Linear Complementarity for **Regularized Policy Evaluation** and Improvement

Jeff

Christopher Johns Painter-Wakefield Ronald Parr

This Talk

Solving multiple, related L₁ regularization problems

Efficient policy iteration algorithm for Markov decision processes (MDPs)

Formulate as a linear complementarity problem (LCP), use warm starts

L₁ Regularization

- Form
 - Optimization: $w = \underset{u}{\operatorname{argmin}} (L(u) + \beta ||u||_1)$ - Fixed point: $w = \underset{u}{\operatorname{argmin}} (L(u, w) + \beta ||u||_1)$
- Benefits
 - Sparse solutions (model interpretability)
 - Learn with large number of irrelevant features
 - Prevents overfitting

Applications

VFA for MDPs

• Policy iteration

- Role of linear complementarity
 - New VFA method
 - Warm starts accelerate computation across iterations

- Big Picture
 - Background
 - Connection to LCPs
 - Two LCP-based Algorithms
 - Summary

Markov Decision Processes

- Finite MDP: $\langle S, A, P, R \rangle$
- Goal: Learn a "good" policy $\pi: S \to A$
- Value function

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P^{\pi(s)}_{ss'} V^{\pi}(s')$$

 $V^{\pi} = R + \gamma P^{\pi} V^{\pi} \equiv T^{\pi} (V^{\pi})$

Linear VFA

• Linear approximation

$$\hat{V}^{\pi}(s) = \sum_{j} \phi_{j}(s) w_{j}$$

$$\hat{V}^{\pi} = \Phi w$$

• Set w by considering residual $\Delta = T^{\pi}(\Phi w) - \Phi w$

LSTD [Bradtke & Barto, '96]

• Set w to minimize projection of the residual

$L_1TD \quad [\text{Kolter \& Ng, '09}]$

- $L_1TD = LSTD + L_1$ regularization
- L₁ fixed point

$$w = \underset{u}{\operatorname{argmin}} (L(u, w) + \beta \|u\|_{1})$$

$$- \frac{1}{2} \|\Phi u - T^{\pi}(\Phi w)\|_{2}^{2}$$

L₁TD Solution

- No analytical solution
- Coefficients must meet first order conditions

Derivation parallels LASSO conditions

$$c = \Phi^T \Delta$$

$$\begin{aligned} -\beta &\leq c_i \leq \beta & \forall i \\ c_i &= \beta &\Rightarrow w_i \geq 0 \\ c_i &= -\beta &\Rightarrow w_i \leq 0 \\ -\beta &< c_i < \beta &\Rightarrow w_i = 0 \end{aligned}$$

 $eta \geq 0$, L_{1} reg. parameter

LARS-TD [Kolter & Ng, '09]

- Solves L₁TD problem
- Homotopy method inspired by LARS [Efron et al., '03]
 Gives solution for *all* values of β
- Disadvantages w.r.t. policy iteration
 - Each policy starts from scratch
 - Must commit to one β to perform policy improvement

- Connection to LCPs
- Two LCP-based Algorithms
- Summary

Linear Complementarity Problems (LCPs)

- LCPs are mathematical programs $LP \subset LCP \subset QP$
- Given: q, M (square)
 Compute: d, x

$$d = Mx + q$$
$$d \ge \mathbf{0}, \ x \ge \mathbf{0}$$
$$d_i x_i = 0 \quad \forall i$$

L₁TD as an LCP

- Recall $c = \Phi^T \Delta = \Phi^T R \Phi^T (\Phi \gamma P^{\pi} \Phi) w$ • LCP inputs: $q = \left(\beta + \begin{bmatrix} b \\ -b \end{bmatrix}\right)$ $M = \begin{bmatrix} A & -A \\ -A & A \end{bmatrix}$
- LCP solution achieves L₁TD first order conditions
 Denote this as w ← LC-TD(A, b, β)

LCP Solvers

- Similarities to LP solvers
 - Worst case exponential complexity
- Some solvers can be initialized with a *warm start*
- Properties of *q*, *M* dictate solution existence, uniqueness, and computability

Big Picture

Background

Connection to LCPs

- Two LCP-based Algorithms
- Summary

Algorithm 1: LC-TD w/ PI

Experiments

 Compare average number of algorithm steps for LC-TD and LARS-TD

Domain	LARS-TD, PI	LC-TD, PI
Mountain Car	214 ± 23	116 ± 22
Chain	73 ± 13	77 ± 11
Pendulum	153 ± 25	48 ± 23

• Option 1: Run *m* separate trials

Algorithm 2: LC-MPI

Experiments

- Compare avg. number of algorithm steps
 - LARS-TD and LC-TD 11 separate times for different β 's
 - LC-MPI once for same 11β 's

Domain	LARS-TD, PI	LC-TD, PI	LC-MPI
Mountain Car	214 ± 23	116 ± 22	21 ± 5
Chain	73 ± 13	77 ± 11	24 ± 11
Pendulum	153 ± 25	48 ± 23	33 ± 18

- Big Picture
- Background
- Connection to LCPs
- Two LCP-based Algorithms
 - Summary

Summary

- L₁ fixed point is equivalent to an LCP
- LCP formulation useful when solving multiple, related problems
 - Exploit warm starts
 - Reduce computation during policy iteration
 - LC-MPI lends itself to cross-validation

