

How Watson Learns Superhuman Jeopardy! Strategies

Gerald Tesauro, IBM Research Joint work with: David Gondek, Jonathan Lenchner, James Fan, John Prager

Outline

- 1) Overview of Jeopardy! Grand Challenge
- 2) Significance of Game Strategy
- 3) Building a Faithful-Enough J! Simulator
- 4) Learning & Optimizing Strategies in Simulation:
 - a) Daily Double betting
 - Neural nets + Reinforcement Learning: (TD-Gammon redux)
 - b) Final Jeopardy betting:
 - "Best Response" to Human FJ model
 - c) Clue selection
 - DD Seeking using Bayesian Inference
 - d) Confidence Threshold for Buzz-in
 - Approximate Dynamic Programming + real-time "Rollouts"

Jeopardy! Gameplay Basics

- Select a clue by category and dollar value
- Press buzzer to attempt to answer
- Gain \$\$ if right, lose \$\$ if wrong

TECHNOLOGY	CLASSIC MOVIE LINES	THE GREAT OUTDOORS	MIND YOUR MANNERS	SPEAK OF THE DICKENS	BEFORE & AFTER
	\$200	\$200	\$200	\$200	\$200
\$400	\$400	\$400	\$400	\$400	\$400
\$600	\$600	\$600	\$600	\$600	\$600
	\$800	\$800	\$800	\$800	\$800
	\$1000	\$1000	\$1000	\$1000	\$1000

What is "The Mystery of Edwin Drood?"

The Jeopardy! Challenge: A compelling and notable way to drive and measure the technology of automatic Question Answering along 5 Key Dimensions

DeepQA: The Technology Behind Watson

IBM Research

Massively Parallel Probabilistic Evidence-Based Architecture

Generates and scores many hypotheses using a combination of 1000's **Natural Language Processing**, **Information Retrieval**, **Machine Learning** and **Reasoning Algorithms**. These gather, evaluate, weigh and balance different types of **evidence** to deliver the answer with the best support it can find.

Watson's Competitive Record

- Sparring Games Series #1: 73 games vs. former Jeopardy! contestants (1 or 2 appearances)
 47-15-11 cumulative record (64.4% 1sts), 21 lockouts*
- Sparring Games Series #2: 55 games vs. Jeopardy! masters (Tournament of Champions finalist or semi-finalist)
 - 39-8-8 cumulative record (70.9% 1sts), 30 lockouts
- Exhibition Match vs. Ken Jennings and Brad Rutter
 - Watson 77,147 (1st place by lockout: \$1,000,000)
 - Ken 24,000 (2nd place: \$300,000)
 - Brad 21,600 (3rd place: \$200,000)

"Lockout:" guaranteed win, leader cannot be caught

IBM

Four Challenging Aspects of Jeopardy! Strategy

1) Daily Double wager

2) Final Jeopardy wager

3) Clue selection

4) Confidence threshold for buzz-in

Ö WATSON	1950s	87%
	Kingdom	6%
	It's a Small World	4%

Motivating Quantitative J! Strategy

- Our work gives Watson an edge over humans; yields substantial boost in winning chances (vs. simple heuristic strategies)
- We are extending this approach to Decision Analytics in health care, pricing, security domains
- Never been done before; led to new theories of evaluating / playing in various J! game states

Why Build a Jeopardy Simulator?

- > Three classic metrics for optimizing game programs:
 - 1. Test performance in live games
 - 2. Test performance in simulated games
 - 3. Evaluate over a collection of test positions

- > #1 is the Gold Standard ...
 - > But it's very slow and expensive (especially for J!)
- > #3 is unreliable ("overfitting" phenomenon)
- #2 is much faster and cheaper than live testing
 - > Orders of magnitude more data for learning/optimization
 - Is the simulation model "faithful enough" to be useful??

Approach to Modeling Jeopardy!

- Detailed modeling more difficult than in classic board games (chess, checkers, Go, etc.)
 - > modeling range of contestant knowledge across many categories would be highly challenging
 - > modeling distributions of categories, clues would be equally challenging
- > We resort to extreme simplification: models average over all contestants, categories, clues!
 - » average stochastic process models for regular clues, DDs, FJ, clue selection
 - keep in mind, we really want to model humans vs. Watson, not humans vs. humans

Components of a J! Game Simulator

- We obtained detailed historical records of thousands of past J! episodes from J! Archive (www.j-archive.com)
- Model Daily Double placement
- Model Human Contestant performance profile
 - . How often they attempt to buzz in
 - How often they are right/wrong when they win the buzz
 - Accuracy and betting patterns on Daily Doubles
 - Accuracy and betting patterns in Final Jeopardy
- We built three different human models:
 - "Average Contestant" model: average over all nontournament J! episodes (ex-College, Teen, Celebrity games)
 - . "Champion" model: All-time top 100 player stats
 - . "Grand Champion" model: All-time top 10 player stats

Modeling Daily Double Placement

Statistics over 9k DDs (3k Round1, 6k Round2):

- (Widely known) DDs most frequent in the highvalue rows (third, fourth, fifth) with harder clues
 - Row frequencies published on J! Archive
- (Previously unknown) Some columns are more likely than others to have a DD!
 - First column most likely to have a DD
 - Second column least likely to have a DD

Unlikely

Likely

 row-column frequencies used to randomly place DDs in simulated games; Watson uses them as Bayesian prior **IBM Research**

Modeling Human Final Jeopardy

Average FJ accuracy \approx **50%** FJ right/wrong correlation \approx **0.3**

Bets depend on score positioning: 1st place ("A"), 2nd place ("B"), 3rd place ("C")

Stochastic Process Model of Regular Clues

Statistics over 150K regular-clue (no DD) outcomes:

Derive avg. contestant precision / buzz rate model:

precision **p** = **0.87**

right/wrong correlation $\rho_{p} = 0.2$ (known from rebound stats)

buzz attempt rate **b** = 0.61

buzz/no-buzz correlation $\rho_{\rm b} = 0.2$

Watson's Daily Double Betting Strategy

 Train an Artificial Neural Net over millions of simulated games pitting Watson vs. two simulated human opponents

□ Use TD(λ) reinforcement learning algorithm just as in TD-Gammon \bigcirc

Backgammon Position (198 input units)

Jeopardy game state (23 input units)

BRITISH HISTORY DATEBOOK	TV's SUPPORTING CASTS	POTPOURRI	THE WHISKEY TRAIL	"ARD" STUFF	RHETT-ORIC
\$200		\$200	\$200	\$200	\$200
\$400		\$400	\$400	\$400	\$400
\$600	\$600	\$600	\$600	\$600	\$600
	\$800	\$800	\$800	\$800	\$800
	\$1000	\$1000	\$1000	\$1000	
] [
Watson		Gerry		Jon	
\$1000		\$200		\$1000	

© 2011 IBM Corporation

Simplified List of "State" Variables

- Scores of three players
- Round (SingleJ, DoubleJ, FinalJ)
- # of remaining clues
- total \$ value of remaining clues
- # of remaining Daily Doubles
- player with control of board

(Watson also has in-category confidence, from right/wrong answers to previous clues in the category.)

Computing Optimal DD Bet

- Let s = Watson's score and V = V(s, ...) = NN output = Watson's win prob in the current game state.
- "Equity" (expected utility/winprob) of a bet:

E(bet) = conf * V(s+bet) + (1-conf) * V(s-bet)

where **conf** = Watson's in-category confidence

- Best **risk-neutral** bet maximizes E(bet)
- Risk mitigation:
 - Penalize bets with high volatility (std. deviation)
 - Prohibit bets that entail "too much" downside risk
 - \rightarrow significantly reduces risk, only costs 0.3% equity

Illustrative Example of NN DD betting

 Start of DoubleJ, Watson ran the column and then found the first DD. Watson leads (11000, 4200, 4200).

TECHNOLOGY	CLASSIC MOVIE LINES	THE GREAT OUTDOORS	MIND YOUR MANNERS	SPEAK OF The Dickens	BEFORE & AFTER
	\$200	\$200	\$200	\$200	\$200
\$400	\$400	\$400	\$400	\$400	\$400
DAILY DOUBLE	\$600	\$600	\$600	\$600	\$600
	\$800	\$800	\$800	\$800	\$800
	\$1000	\$1000	\$1000	\$1000	\$1000

BALLET DANCERS	THAT'S FOUL!	"E" IN SCIENCE	WHAT'S NEXT ON THE LIST?	THE '70s	CHANGE A LETTER		
	1	THIS RO	USSIAI	ľ			
		BALLE	RINA'S				
LONDON HOME,							
		IVY H	OUSE,				
	WAS	FAMO	US FO	R ITS			
	ORI	NAMEN	ITAL LA	AKE			
		WITH S	SWANS				

NNDD Analysis

© 2011 IBM Corporation

NNDD Analysis

© 2011 IBM Corporation

NN DD Performance Metrics

- Increase in simulated wins (vs. average contestant model)
 - Previously we employed a Heuristic DD betting algorithm for Series 1 Sparring Games
 - Heuristic did not take confidence into account
 - Watson simulated win rate using Heuristic DD: 61%
 - Simulated win rate using NNDD + default confidence: 64%
 - Simulated win rate using NNDD + live confidence: **67%**
- Evaluate "equity loss" of NN DD bets with extensive offline Monte Carlo analysis (essentially perfect analysis of which bet achieves the most simulated wins):
 - Avg. NN DD equity loss = 0.6% per DD bet
 - Most errors occurred in endgames with ample lockout potential
 - We eliminated these errors in Series 2 Sparring Games using live MC rollouts to make endgame DD bets
 - (NN + endgame MC) equity loss = 0.25% per DD bet

Watson's Final Jeopardy Betting Strategy

- Live Best-Response to Randomized Human FJ Model:
 - Analytic probabilities of the eight possible right/wrong triples
 - Draw ~10k samples of human bet pairs
 - For each legal Watson bet, compute prob (Watson wins) given the bet pair and the right/wrong probs
- Can extract logical betting rules from Best-Response output:

```
IF (B \geq 2A/3) AND (B < 2C) {
IF((2C-B) \leq (3B-2A)) THEN BET = 2C-B
ELSE BET = B
```

• 3% more wins than simple-minded FJ heuristic

Win rates in 2092 historic FJs: human BR A 65.3% 67.0% B 28.2% 34.4% C 7.5% 10.5%

Watson's Clue Selection Strategy

- Systematically studied trade-offs between three considerations:
 - 1. Finding Daily Doubles:
 - -- use historical DD locations as Bayesian prior
 - -- combine prior probs with revealed clue evidence using Bayes' rule to obtain posterior DD probs
 - 2. Keeping control of the board:
 - -- tend to stay in categories where Watson is doing well
 - 3. Learning the "gist" of a category from revealed clues
 - -- tend to pick low-value clues, to do better on high-value clues
- Resulting strategy that maximizes simulation win rate:
 - If DDs left, ~90% #1 and ~10% #2
 - If no DDs left, 100% #3.

Daily Double Seeking Animation

Watson

Human

Unlikely

IBM Research

Endgame Buzz Threshold

Compute a set of buzz thresholds $\Theta\text{=}(\theta_{0},\,\theta_{1}\,,\,\theta_{2}\,,\,\theta_{3}\,)$

Determines a set of buzz decisions $\mathbf{B} = (b_0, b_1, b_2, b_3)$ given Watson's confidence

0 = initial buzz 1 = rebound, human #1 wrong 2 = rebound, human #2 wrong 3 = rebound, both humans wrong

 TECHNOLOGY
 CLASSIC
 THE GREAT
 MIND YOUR
 SPEAK OF
 BEFORE 3

 S200
 S400
 S400
 S600
 S800
 S800
 S10000
 S10000

Solve using recursion relation between V(K clues left) and V(K-1 clues left):

$$V_{k}(s) = \int \rho(c) \sum_{j=1}^{5} p(D_{j}) \max_{\vec{B}(c,D_{j})} \sum_{\delta} p(\delta | \vec{B}, c) V_{k-1}(s'(\delta, D_{j})) dc$$

Dynamic Programming Solution

- Recursion relation can be solved exactly using DP
 - Build the full search tree going from K clues left to 0 clues left (i.e., FJ)
 - Evaluate the FJ states (either MC or pre-tabulated)
 - Work backwards to evaluate 1, 2, ..., K clues left states
 - Blows up exponentially; too slow for live play (we need the buzz threshold in maybe 1-2 seconds tops)
- We used an **Approximate DP** technique:
 - Solve the exact recursion relation only for the first step (K \rightarrow K-1 left)
 - Evaluate the (K-1) left states using MC
 - Pretty good approximate solution (at least for $K \le 5$)
 - almost always takes < 2 seconds.

Buzz Threshold -- Illustrative Examples

- One clue remaining worth \$2000
 - Humans have (13000, 6800); consider various Watson scores:
- 23000 13000 6800 → Thresh 1.0000
 - Watson can't get a lockout, B can get to 2/3, if Watson buzzes and is wrong.
- 25000 13000 6800 \rightarrow Thresh 0.0000
 - Free shot to try for a lockout
 - no decrease in equity if wrong
- 27000 13000 6800 \rightarrow Thresh 0.6444
 - Could try to prevent B from answering, need to be pretty confident
- 29000 13000 6800 \rightarrow Thresh 0.0000
 - Free shot to prevent B from answering no equity loss if wrong

Conclusions

- First ever quantitative, principled, comprehensive J! strategy
- Our strategies for Watson perform beyond human capability:
 - FJ: slight edge
 - DD: clear edge
 - Clue selection: moderate edge (Bayesian DD seeking)
 - Endgame buzzing: clear edge in special situations
- Superhuman strategy was a significant factor in Watson's overall competitive record

References

This Is Watson

G. Tesauro et al., Simulation, learning and optimization techniques in Watson's game strategies, IBM J of R&D (2012).

G. Tesauro et al., Analysis of Watson's strategies for playing Jeopardy!, J of Al Research (2013).