g. phrase, term proximity)
- Scores related to document structure
- E.g., title, URL, anchor text
- Other machine learned scores
- The ranking function is often just a linearly combination of them

Scores and Ranking Function

- Global scores
- Document-dependent (or term-independent)
- E.g., Pagerank, static rank
- Local scores
- Term-dependent scores (e.g. BM25)
- Scores related to document structure
- E.g., title, URL, anchor text

The ranking function is often just a linear combination of them

Microsoft'
Research

Index Reorganization

- One segment

York: $15,16,17,24,88,97,100,156,423,1234,4356,12457, .$.

- Two segments

York:
York:
$\underbrace{16,88,} 156,1234, \underbrace{15,17,12457,} 24,97,100,423,4356, .$.
highest term-dependent scores (impact)

Using Global Scores (GS)

- One segment York: $\quad 15,16,17,24,88,97,100,156,423,1234,4356,12457, .$.

Researchers have shown that the GS methods based solely on static rank (or Pagerank) can not achieve early termination in practice,

However, researchers have also shown that the global information may be integrated together with the term-dependent scores, to achieve the overall better query processing performance

Widely used in ranking functions
They are often orthogonal to the local scores
The resulting indexes can be easily transformed into the typical indexes

Our Algorithms - Motivation

- Therefore, we want to find some methods that only use the global score (beyond Pagerank) to reorganize the inverted lists such that the early termination is possible
- We still use both GS and IR scores to evaluate documents

$$
S(d, q)=\alpha \cdot S R(d)+\beta \cdot \sum_{i \in(T, U, A, B)} w_{f} \times I R(d, q, i)
$$

- The main challenge is that GS (Static Rank) and IR-based scores (e.g., BM25) are not proportional to each other and do not conform to the similar distribution. Therefore, it is hard to estimate precisely the maximal possible overall score for the unseen documents

York:

Score Distribution for GOV

Values of scores

Microsoft ${ }^{\prime}$
Research

Our GS Scores

- Combination of static rank with one of the following:
- UBIR: the maximal value of the term IR scores
for all terms contained in the documents
- UBTF: the maximal value of the term frequency for all terms in the document
- The GS scores can then be represented as
- MSI: GS $=\max (S R, \alpha \times U B I R)$
- SSI: GS = $\alpha \times S R+(1-\alpha) \times$ UBIR
- MST: GS $=\max (S R, \alpha \times U B T F)$
- Predict the upper bound of the maximal unseen document scores
- Sort inverted lists by one of the above GS scoresicrosoft

Retrieval Strategies

```
Algorithm: Document retrieval strategy for our
algorithms
Input: Inverted lists L}\mp@subsup{L}{1}{},\ldots,\mp@subsup{L}{|Q}{},\mathrm{ , for the query Q
Output: Top-k documents
R= empty; //R: the current top-k result list
S}=0;//\mp@subsup{S}{K}{}:\mathrm{ the score of the kth document in R
loop
d=NextDoc();
if (d is empty) return R;
Compute d.score;
if( }|R|<k\mathrm{ OR d.score > SK
R.insert(d)
Update S S
end-if
    //update the maximal possible score for all unseen
docs
    Update S S;
    if(|R|\geqkAND S 
    return R;
end-loop
return R
```


Experiments

- TREC GOV / GOV2
- 2004mixed / 2003np query sets

GOV

Query set	Index	$\boldsymbol{k}=1$	$k=3$	$k=5$	$k=10$
$\begin{gathered} 2003 \\ \mathrm{np} \end{gathered}$	TSR	$\begin{array}{\|l\|} \hline 100 \% \\ 100 \% \\ \hline \end{array}$	100%	$\begin{array}{rrr\|} \hline 100 \% & \\ \hline \end{array}$	$\begin{array}{rrr\|} \hline 100 \% & \\ \hline \end{array}$
	MSI	$\begin{array}{r} 15.5 \% \\ 54.8 \% \end{array}$	$\begin{array}{r} 32.8 \% \\ 76.0 \% \end{array}$	$\begin{array}{r} 39.7 \% \\ 81.8 \% \\ \hline \end{array}$	$\begin{array}{r} 48.1 \% \\ 87.5 \% \end{array}$
	SSI	年	$r_{65.7 \%}^{19.1 \%}$	$\begin{array}{rr} 24.3 \% \\ 71.7 \% \end{array}$	$\begin{array}{\|l\|} \hline 32.0 \% \\ 81.1 \% \end{array}$
	MST	$\begin{array}{\|c\|} 21.5 \% \\ 65.1 \% \\ \hline \end{array}$	$\underbrace{47.3 \%}_{89.7 \%}$	$\begin{array}{\|rr\|} \hline 56.4 \% & \\ 95.4 \% \\ \hline \end{array}$	$\begin{array}{r} 63.5 \% \\ 95.8 \% \\ \hline \end{array}$
$\begin{gathered} 2004 \\ \text { mixed } \end{gathered}$	TSR	100%	100%	100%	
	MSI	16.9\%	$\begin{array}{r} 26.2 \% \\ 80.8 \% \\ \hline \end{array}$	86.0\%	$\begin{array}{r} 41.8 \% \\ 90.7 \% \end{array}$
	SSI	$\begin{array}{\|c\|} \hline 11.8 \% \\ 60.1 \% \\ \hline \end{array}$	$\begin{array}{r} 21.4 \% \\ 78.1 \% \\ \hline \end{array}$	$\begin{array}{r} 27.1 \% \\ 83.5 \% \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 37.3 \% \\ \hline 88.2 \% \\ \hline \end{array}$
	MST	$\begin{array}{\|l\|} \hline 49.8 \% \\ 94.9 \% \\ \hline \end{array}$	$\begin{array}{r} 77.8 \% \\ 99.5 \% \end{array}$	$8_{99.8 \%}^{84.9 \%}$	$\begin{aligned} & 91.0 \% \\ & 99.4 \% \\ & \hline \end{aligned}$

- TSR index: documents are sorted only by the SR scores
- Upper-left and bottom-right numbers are respectively doc\# ratios and time ratios

GOV

Query set	Index	$\boldsymbol{k}=1$	$k=3$	$k=5$	$k=10$
$\begin{gathered} 2003 \\ \mathrm{np} \end{gathered}$	TSR	$\begin{array}{rr} 100 \% & \\ 100 \% \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 100 \% & & \\ \hline & 100 \% \end{array}$	100%	100%
	MSI	$\begin{array}{r} 15.5 \% \\ 54.8 \% \end{array}$	$\begin{array}{r} 32.8 \% \\ 76.0 \% \end{array}$	$\begin{array}{r} 39.7 \% \\ 81.8 \% \\ \hline \end{array}$	$\frac{48.1 \%}{87.5 \%}$
	SSI	54.9\%	65.7\%	$\begin{array}{r} 24.3 \% \\ 71.7 \% \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 32.0 \% \\ 81.1 \% \\ \hline \end{array}$
	MST	$\begin{array}{r} 21.5 \% \\ 65.1 \% \end{array}$	$\begin{array}{r} 47.3 \% \\ 89.7 \% \\ \hline \end{array}$	$\begin{array}{r} 56.4 \% \\ 95.4 \% \end{array}$	$\begin{array}{r} 63.5 \% \\ 95.8 \% \end{array}$
$\begin{gathered} 2004 \\ \text { mixed } \end{gathered}$	TSR	100%	100%	100%	100%
	MSI	$\begin{array}{r} 16.9 \% \\ 63.5 \% \end{array}$	$\begin{array}{r} 26.2 \% \\ 80.8 \% \end{array}$	$\begin{array}{r} 31.7 \% \\ 86.0 \% \\ \hline \end{array}$	$\begin{gathered} 41.8 \% \\ 90.7 \% \end{gathered}$
	SSI	$\begin{array}{r} 11.8 \% \\ 60.1 \% \\ \hline \end{array}$	$\begin{array}{rr} 21.4 \% \\ 78.1 \% \\ \hline \end{array}$	$\begin{array}{r} 27.1 \% \\ 83.5 \% \\ \hline \end{array}$	$\begin{array}{\|l} 37.3 \% \\ 88.2 \% \\ \hline \end{array}$
	MST	$\begin{array}{r} 49.8 \% \\ 94.9 \% \end{array}$	$\begin{array}{r} 77.8 \% \\ 99.5 \% \\ \hline \end{array}$	8	99.4\%

- TSR index: documents are sorted only by the SR scores
- Upper-left and bottom-right numbers are respectively doc\# ratios and time ratios

GOV

Query set	Index	$\boldsymbol{k}=1$	$k=3$	$k=5$	$k=10$
$\begin{gathered} 2003 \\ \mathrm{np} \end{gathered}$	TSR	$\begin{array}{rr} 100 \% & \\ 100 \% \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 100 \% & & \\ \hline & 100 \% \end{array}$	100%	100%
	MSI	$\begin{array}{r} 15.5 \% \\ 54.8 \% \end{array}$	$\begin{array}{r} 32.8 \% \\ 76.0 \% \end{array}$	$\begin{array}{r} 39.7 \% \\ 81.8 \% \\ \hline \end{array}$	$\frac{48.1 \%}{87.5 \%}$
	SSI	54.9\%	65.7\%	$\begin{array}{r} 24.3 \% \\ 71.7 \% \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 32.0 \% \\ 81.1 \% \\ \hline \end{array}$
	MST	$\begin{array}{r} 21.5 \% \\ 65.1 \% \end{array}$	$\begin{array}{r} 47.3 \% \\ 89.7 \% \end{array}$	$\begin{array}{r} 56.4 \% \\ 95.4 \% \end{array}$	$\begin{array}{r} 63.5 \% \\ 95.8 \% \end{array}$
$\begin{gathered} 2004 \\ \text { mixed } \end{gathered}$	TSR	100%	100%	100%	100%
	MSI	$\begin{array}{r} 16.9 \% \\ 63.5 \% \end{array}$	$\begin{array}{r} 26.2 \% \\ 80.8 \% \end{array}$	$\begin{array}{r} 31.7 \% \\ 86.0 \% \\ \hline \end{array}$	$\begin{gathered} 41.8 \% \\ 90.7 \% \end{gathered}$
	SSI	$\begin{array}{r} 11.8 \% \\ 60.1 \% \\ \hline \end{array}$	$\begin{array}{rr} 21.4 \% \\ 78.1 \% \\ \hline \end{array}$	$\begin{array}{r} 27.1 \% \\ 83.5 \% \\ \hline \end{array}$	$\begin{array}{\|l} 37.3 \% \\ 88.2 \% \\ \hline \end{array}$
	MST	$\begin{array}{r} 49.8 \% \\ 94.9 \% \end{array}$	$\begin{array}{r} 77.8 \% \\ 99.5 \% \\ \hline \end{array}$	$\begin{array}{r} 84.9 \% \\ 99.8 \% \end{array}$	$\begin{array}{r} 91.0 \% \\ 99.4 \% \end{array}$

- TSR index: documents are sorted only by the SR scores
- Upper-left and bottom-right numbers are respectively doc\# ratios and time ratios

GOV2

Index	$k=1$			$k=5$		
	Doc\# Ratio	Time Ratio	Time Ratio- 2	Doc\# Ratio	Time Ratio	Time Ratio- 2
	100%	100%	100%	100%	100%	100%
MSI	12.2%	63.3%	37.0%	20.7%	82.0%	64.9%
SSI	10.7%	62.9%	33.4%	18.8%	82.1%	60.7%
MST	70.9%	97.5%	96.8%	88.9%	99.7%	99.2%

The Potential

Microsoft
Research

Different Static Rank Weights

Static Rank Weights

Microsoft ${ }^{\prime}$
Research

Return Approximate Top-k Results

Table 6-3. Results of theta-approximation (metric: ratio, dataset: GOV; query set: 2004mixed; $\alpha=0.2 ; k=5$)

Index	$\theta=0.8$	$\theta=0.85$	$\theta=0.9$	$\phi=0.95$	$\theta=1.0$
TSR	100\%	100\%	100\%	100\%	100\%
MSI	16.7\%	20.0\%	23.6\%	28.4\%	31.7\%
SSI	12.8\%	15.9\%	19.6\%	24.1\%	27.1\%
MST	40.2\%	49.6\%	58.7\%	66.9\%	84.9\%

Index	$\boldsymbol{\theta}=\mathbf{0 . 8}$	$\boldsymbol{\theta}=\mathbf{0 . 8 5}$	$\boldsymbol{\theta}=\mathbf{0 . 9}$	$\boldsymbol{\theta}=\mathbf{0 . 9 5}$	$\boldsymbol{\theta}=\mathbf{1 . 0}$
TSR	0%	0%	0%	0%	0%
MSI	9.20%	6.25%	0.04%	0.01%	0%
SSI	9.20%	7.05%	4.11%	1.25%	0%
MST	4.20%	1.88%	0.71%	0.09%	0%

Different Query Length

Microsoft'
Research

Different Length of Intersection Lists

Microsoft'
Research

Conclusion

- We proposed new techniques to achieve early termination by sorting inverted lists according to the global scores
- Future wok:
- How to combine it with other information
- Term proximity

Thank You!

Research

