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“Event” Content in Social Media Sites 

“Event”= something that occurs at a certain time in a 
certain place [Yang et al. ‟99]  
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Event Identification: Challenges 

 Uneven data quality 

Missing, short, uninformative text 

… but revealing structured context available: 

tags, date/time, geo-coordinates 

 Scalability 

 Dynamic data stream of  event information 

 Number of  events unknown 

Difficult to estimate 

Constantly changing 
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Clustering Social Media Documents 

 Social media document representation 

 Social media document similarity 

 Social media document clustering 
framework 

 Similarity metric learning for clustering 
 Ensemble-based 

 Classification-based 

 Evaluation results 
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Social Media Document Similarity 

 Text: cosine similarity of tf-idf vectors 
(tf-idf version?; stemming?; stop-word elimination?) 

Title 

Description 

Tags 

Location 

All-Text 

Date/Time 

time 

A A A B B B 

 Time: proximity in minutes 

 Location: geo-coordinate proximity 
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Clustering Algorithm 

 Many alternatives possible! [Berkhin 2002] 

 Single-pass incremental clustering algorithm 

 Scalable, online solution  

 Used effectively for event identification in textual 
news 

 Does not require a priori knowledge of  number of  
clusters 

 Parameters: 

 Similarity Function σ 

 Threshold μ 
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Cluster Representation and 

Parameter Tuning 

 Centroid cluster representation 

Average tf-idf  scores 

Average time 

Geographic mid-point 

 Parameter tuning in supervised training 

phase 

Clustering quality metrics to optimize: 

Normalized Mutual Information (NMI) [Amigó et al. 2008] 

B-Cubed [Strehl et al. 2002] 
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Clustering Quality Metrics 

 Characteristics of  clusters: 

 

 Homogeneity 

 

 

 Completeness 

 

 

 

✔ 

✔ 

 Captured by both NMI and B-Cubed 

 Optimize both metrics using a single (Pareto 

optimal) objective function: NMI+B-Cubed 
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Learning a Similarity Metric for Clustering 

 Ensemble-based similarity 

Training a cluster ensemble 

Computing a similarity score by: 

Combining individual partitions 

Combining individual similarities 

 Classification-based similarity 

Training data sampling strategies 

Modeling strategies 
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 Overview of  a Cluster Ensemble Algorithm 

Wtitle 

Wtags 

Wtime 

f(C,W) 

σCtitle(di,cj)>μCtitle 

σCtags(di,cj)>μCtags 

σCtime(di,cj)>μCtime 

For each 

document di 

and cluster cj 
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 Classification-based similarity 

Training data sampling strategies 

Modeling strategies 
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Classification-based Similarity Metrics 

 Classify pairs of  documents as similar/dissimilar 

 Feature vector 

 Pairwise similarity scores  

 One feature per similarity metric (e.g., time-

proximity, location-proximity, …) 

 Modeling strategies 

 Document pairs  

 Document-centroid pairs 



Training Classification-based Similarity 

 



Training Classification-based Similarity 

 Challenge: most document pairs do not correspond to the 

same event 

 Skewed label distribution 

 Small, highly homogeneous clusters 

 Sampling strategies 

 Random 

 Select a document at random 

 Randomly create one positive and one negative example 

 Time-based 

 Create examples for the first NxN documents 

 Resample such that the label distribution is balanced 



Experiments: Alternative Similarity 

Metrics 

 



Experiments: Alternative Similarity 

Metrics 

 Ensemble-based techniques 

 Combining individual partitions (ENS-PART) 

 Combining individual similarities (ENS-SIM) 

 Classification-based techniques 

 Modeling: document-document vs. document-centroid pairs 

 Sampling: time-based vs. random 

 Logistic Regression (CLASS-LR), Support Vector Machines 
(CLASS-SVM) 

 Baselines 

 Title, Description, Tags, All-Text, Time-Proximity, Location-
Proximity 
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 Datasets: 
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 >270K Flickr photos 

 Event labels from the “upcoming” event database 
(upcoming:event=12345) 

 Split into 3 parts for training/validation/testing 

 LastFM 

 >594K Flickr photos 

 Event labels from last.fm music catalog (lastfm:event=6789) 

 Used as an additional test set 
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 All similarity learning techniques outperform the baselines 

 Classification-based techniques perform better than 

ensemble-based techniques 

Algorithm NMI B-Cubed 

All-Text 0.9240 0.7697 

Tags 0.9229 0.7676 

ENS-PART 0.9296 0.7819 
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Statistical Significance Analysis 

 Clustering results for 10 partitions of  Upcoming 

test set 

 Significant using Friedman test, p<0.05 

 Post-hoc analysis: 

 



NMI: Clustering Accuracy over Both Test Sets 

  Upcoming    LastFM 

N
M

I 

 Similarity learning models trained on Upcoming 

data show similar trends when tested on LastFM 

data 
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Conclusions 

 Structured context features of  social media documents 

 Effective complementary cues for social media 

document similarity 

 Tags, Time-Proximity among highest weighted 

features 

 Domain-appropriate similarity metrics 

 Weighted combination yields high quality clustering 

results 

 Significantly outperform text-only techniques 

 Similarity learning models generalize to unseen data 

sets 



Current and Future Work 

 Improving clustering accuracy with social media 

“links” [SSM „10 poster] 

 Capturing event content across sites (YouTube, 

Flickr, Twitter) 

 Designing event search strategies 



Thank You! 

 


