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from nips to neuroscience

reinforcement learning exemplifies two (related) ways that 
computer science informs behavioral neuroscience

1. conceptual
– how to characterize hard problems (formally analyzable tasks)

– optimal (typically intractable) solution

– approximate algorithms and their properties

– define relevant quantities

 algorithms as hypotheses

 common process level explanation for different kinds of data

2. analytical
– algorithms as likelihood functions for inference from data

– data analysis as statistical machine learning



(!= from neuroscience to nips)



plan
reinforcement learning in neuroscience (psychology, behav. economics)

1. dopamine & the TD hypothesis

– behavioral & analytical background

– recordings: spiking, fMRI

– functional neuroanatomy

2. beyond the TD hypothesis

– states ( POMDPs & belief states)

– actions ( hierarchical RL, decomposed error signals)

– rewards ( model-based vs model free)

basic assumption: you know some machine learning.

will try to stay at high level: sloppy notation, etc.



prediction

• … revealed by behavior

• … shaped by learning

Pavlovian conditioning



blocking

+

Phase 1 Phase II

(Kamin 1968; Rescorla & Wagner 1972)

interpretation (Rescorla & Wagner 1972):

blocking supports delta-rule (“error driven”) learning, e.g.

V = Σs ws

δ = r – V

ws = ws + αδ

this rule can be motivated from statistical inference in 

appropriate model (eg Kalman filter; Kakade & Dayan 2000)



bandit tasks for primates
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Daw et al. 2006

Wittmann et al 2008

Gershman et al 2009

Schonberg et al 2007, 2010

Glascher et al. 2010

monkeys

Platt & Glimcher 1998

Sugrue et al. 2004

Samejima et al. 2005

Lau & Glimcher 2008



typical analysis

experience

(past choices & outcomes)

t-1 t-3 t-4 …t-2

choice

?



typical analysis

experience

(past choices & outcomes)

t-1 t-3 t-4 …t-2

choice

regression

(eg Sugrue et al.;

Lau & Glimcher)

model

(probabilistic algorithm:

experience  choices)



Logit regression, outcomes  choices
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(Seymour et al., under revision)



monkeys

(Sugrue et al. 2004) (Lau & Glimcher 2005)



typical analysis

experience

(past choices & outcomes)

t-1 t-3 t-4 …t-2

choice

regression

(eg Sugrue et al.;

Lau & Glimcher)

model

(probabilistic algorithm:

experience  choices)



logistic choice

typical analysis

experience

(past choices & outcomes)

t-1 t-3 t-4 …t-2

choice

delta rule learning

δt = rt – Vt(ct)

Vt+1(ct) = Vt(ct) + αδt

model

(probabilistic algorithm:

experience  choices)

Choice

P
ro

b
a
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behavior:

Bayesian (or ML) inference: which 

model & parameters make observed 

choices most likely?

P(α,β|D,M) ∝ P(D|α,β,M) P(α,β|M)

P(ct=c) ∝ exp(βVt(c))



Logit regression, outcomes  choices
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Fit of delta-rule model, visualized same way

(5x fewer parameters, almost as good fit to data) (Seymour et al. submitted)



model as likelihood

nb: RL algorithms as likelihood functions tend to be poorly behaved 
(e.g., correlations between parameters a posteriori)

P(D|α,β,M)

(Daw 2010)



Dopamine

central tension:

appetitive vs motor

• Movement

• Reward

• Addiction

• Self-stimulation

• Synaptic plasticity

(Kandel and Schwartz)



Dopamine responses

• Burst to unexpected 

reward

• Response transfers 

to reward predictors

• Pause at time of 

omitted reward

Schultz et al. 1997



Dopamine responses

(Fiorillo et al 2003)

reward following 

0% predictive cue

reward following 

100% predictive cue

reward following 

50% predictive cue

no reward following 

100% predictive cue

Prediction error:

dt = rt – Vt

(Houk et al. 1995;

Montague et al. 1996)



Prediction error

(Bayer & Glimcher 2004)

trials into past
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learning: express 

dopamine response to 

reward as weighted sum 

of current & past rewards 

 looks like current r

minus weighted average 

of past rs (r – V)

prediction error r-V

d
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 r
a

te coding: dopamine 

response to reward as 

function of prediction 

error r – (estimated) V

 quite linear; negative 

error cut off due to low 

baseline response



More dopamine responses

(Fiorillo et al 2003)

reward following 

0% predictive cue

reward following 

100% predictive cue

reward following 

50% predictive cue

no reward following 

100% predictive cue

what about these?



Markov Decision Process

class of stylized tasks with

states, actions & rewards

– at each timestep t the world takes on 

state st and delivers reward rt, and the 

agent chooses an action at



total score is not just immediate points scored on play

V(state) = E[ immediate reward + next reward + next next reward + … ]

V(next state) = E[ next reward + next next reward + … ]

V(state) = E[ immediate reward + V(next state) ]   (Bellman equation)

 temporal difference methods (Sutton 1992) based on sampling Bellman 

residual:

δ(state) = [ immediate reward + V(next state) ] - V(state)

sequential decision problem



More dopamine responses

(Fiorillo et al 2003)

reward following 

0% predictive cue

reward following 

100% predictive cue

reward following 

50% predictive cue

no reward following 

100% predictive cue

Prediction error:

Vt+1 = 0

dt = rt – Vt + Vt+1



More dopamine responses

(Fiorillo et al 2003)

reward following 

0% predictive cue

reward following 

100% predictive cue

reward following 

50% predictive cue

no reward following 

100% predictive cue

Same story here

Vt = 0; rt = 0

dt = rt – Vt + Vt+1



aside: fMRI
• Functional magnetic resonance imaging

– “functional”: measuring brain usage, not 
structure

– useful technology for studying neural 
function in humans

• Concept: measure BOLD (“blood 
oxygenation level dependent”) signal

– oxygenated vs de-oxygenated 
hemoglobin have different magnetic 
properties

– detected by big superconducting magnet

• Brain is functionally modular

• Synaptic activity uses energy
– & oxygen

– (activity apparently reflects input more 
than local firing?)

• Spatial resolution: ~3mm “voxels”

• temporal resolution: maybe 5-10 secs



single words,

auditory cortex

(Josephs et al 1997)

checkerboard,

visual cortex

(Logothetis et al 2001)

hemodynamic impulse response

• Slow

• Localized

• Event-related

• Negative & 

positive 

portions



Broad findings
Reward or reward anticipation activates ventromedial prefrontal cortex 
& orbitofrontal cortex, striatum (sometimes midbrain)

faces

attractiveness

(O’Doherty et al 2003)

Coke or Pepsi

degree favored

(McClure et al. 2004)

money

value predicted

(Daw et al 2006)

food odors

valued vs devalued

(Gottfreid et al 2003)

juice

unpredictable vs 

predictable

(Berns et al 2001)

money

gain vs loss

(Kuhnen & Knutson

2005)

 commonality of responding across reinforcers suggests generalized appetitive function



logistic choice

typical analysis

experience

(past choices & outcomes)

t-1 t-3 t-4 …t-2

choice

delta rule learning

δt = rt – Vt(ct)

Vt+1(ct) = Vt(ct) + αδt

model

(probabilistic algorithm:

experience  choices)

Choice
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P(ct=c) ∝ exp(βVt(c))



typical analysis

experience

(past choices & outcomes)

t-1 t-3 t-4 …t-2

neural response

delta-rule learning

δt = rt – Vt(ct)

Vt+1(ct) = Vt(ct) + αδt

model

(probabilistic algorithm:

experience  BOLD)

fMRI:

search for neural correlates;

how do they behave?

*



dopamine & RL

(Schultz et al. 1997)



striatal BOLD and PE

(Niv et al. under review)

* =

DATA



Striatal BOLD, DA, and PE
healthy control Parkinson’s disease

difference

(Schonberg et al 2010)

BOLD PE effect sizes

healthy

PD

dorsal ventral



where are we

• behavioral suggestions of delta-rule 
learning

• phasic dopamine response well 
characterized by TD prediction error signal 

– animals, human fMRI

– nb: some anomalous responses

– suggests very specific mechanism for 
learning/prediction in sequential tasks

– (but this is a causal/functional claim and not 
uncontroversial)



Basal ganglia
Several large subcortical nuclei, 
unfortunate nomenclature

essential puzzle (as with dopamine): 
motor control plus (drugs, reward, 
motivation)

various specific ideas
– limbic-motor gateway

– action selection, facilation/suppression

– behavioral sequencing

– behavioral monitoring

– …



prediction error

• what should prediction error do?

– drive learning

– …about expected rewards  (eg state values)

– …to guide choice (eg policies, action values)

 this fits well with the multifarious roles of 

dopamine & its targets



striatum: basal ganglia input

• Projection from 

entire cortex 

(including 

sensory, 

motor, 

associative 

areas) to 

striatum

• Topographic

Voorn et al 2004



Medium spiny neurons

• Principal neuron type 
in striatum

• Recipient of 
corticostriatal inputs

• Extensive dendrites –
each receives input 
from 10,000 fibers

• Unusual: GABAergic 
(inhibitory) projections
– Also collaterals 

(competitive network)



Dopamine and plasticity

• If dopamine 

carries a prediction 

error, where does 

learning happen?

• Potentially, the 

cortico-striatal 

synapse



DA and corticostriatal plasticity

Three-factor learning rule? (pre/post/dopamine)

Wickens et al. 1996
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Actor / critic

(choose according to p)

• Same error signal for values and policies

• Theory of interaction of Pavlovian (prediction) and 
instrumental (action choice) conditioning

• gradient ascent on V wrt p

( ) ( )t t tV s V s  d  

1( ) ( )t t t tr V s V sd   

Critic (values) Actor (policy)

ttttt asas dpp  ),(),(



actor/critic

dopamine signals to both 

motivational & motor striatum 

appear, surprisingly the same

suggestion: training both values & 

policies



Pavlovian Instrumental Conjunction

Dorsal striatum: prediction error only in instrumental task

ventral striatum: correlated with prediction error in both conditions

actor/critic in fMRI?

(O’Doherty et al. 2004)



Q learning

a

b c

5 0 1 2

Q(a,left) = 5 Q(a,right) = 2

another version learns state-action values (but doesn’t distinguish actor from critic)

δt = rt + Q(st+1,at+1) - Q(st,at) (SARSA) 

or

δt = rt + argmaxa[Q(st+1,a)] - Q(st,at) (Q-learning)

Q(st,at) = Q(st,at) + ηδt



NIv et al 2006 after Morris et al. 2006

SARSA?



where are we

• dopamine responses (+ various aspects of 
their functional neuroanatomy) seem well 
accounted for by TD learning

– though not without questions!

• how can this possibly scale up to real-
world, e.g. embodied, behavior?

– especially given the constraint that at the 
heart there is apparently a simple TD system?



plan
reinforcement learning in neuroscience (psychology, behav. economics)

1. dopamine & the TD hypothesis

– behavioral & analytical background

– recordings: spiking, fMRI

– functional neuroanatomy

2. beyond the TD hypothesis

– states ( POMDPs & belief states)

– actions ( hierarchical RL, decomposed error signals)

– rewards ( model-based vs model free)

.



Markov Decision Process

class of stylized tasks with

states, actions & rewards

 what do these correspond to in 

biology?



state & history

(Schultz et al. 1997)

• What are the sensory events in this 

task?

• What is the state for this task?

• What tells the neuron when to 

pause for omitted reward?

raw sensory events are clearly non-

Markovian

various approaches: history, POMDP



Partially observable MDP
• MDP but state is unobserved 

s1 s2 s3
…

o1 o2 o3

latent state:

observation:

a1 a2 a3
…

action:

Transition function: P(st+1 | st, at)

Reward function: P(rt | st)

Observation function: P(ot | st)

r1 r2 r3reward:



Belief state MDP
• belief states (ie inferred state 

distributions) in a POMDP 
themselves form the states of an 
MDP (Kaelbling et al 1995)

• Thus in principle we can use 
“standard” RL in the space of 
belief states
– Framework: sensory analysis infers 

belief state; this becomes state for RL 
(BG etc)

– This fits well with Bayesian models of 
sensation & sensory cortex

– severe practical issues related to 
dimensionality/continuity of belief 
state

unsupervised learning

inference

RL

belief state

raw sensation

action

Daw et al. 2006

Dayan & Daw 2008

Gershman & Niv 2009

Rao 2010



example

Shadlen, Newsome, 
Movshon, etc

“sensory decision” task: are 
the snowy dots moving left 
or right? 

– coherence varied (hard or 
easy)

– watch till you’re ready to 
answer (“reaction time” task)

– signal answer with left or 
right saccade

– no real learning

Palmer et al 2005



task
idealized task:

• you don’t know if dots are 
moving left or right

• at each step you may respond 
“left” or “right” or watch another 
burst of noise

isomorophic to POMDP tiger 
problem

solution tracks posterior prob 
of underlying state (right or left) 
given data; responds on 
threshold (SLRT; Gold & 
Shadlen 2002) Palmer et al 2005



LIPFEF

MT

SC

oculomotor nuclei

visual area MT (dorsal 

visual stream), motion 

analysis

Key neural players

area LIP: sensorimotor 

area for saccades



belief state?

Roitman & Shadlen

neurons in area LIP

ramps prior to saccade

faster for larger coherence

saccade occurs when 

response hits threshhold

align on motion onset

align on saccade



belief state as state

model: Rao 2010

data: Nomoto et al 2010

Nomoto et al 2010: 

Dopamine neurons in this 

task show 2-stage 

responding

1) quick response related to 

dots onset

2) slower response related 

to trial difficulty

 Rao 2010: latter tracks 

change in value due to 

evolving internal belief 

state (over additional 

latent variable of trial 

difficulty)



where are we

• huge issue: where does state come from

• “state” driving DA response is internal
– evolves with passage of time
– evolves with non-Markovian input

• one way to conceptualize this is POMDP 
belief state
– leads to many more questions
– but encapsulates simple RL mechanism behind 

fancy sensory inference



Markov Decision Process

class of stylized tasks with

states, actions & rewards

 what do these correspond to in 

biology?



action

• the simple notion of action in a bandit task 

is also not good enough

– Ballard example of encapsulation

• three examples involving curse of 

dimensionality in action space

– sequential action & hierarchical structure

– multieffector action

– vigor



action “chunking”

activity patterns in rat DL striatum change with overtraining

 responses move to beginning and end of action sequence

 reminiscent of hierarchical RL, eg options (Precup et al. 1998; Botvinik et 

al 2009)

(Jog et al 1999)
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a
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aoption

S

S

a

hierarchical RL

δ

δ δ

δ

δ

options (Precup et al.): macro-actions learned by TD methods

 but with multiple error signals (within and outside option, 

pseudorewards)
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values Vo(S)

p(a|S) 

policy π

Environment

Actor

a
c

ti
o

n
 (

a
)

s
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te
 (

S
)

state values

V(S)

Critic

reward r(t)

TD 

error

δ(t)

p(a|S,O)

policy πo

(pseudo)reward ro(t)

TD 

errors

δ(t)

Option

implications

Botvinik et al. 2009 review changes to standard actor/critic story this necessitates

see also Badre et al 2010; Reynolds & O’Reilly 

- experiments underway



multieffector learning

example 2:

even at a single step, due to the multieffector 
body, there is still a curse of dimensionality

general computational approach (eg Russell and 
Zimdars, 2003; Chang, Ho and Kaelbling, 2003; 
Rothkopf & Ballard): divide & conquer, exploiting 
structure of problem

– insofar as possible, learn separately at each effector

– this may involve a credit assignment problem (though 
not in the experiment to follow)



divide & conquer

(Gershman et al. 2009)

neural considerations pull two 
ways:
posterior parietal cortex seems to 

have effector-specific value maps
(but what happens for actions 
with inseparably coupled
values?)

dopamine teaching signal 
normally presumed to be scalar
(but how then could it train 
multiple value maps?)



task

options choice reward

(Gershman et al. 2009)



models

options choice reward

Joint model: learns values for pairs of choices
Q(      )← Q(      ) + αδ(      )

δ(      ) = R(      ) – Q(      )

Decomposed model: learns values for each hand separately 
Q(    )← Q(    ) + αδ(    ) Q(    )← Q(   ) + αδ(   )

δ(    ) = R(   ) – Q(    ) δ(    ) = R(   ) – Q(   )

Does behavior reflect decomposed values?
Do neural signals?



behavior

options choice reward

(Gershman et al. 2009)

1. regression consistent with 

separable solution (effect of 

outcomes bleeds between joint 

actions; P<.001) 

2. comparison of full RL models 

favors separable one (15/16 

subjects)

3. in separate behavioral experiment 

with inseparable rewards, 

inseparable model is favored



striatal prediction error

net PE

δL+ δR

separable task: do PEs decompose?

hemisphere x effector

P<.005

(Gershman et al. 2009)



summary

• both hierarchy example and multieffector 

example suggest decomposed, vector-

valued error signal

– this, apparently, can be observed

– nb also useful in POMDPs

– cf Frank et al. “Making working memory work”



vigor

• in many conditioning tasks, dependent variable is vigor 
(eg rate of leverpressing, speed of running), not a 
discrete choice

• causal manipulations of dopamine (eg drugs, 
Parkinson’s disease) have most obvious effects on 
behavioral activation, hard to attribute to learning
– suggestion (e.g. Berridge 2008) that dopamine is involved in 

performance, not learning

• Niv et al (2005, 2007): formulate RL-like optimization 
problem with choice of action + vigor



Formalism

Q(S,a,τ) = 
immediate

reward

or cost
-

expected

future rewards

minus costs

vigor

cost +
time

cost-



Formalism

Q(S,a,τ) = 
immediate

reward

or cost
-

expected

future rewards

minus costs

vigor

cost +
time

cost-

choice of latency:

slow  less vigor cost

but more time cost

from average reward RL

time (opportunity) cost is

τ R

for average reward R
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opportunity cost and vigor

Q
 v

a
lu

e

zero R

low R

higher R

• reward rate determines the “cost of sloth”

• higher rate of reward: pressure on all actions to be faster

• suggests causal control mechanism: track reward rate, 

energize behavior



76

the tonic dopamine hypothesis

average prediction error = net reward rate

thus, automagically: dopamine viewed 
more slowly (tonic DA) could carry R

$ $ $ $ $$$ $ $ $ $$♫ ♫ ♫ ♫ ♫♫

Niv et al 2007

 suggests reconciliation of phasic (reward, teaching) and tonic 

(activational) functions of DA



Markov Decision Process

class of stylized tasks with

states, actions & rewards

 what do these correspond to in 

biology?



rewards

• in RL, rewards are scalars

• in psychology and biology, rewards may 
serve a number of roles

– reinforcement (~ model-free RL)

– goal/incentive (~ model-based RL)

• this relates to a classic disagreement in 
psychology as to what is learned from 
reward
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rat version

Valued

Devalued

Lever Presses

0

5

10

moderate

training

extensive

training

a
c
ti
o
n
s
 p

e
r 

m
in

u
te

(Holland, 2004)
two behavioral modes:

devaluation-sensitive

(“goal directed”)

devaluation-insensitive

(“habitual”, like TD)

neurally dissociable with lesions

(Dickinson, Balleine, Killcross)

(Balleine, Daw & O’Doherty, 2009)



Lesions

• With lesion of dorsolateral 
striatum (also its DA input) 
rats acquire normally but 
never form habits: 
perpetually devaluation 
sensitive

• Prefrontal areas, also 
dorsomedial striatum 
produce opposite pattern: 
even undertrained rats are 
habitual (devaluation 
insensitive)

 Behavior arises from  
dissociable neural systems

(Yin et al 2004)

Overtrained

Control

(Yin et al 2005)

Moderate training

DL str lesion

ControlDM str lesion



interim summary

same action (leverpressing) can arise from two behaviorally and neurally 
distinct systems; can only distinguish with devaluation test

• overtrained leverpressing is devaluation insensitive
– “habitual”

– as predicted by temporal-difference & SR models

– this is closely associated with what we think dopamine does

• moderately trained leverpressing is devaluation sensitive
– “goal directed”

– demonstrates animals represent outcome internally

– this is probably nondopaminergic (?)

 possible to knock out either system with lesion; the other one takes over
– parallel loops each involving areas of cortex and striatum

– suggests really parallel neural systems: multiple action systems?

– why is this such a crazy idea?

– what problems does this create?



• how do we think about all this in terms of 

RL?

• is there an RL account for goal directed 

behavior?



Reinforcement learning

• must learn about long term consequences of actions to 
choose the best

how to build these up from past morsels of short term 
experience? there are different strategies



Approach 1: Model-based RL
• Learn a “model”of problem…

– state-action-state transitions

– state-reward mappings

– like a “cognitive map”of task (need 
not be spatial)

• …and you can iteratively search it 
to forecast long-term value of an 
action

– dynamic programming

• obviously hard online, in large 
problmes

A

B C

x

5 0 1 2

computed

Q=5

computed

Q=2



Approach 2: Model-free RL (TD)

• Shortcut: store long-term values
– then simply retrieve them to choose 

the best

• you can learn these directly from 
experience
– without building or searching a 

model

– by incremental “sampling”



• Shortcut: store long-term values
– then simply retrieve them to choose 

the best

• you can learn these directly from 
experience
– without building or searching a 

model

– by incremental “sampling”

Approach 2: Model-free RL (TD)



• Shortcut: store long-term values
– then simply retrieve them to choose 

the best

• you can learn these directly from 
experience
– without building or searching a 

model

– by incremental “sampling”

Approach 2: Model-free RL (TD)



• Shortcut: store long-term values
– then simply retrieve them to choose 

the best

• you can learn these directly from 
experience
– without building or searching a 

model

– by incremental “sampling”

Approach 2: Model-free RL (TD)



outcome sensitivity

model-based:

can immediately adapt to value shifts

like goal-directed

model-free:

cannot immediately adapt 

like habits

A

B C

x

5 0 1 2

computed

Q=5

computed

Q=2 A

stored

Q=5

stored

Q=2



outcome sensitivity

model-based:

can immediately adapt to value shifts

like goal-directed

model-free:

cannot immediately adapt 

like habits

A

B C

x

1 0 5 1

computed

Q=1

computed

Q=5 A

stored

Q=5

stored

Q=2



additionally

• how to trade off these approaches online (meta-control)?

• Daw et al. 2005: basic tradeoff between cost vs accuracy 
of model-based search explains a lot of data (like 
overtraining effect); formalized with uncertainty

• parallels in behavioral economics (Ho & Camerer; 
Hampton et al.): do you approach multiplayer 
interactions by learning model of opponents + best 
responding?

• a lot of ongoing work trying to separate model-based vs 
model-free signaling in the brain
– emerging finding: more integrated than expected



from nips to neuroscience

reinforcement learning exemplifies two (related) ways that 
computer science informs behavioral neuroscience

1. conceptual
– how to characterize hard problems (formally analyzable tasks)

– optimal (typically intractable) solution

– approximate algorithms and their properties

– define relevant quantities

 algorithms as hypotheses

 common process level explanation for different kinds of data

2. analytical
– algorithms as likelihood functions for inference from data

– data analysis as statistical machine learning



for further information

me: daw@cns.nyu.edu

don’t miss Rangel talk at main meeting

Reviews of RL & the brain

• Niv (2009), Reinforcement learning in the brain, The Journal of Mathematical 
Psychology

• Maia (2009), Reinforcement learning, conditioning, and the brain: successes & 
challenges, Cognitive Affective and Behavioral Neuroscience  

• Balleine, Daw, & O’Doherty (2008), Multiple forms of value learning and the function 
of dopamine, in Neuroeconomics

• Dayan & Niv (2008), Reinforcement learning and the brain: The Good, The Bad and 
The Ugly, Current Opinion in Neurobiology

• Doya (2008), Modulators of decision making, Nature Neuroscience

RL for data analysis

• Daw (2010), Trial by trial data analysis using computational models, in Attention and 
Performance 23

• JP O’Doherty, A Hampton & H Kim (2007), Model-based fMRI and its application to 
reward learning and decision making, Annals of the New York Academy of  Science


