Unsupervised Morphological Segmentation Based on
 Word Segments Predictability and Alignment

Delphine Bernhard

Unsupervised Segmentation of Words into Morphemes Pascal Challenge Workshop, April 12, 2006

Part I

Motivation

Why?

Context

Work on the morphology of domain-specific vocabulary, esp. medical language (many neoclassical compounds)

Examples

- dermatofibrosarcoma
- glomeroporphyritic

Why?

Context

Work on the morphology of domain-specific vocabulary, esp. medical language (many neoclassical compounds)

Examples

- dermatofibrosarcoma
- glomeroporphyritic
- slammograms

Why?

Context

Work on the morphology of domain-specific vocabulary, esp. medical language (many neoclassical compounds)

Examples

- dermatofibrosarcoma
- glomeroporphyritic
- slammograms (refers to mammograms)

Why?

Context

Work on the morphology of domain-specific vocabulary, esp. medical language (many neoclassical compounds)

Examples

- dermatofibrosarcoma
- glomeroporphyritic
- slammograms (refers to mammograms)
- pneumonoultramicroscopicsilicovolcanoconiosis

Why?

Context

Work on the morphology of domain-specific vocabulary, esp. medical language (many neoclassical compounds)

Examples

- dermatofibrosarcoma
- glomeroporphyritic
- slammograms (refers to mammograms)
- pneumonoultramicroscopicsilicovolcanoconiosis
"a lung disease caused by the inhalation of very fine silica dust, mostly found in volcanoes" = pneumoconiosis

Why?

Context

Work on the morphology of domain-specific vocabulary, esp. medical language (many neoclassical compounds)

Examples

- dermatofibrosarcoma
- glomeroporphyritic
- slammograms (refers to mammograms)
- pneumonoultramicroscopicsilicovolcanoconiosis
"a lung disease caused by the inhalation of very fine silica dust, mostly found in volcanoes" = pneumoconiosis
(But this is a hoax !)

Objectives

- Automatic acquisition of semantic relationships thanks to morphological relatedness

$\begin{array}{ll}\longrightarrow & \text { direct hypernym } \\ -- \text { indirect hypernym } & \longleftrightarrow \text { direct co-hyponyms } \\ & \text { indirect co-hyponyms }\end{array}$

Part II

Method

Constraints

- Take into account all of the following word formation processes:
- inflection
- derivation
- compounding
- Method not limited to French or English.
- Distinguish between different types of word segments:
- prefix
- suffix
- stem
- linking element

Overview of the method

Input

List of words

Stages

- Acquisition of prefixes and suffixes
(2) Acquisition of stems
(Alignment of word segments
(1) Selection of the best segmentation for each word

Acquisition of prefixes and suffixes [1]

Input
Longest
words

Acquisition of prefixes and suffixes [1]

Locate positions with low segment predictability

Input
 Longest
 words

Acquisition of prefixes and suffixes [1]

Locate positions with low segment predictability

Input

Longest
words

Output

Segments

Acquisition of prefixes and suffixes [2]

Identification of a stem among the segments

Segments	post	transplant		ation
Frequency	278	>42	$<$	1,163
Length	4	<10	$>$	5

Prefixes and suffixes

re-		ation
anti-		s
non	transplant	ing
re-		ed
post		ations
жene		

Extraction of stems

Subtract prefixes and suffixes from all words

Alignment of word segments [1]

Alignment of word segments [2]

Validation of new prefixes and suffixes

Words	Known suffixes A_{1}	Potential stems A_{2}	New suffixes A_{3}
hormonal hormonotherapy hormone hormones	-al	-otherapy	

$$
\frac{\left|A_{1}\right|+\left|A_{2}\right|}{\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|} \geq a \text { and } \frac{\left|A_{1}\right|}{\left|A_{1}\right|+\left|A_{2}\right|} \geq b
$$

Selection of the best segmentation

Segmentation of new words

- For each word, select segments so that the total cost is minimal
- Cost functions used:

$$
\begin{aligned}
\operatorname{cost}_{1}\left(s_{i}\right) & =-\log \frac{f\left(s_{i}\right)}{\sum_{i} f\left(s_{i}\right)} \\
\operatorname{cost}_{2}\left(s_{i}\right) & =-\log \frac{f\left(s_{i}\right)}{\max _{i}\left[f\left(s_{i}\right)\right]}
\end{aligned}
$$

Part III

Results and conclusion

Evaluation

Position of boundaries

MorphoChallenge evaluation

Conflation sets

Check if word forms containing the same stem are related

- Test on an English corpus on breast cancer (about 86,000 word types).
- Manually built morphological families for the top 5,000 key words
- Results: F-measure ~50\%
(Recall $=40 \% \pm 7$, Precision $=66 \% \pm 7$)

Examples [1]

Words	Segmentations
chondrosarcomas	chondro + sarcoma + s
cystosarcoma	cyst + o + sarcoma
dermatofibrosarcomas	derm + at + o + fibro + sarcoma + s
fibroxanthosarcoma	fibroxanthosarcoma
leiomyosarcoma	leiomyo + s + arc + oma
leiomyosarcomas	leiomyo + sarcoma + s
liposarcoma	lipo + sarcoma
lymphangiosarcomas	lymph + angiosarcoma + s
myxofibrosarcoma	myxo + fibro + sarcoma
myxosarcomas	myxo + sarcoma + s
neurofibrosarcoma	neur + o + fibro + sarcoma
osteosarcoma	osteo + sarcoma
osteosarcomatous	osteosarcoma + tous
sarcoma	sarcoma
sarcomatoid	sarcoma + t + oid

Examples [2]

Words	Segmentations
auto-transplant	auto + - + transplant
auto-transplantation	auto + + + transplant + ation
autotransplantation	auto + transplant + ation
post-transplantation	post + - + transplant + ation
posttransplantation	post + transplant + ation
retransplantation	re + transplant + ation
transplantability	transplantability
transplant	trans + plant
transplanted	trans + plant + e + d
transplanting	trans + plant + ing
transplants	trans + plant + s
xenotransplantation	xenotransplant + ation
xenotransplanted	xenotransplant + ed
xenotransplants	xeno + transplants

Main issues

Over-segmentation

- leiomyo + s + arc + oma
- $g+$ lobul $+e$
\Rightarrow Low precision

Under-segmentation

- transplantability
- xenotransplant + ation
- xenotransplant + ed
\Rightarrow Low recall

Conclusion

Summary

- Method usable for languages other than French and English
- Performs segmentation + distinguishes between different kinds of segments

Future work

- Use other data structures to deal with very, very large corpora
- Deal with variations within stems (accents, alternations)
- Evaluate how well word segments predict semantic relationships between terms

Thank you

Further information:

Delphine.Bernhard@imag.fr http://www-timc.imag.fr/Delphine.Bernhard/

